文档库 最新最全的文档下载
当前位置:文档库 › 微生物絮凝剂

微生物絮凝剂

微生物絮凝剂
微生物絮凝剂

微生物絮凝剂

摘要:微生物絮凝剂是一种具有广阔应用前景的天然高分子絮凝剂,因其具有高效、无毒、无二次污染等性质而备受人们的关注,并广泛应用于水处理、食品加工和发酵工业。本文综述了微生物絮凝剂的研究与应用进展,包括合成絮凝剂的微生物种类、微生物絮凝剂的分类及特点、结构、微生物絮凝剂的絮凝机理和絮凝能力的影响因素,最后提出了微生物絮凝剂的发展趋势。

关键词:微生物絮凝剂;絮凝机理;研究进展

絮凝剂被广泛地应用于工业废水处理、食品生产和发酵等工业中。一般把絮凝剂分为3 类:1、无机絮凝剂,如硫酸铝、聚合氯化铝、聚合硫酸铁等;2、有机合成高分子絮凝剂,如聚丙烯酰胺及其衍生物、聚乙烯亚胺、聚苯乙烯磺酸盐等;3、天然高分子絮凝剂,如改性淀粉、聚氨基葡萄糖、壳聚糖、藻酸钠、几丁质和微生物絮凝剂[1]。

人们逐渐认识到:无机絮凝剂一般使用量较大,容易造成二次污染。如水中残留铝离子过多,不但对水生生物和植物有害,还可造成老年人的铝性骨病及痴呆症。铁离子虽对人体无害,但铁离子会使处理的水呈现红色,并刺激铁细菌繁殖,从而加速对金属设备的微生物腐蚀。目前使用的PAM 等高分子有机絮凝剂,通常价格昂贵,在水中的残留物不易降解,而且有些聚合物单体具有毒性和致癌作用。随着人们生活水平的提高,以及对卫生及环境的关注,急需研究和开发絮凝效果好、价格低廉、易降解、环境友好、应用范围广、无二次污染的新型絮凝剂。

当今国内外对絮凝剂研究和发展方向是由无机向有机、低分子向高分子,单一向复合、合成型向天然型发展。基于生物多样性,开展了微生物絮凝剂的研究。微生物絮凝剂是一类由微生物在生长过程中产生的,可以使水体中不易降解的固体悬浮颗粒、菌体细胞及胶体粒子等凝集、沉淀的特殊高分子聚合物。是一种具有生物分解性和安全性的新型、高效、无毒、廉价的水处理剂,近些年来受到极大关注, 有逐步取代传统絮凝剂的趋势[2]。

1 合成絮凝剂的微生物种类

能产生絮凝剂的微生物有很多种类,细菌[3,5]、放线菌[4]、真菌[5]以及藻类[6]等(见表1)都可以产生絮凝剂。这些已经鉴定的絮凝微生物,大量存在于土壤、活性污泥和沉积物中,从这些微生物中分离出的絮凝剂不仅可以用于处理废水和改进活性污泥的沉降性能,还能用在微生物发酵工业中进行微生物细胞和产物的分离。

表1 一些能产生絮凝剂的微生物

微生物种类Microorganisms

絮凝剂主要成分Components of flocculats

细菌Bacteria

Rhodococcus erythropolis蛋白质Protein Alcaligeues cupidus 酸性聚多糖Acid polysaccharide

Pseudomouas sp 粘多糖Mucopolysaccharide Lactobacillus fermeutum 蛋白质Protein

Flavobacterium sp 蛋白质Protein

Zoogolea sp 氨基多糖Animopolysaccharide 放线菌Antinomyces

Nocardia amarae 蛋白质Protein

Streptomyces griseus 蛋白质Protein

真菌Fungi

Aspergillus sojae 多聚糖胺Poly-hexosamine Saccharomyces cerevisiae 多肽Poly peptide

藻类Algae

Anabaenopsis ccircularis 酸性聚多糖Acid polysaccharide 这些微生物的絮凝能力有较大差异,因未进行过全面的比较试验,尚不能确定絮凝能力最强或絮凝剂产率最大的究竟是哪一种微生物。

2 微生物絮凝剂的分类及特点

2.1 微生物絮凝剂的分类

根据近些年对微生物絮凝剂的研究与报道,可把它分为4 大类:

(1)直接利用微生物细胞的絮凝剂:如某些细菌、霉菌、放线菌和酵母,大量存在于土壤、活性污泥和沉积物中。

(2)利用微生物细胞提取物的絮凝剂:如酵母细胞壁的葡聚糖、甘露聚糖、蛋白质和N-乙酰葡萄糖胺等成分均可作为絮凝剂。

(1)利用微生物细胞代谢产物的絮凝剂:微生物细胞分泌到细胞外的代谢产物,主要是细菌的荚膜和黏液质,除水分外,其余主要成分为多糖及少量的多肽、蛋白质、脂类及其复合物。

(4)利用克隆技术所获得的絮凝剂。这类絮凝剂是用基因工程技术和现代分子生物学,把高效絮凝基因转移到便于发酵的菌中,构造高效遗传菌株,克隆絮凝基因能在多种降解中产出有效的微生物絮凝剂[7]。

2.2 微生物絮凝剂的特点

与无机或有机高分子絮凝剂相比,微生物絮凝剂具有许多独特的性质。

(1)微生物具有比表面积大、转化能力强、繁殖速度快、易变异、分布广等特点,且生物絮凝剂的来源广,这样生物絮凝剂的生产周期会非常短且效率高。

(2)高效。同等用量下,与现在常用的铁盐、铝盐、聚丙烯酰胺相比,微生物絮凝剂对活性污泥的絮凝速度最高,而且絮凝沉淀物容易过滤。

(3)无毒。微生物絮凝剂为微生物菌体或菌体外分泌的生物高分子物质,属于天然有机高分子絮凝剂,它安全无毒。

(4)可消除二次污染。微生物絮凝剂是微生物的分泌物,自然不会危害它自身,不会影响水处理效果,且絮凝后的残渣可被生物降解,对环境无害,不会造成二次污染。

(5)应用范围广泛,脱色效果独特。微生物絮凝剂能处理的对象有活性污泥、粉煤灰、木炭、墨水、泥水、河底沉积物、高岭土、印染废水等。而且,生物絮凝剂对悬浊液絮凝速度快、用量少,对胶体、溶液均有较好的絮凝效果,对富含有机物的屠宰废水和血水也有较好的去色效果。

(5)微生物絮凝剂价格较低。无论从生产成本还是处理技术总费用,微生物絮凝剂的价格都低于化学絮凝剂的价格。

不足之处是,生物絮凝剂的效果容易受到有毒物质的干扰,因此,被处理的废液中必须无妨害菌体生长的因素[8] 。

3 微生物絮凝剂的结构

为了深入了解微生物产生絮凝剂的原因和解释微生物絮凝剂的絮凝机理,需要对微生物絮凝剂絮凝基团的组成、结构进行研究。

3.1 微生物絮凝剂的化学结构

研究微生物絮凝剂的化学结构,大致有三种方法[2,9]:

( 1) 因子破坏法:通过测定纤维素酶、蛋白酶(如链霉蛋白酶)、金属阳离子螯合剂(如EDTA)和加热等处理对微生物絮凝能力的破坏,以判断絮凝剂的化学组成。

( 2) 化学分析法:能够有效地证明微生物絮凝剂的具体生化组成,包括多糖的单位成分、蛋白质的氨基酸构成等。

( 3) 再形成法:将与絮凝剂形成有关的成分分别提取出来,再把它们加在一起,如果可以形成絮凝物,絮凝剂的组成便得到证实。例如,先用EDTA 将金属离子去除,再添加金属离子,观察是否会恢复絮凝能力,如果恢复,那么金属离子的作用便得到充分的证实。3.2 微生物絮凝剂的微观结构

已知的微生物絮凝剂的微观结构有两种:

( 1) 纤维状:具有这种特殊结构的絮凝剂形成像丝绸一样的纤维,是絮凝体形成过程中的颗粒间连接物。

( 2) 球状:从酱油曲霉获得的絮凝剂有三种成分:聚己糖胺、蛋白质和2-葡糖酮酸。2-葡糖酮酸的作用是维持絮凝剂成球形,一旦丧失2-葡糖酮酸成分后,絮凝剂的微观结构就发生变化,且絮凝行为模式也由非离子型转变为阳离子型。

3.3 微生物絮凝剂的化学本质

根据多年的研究,可以初步确定,化学本质来讲,微生物絮凝剂主要是微生物代谢产生的各种多聚糖类[10],这类多聚糖中有些是由单糖单体组成,有些是由多糖单体构成的杂多糖,有些微生物絮凝剂是蛋白质,或者是有蛋白质的参与。另外,一些絮凝剂专论与综述工业水处理中还含有无机金属离子,如Ca2+、Mg2+,A13+和Fe3+等。研究表明,生物絮凝剂的破坏对微生物的生长有一定的促进作用,这可能是因为游离细胞与培养液中营养物接触面积增加的缘故。这种现象说明,絮凝剂真正的生理意义并不在于使微生物产生絮凝,而是在于构成微生物的多糖荚膜,微生物的絮凝性也许是一种伴生性状。

4 微生物絮凝剂的絮凝机理

絮凝作用是一个复杂的物理化学过程,对于微生物絮凝剂的絮凝机理曾经先后提出过很多种学说:粘质说、电荷中和机理和离子键、氢键键桥学说[11] 。下面介绍主要的几种:

1) 架桥絮凝机理。这一机理认为,絮凝剂借助离子键、氢键、同时结合了多个颗粒上的分子,在颗粒间起了“中间桥梁”的作用,从而使悬浮物形成网状结构的絮凝物而沉淀下来。通常认为合成的高分子絮凝剂都是通过这种机理产生絮凝作用,微生物絮凝剂的絮凝机理与合成的高分子絮凝剂的作用机理是一致的。这种机理最为人们所认可。

2) 电性中和机理。这一机理认为胶体粒子的表面一般带有负电荷,当带有一定正电荷的链状生物大分子絮凝剂或其水解产物靠近这种胶粒时,会中和胶体表面上的部分电荷,使静电斥力减少,从而使胶粒间发生磁力碰撞而凝聚,向溶液中加入金属离子或调节pH 值可影响其絮凝效果。

3) 化学反应机理。这一机理认为生物大分子中某些活性基团与被絮凝物质相应基团反应,进而聚集成较大的分子而沉淀下来。通过对生物大分子进行改性处理,使其添加或丧失某些活性基团,絮凝活性发生变化而起作用。某些学者指出絮凝剂的活性主要是依赖于活性基团,即活性基团决定了絮凝剂的活性。

4) 卷扫作用机理。这一机理认为,当微生物絮凝剂的投加量一定且形成小颗粒絮体时,可以在重力作用下,迅速网捕,卷扫水中一些胶粒,从而产生沉淀。这种作用可看成是一种机械作用,实践证明,所需絮凝剂的量与原水中杂质悬浮体含量成正比。

从微生物絮凝剂的多样性及其表现出的絮凝范围的广谱性可以断定,絮凝机理肯定是多

样的。絮凝过程是一个复杂的过程,为了更好地解释机理,需要对特定絮凝剂和胶体颗粒的组成、结构、电核、构象及各种反应条件对它的影响进行更深入的研究。

5 絮凝能力的影响因素

除了被絮凝物质的性质外,影响微生物絮凝剂絮凝能力的因素还包括温度、p H 、无机金属离子和絮凝剂的分子量等。

5.1 温度

温度对一些微生物絮凝剂的活性有较大影响。主要是因为这些絮凝剂的蛋白质成分在高温变性后会丧失部分絮凝能力[12] ,所以由多聚糖构成的絮凝剂就不受温度的影响。例如,Aspergillus sojae产生的絮凝剂在温度为30~ 80 ℃时,活性最大,高于或低于这个温度活性便迅速下降,而Paecilomyces sp产生的聚半乳糖胺絮凝剂在0一1 0 ℃之间时, 絮凝活性几乎不变。

5.2 PH

絮凝剂的絮凝能力受PH 影响的原因,是酸碱度的变化改变生物聚合物的带电状态和中和电荷的能力以及被絮凝物质的颗粒表面性质(如带电情况),如Paecilcnnyces sp产生的絮凝剂聚半乳糖胺, 在p H 为4~ 7.5 时,絮凝能力最强,当p H 为3 或8 时,絮凝能力急剧下降为0。

5.3 金属离子与其他无机离子

有些微生物絮凝剂中含有金属离子,金属离子可以加强生物絮凝剂的桥联作用[13]和中和作用,对微生物絮凝剂的絮凝活性有重要意义,甚至是必据的条件。即使对于不含有金属离子的微生物絮凝剂,添加一些金属离子也能够提高絮凝活性。容易受金属阳离子影响的多数是蛋白质(多肤)型的徽生物絮凝剂。例如, H.conomala的絮凝和非絮凝菌株细胞壁的脂肪酸和氮荃酸的组分与含量虽无较大差别,但其金属离子含量有着极大的差异, 前者Ca2+,Mg2+和N a+的含量远比后者高。

此外,各种离子在絮凝剂中的作用也得到较为深入的研究。具体来说:

Ca2+的作用:Ca2+ 可以显著提高微生物絮凝剂的活性。对于一些微生物来说, 形成絮凝体必须有Ca2+的参与,但对另一些微生物却不是这样。一般认为,钙离子的作用是起化学桥联作用,在絮凝微生物细胞之间联结细胞表面的蛋白质和多糖。

Mg2+的作用:添加Mg2+也能够提高微生物絮凝剂的活性。但关于镁离子的作用,一些研究者根据各自的研究结果得出的结论并不一致。

Na+的作用:Na+可以增加絮凝剂的活性,但达到一定浓度后,再提高N a+的浓度对增加絮凝活性的意义不大。

除上述3 种金属离子之外,Fe3+和Al3+对絮凝活性也有作用。但这两种离子在低浓度时可以提高微生物絮凝剂的活性,达到一定浓度后, 反而会抑制絮凝物的形成。

5.4 微生物絮凝剂的浓度

和其他絮凝剂一样,微生物絮凝剂的絮凝效率也受其浓度的影响,在较低浓度范围内,随絮凝剂浓度的提高,絮凝效率升高,但达到最高点后,再增加絮凝剂的浓度,絮凝效率反而降低。

5.5 微生物絮凝剂的分子量

微生物絮凝剂的分子量大小对絮凝剂的絮凝活性至关重要。分子量大,吸附位点就多,携带的电荷也多,中和能力也强,桥联作用和卷扫作用明显。目前已分离纯化的微生物絮凝剂都是多聚糖和蛋白质之类的生物大分子,除少数外,分子量大都在几十万到几百万。

分子量的减少会降低絮凝剂的絮凝活性,例如絮凝剂的蛋白质成分降解后,分子量减小,絮凝活性明显下降。

6 微生物絮凝剂的发展趋势和研究方向

鉴于目前国内外的研究状况,微生物絮凝剂的主要发展趋势体现在以下几个方面:

1、加大絮凝微生物的筛选力度和范围,从而筛选到更多的高效絮凝微生物;

2、从生产工艺的角度出发,选用廉价的工业废料作为培养基以降低培养基配制成本,建立高效生化反应器,优化发酵的运行条件,提高培养基效率,不断探索新工艺新方法,使微生物絮凝剂的生产真正实现产业化水平。例如在NOC-1 的培养基中,用豆饼、水产废水和牛血取代酵母浸膏后, 培养基的价格下降了2/ 3 以上[14];Ci trobacter sp. TKF04 可以用乙酸作为惟一的碳源营养来合成絮凝剂[15];2、加强对微生物絮凝剂的物质结构特性、絮凝特性等方面的基础性研究,深入研究微生物絮凝剂的絮凝机理以及它在处理不同水质废水时的共性与特性。拓宽微生物絮凝剂的应用范围,使之能够处理各种不同的废水。根据不同的废水水质研制具有针对性的高效微生物絮凝剂或复合絮凝剂,既能明显提高絮凝效果,还可大大降低絮凝剂投加量,从而降低处理成本, 这是使微生物絮凝剂实现工业应用的前提[16];

3、利用现代分子生物学技术获得的高效絮凝基因,通过转基因技术,构建高产絮凝剂的工程菌,以期实现微生物絮凝剂的大规模生产;

4、将微生物絮凝剂拓展到概念更广的生物絮凝剂研究范畴。例如Haruhiko Yokoi 研究发现, 在厌氧条件下Enterobacter sp. BY-29 能够同时产生氢和絮凝剂[17]。将酶和激素等促进微生物生长的物质加载到絮凝剂上,实现生化反应与絮凝处理的有机结合,以保证水处理的出水水质的前提下,缩短生化系统启动和废水在生化系统的停留时间。

微生物絮凝剂的研制和应用方兴未艾,其特性和优势为水处理技术的发展提供了一个广阔的舞台,相信在不久的将来,随着对微生物絮凝剂研究的不断深入,微生物絮凝剂将会广泛地应用于工业废水处理、食品生产和发酵等工业中,并将有可能在未来取代或部分取代传统的无机高分子和合成有机高分子絮凝剂。我国的微生物絮凝剂研究起步较晚,层次还比较低,急需广大环境工作者投入更多的人力物力进行发展,为我国絮凝剂的发展奠定理论和物质基础。

参考文献:

[1] 江锋,黄晓武,胡勇有. 胞外生物高聚物絮凝剂的研究进展[ J ] . 给水排水,2002, 28( 8) : 83- 89.

[2] Ohshima,H., A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particales [J]. J.Colloid and Interface Science,1994,168: 269- 271.

[3] S . B. Deng, R. B. Bai, X. M . Hu, Q. Luo. Charact eristics of a bioflocculant produced by Bacil lus mucilaginosus and its use in starch wast ewat et reatment [ J ] . Appl Microbiol Biot echnol,2003, 60: 588- 593.

[4] Ning He, Yin Li, Jian Chen, et al . Ident ification of a novel bioflocculant f rom a new ly isolat ed Corynebact erium glutamicum [ J ] . Biochemical Engineering Journal, 2002, 11: 137 -148. [5] W ang S. G. , GongW. X. , L iu X.W. , et al. Production of a novel bioflocculan t by cu ltu re of Klebsiella m obilis using da iry w astew ater. B iochem ical Eng ineer ing Journa,l 2007,36( 2):

81-86

[6] 傅旭庆,汪大,徐新华. 微生物絮凝剂及其絮凝机理[ J ] .污染防治技术,1998, 11( 1) : 6- 9.

[7] 汪德生,张洪林,蒋林时,等. 微生物絮凝剂发展现状与应用前景[J].工业水处理,2004,

24( 9) : 9- 12.

[8] 毛艳丽,张延风,罗世田,等. 水处理用絮凝剂絮凝机理及研究进展. 华中科技大学学报( 城市科学报),2008, 25 ( 2): 78-82

[9] 张兰英.现代环境微生物技术[M].北京: 清华大学出版社, 2005

[10] 陶涛,等. 微生物絮凝剂研究与应用进展[J]. 环境科学进展,1999,7(6):21-25

[11] 周少奇.环境生物技术[M] .北京:科学出版社,2003.

[12] H. Salehizadeh, M. V ossoughi, I. Alemzadeh. Some investigations on biof locculant producing bact eria[ J] . Bioch emical Eng-ineering Journal, 2000, 5: 39- 44.

[13] Nakamura J, Miyashiro S., Hirose Y., Conditions of production of microbial cell flocculant by Aspergillus sojae AJ-7002 [J].Agric Biol Chem, 1976a, 40(7): 1341- 1347.

[14] Nakat a K,Kurane R. Product ion of an extracellular polysaccharide bioflocculant by K lebsiel la p neumoniae [ J ] . Bioscience Biot echnol Biochem( JAPAN) , 1999, 63( 12) : 2 064- 2 068.

[15] W. Dermlim, P. Prasert san, H. Doelle. Screening and character-zat ion of biof locculant produced by isolat ed K le bsi ella sp. [ J] .Appl ied Microbiology and Biot echnology, 1999,

52( 5 ) : 698 -703

[16] 程树培,耿小六,史阳巍,等. 球形红假单胞菌沉降性能诱导及絮凝效率研究[ J] . 南京大学学报,1994, 30 ( 3 ) : 469 -476.

[17] Haruhiko Yokoi, Tomot eru Arat ake, Jun H irose, et al . Simult aneous production of hydrogen and bioflocculant by E nterobactersp. BY-29 [ J ] . World Journal of Microbiology& Biot echnology,2001, 17: 609- 613.

Microbial Flocculant

Abstarst:Microbial flocculant (MBF) is a kind of natural macro-molecular flocculants and is widely used for water treatment and flood fermentation industrial processing beacause of the properties of high effciency innocuity,without second-pollution,etc.This paper presents a review on the progresses of microbial flocculant studies and application,including microorganisms which produce flocculants,classification and characteristics,microstructure,mechanism of flocculation and ability of the microbial flocculants,as well as the influence factors and culture conditions for their production .

Key words:Microbial flocculant;flocculating mechanism;research progress

微生物絮凝剂

微生物絮凝剂 摘要:微生物絮凝剂是一种具有广阔应用前景的天然高分子絮凝剂,因其具有高效、无毒、无二次污染等性质而备受人们的关注,并广泛应用于水处理、食品加工和发酵工业。本文综述了微生物絮凝剂的研究与应用进展,包括合成絮凝剂的微生物种类、微生物絮凝剂的分类及特点、结构、微生物絮凝剂的絮凝机理和絮凝能力的影响因素,最后提出了微生物絮凝剂的发展趋势。 关键词:微生物絮凝剂;絮凝机理;研究进展 絮凝剂被广泛地应用于工业废水处理、食品生产和发酵等工业中。一般把絮凝剂分为3 类:1、无机絮凝剂,如硫酸铝、聚合氯化铝、聚合硫酸铁等;2、有机合成高分子絮凝剂,如聚丙烯酰胺及其衍生物、聚乙烯亚胺、聚苯乙烯磺酸盐等;3、天然高分子絮凝剂,如改性淀粉、聚氨基葡萄糖、壳聚糖、藻酸钠、几丁质和微生物絮凝剂[1]。 人们逐渐认识到:无机絮凝剂一般使用量较大,容易造成二次污染。如水中残留铝离子过多,不但对水生生物和植物有害,还可造成老年人的铝性骨病及痴呆症。铁离子虽对人体无害,但铁离子会使处理的水呈现红色,并刺激铁细菌繁殖,从而加速对金属设备的微生物腐蚀。目前使用的PAM 等高分子有机絮凝剂,通常价格昂贵,在水中的残留物不易降解,而且有些聚合物单体具有毒性和致癌作用。随着人们生活水平的提高,以及对卫生及环境的关注,急需研究和开发絮凝效果好、价格低廉、易降解、环境友好、应用范围广、无二次污染的新型絮凝剂。 当今国内外对絮凝剂研究和发展方向是由无机向有机、低分子向高分子,单一向复合、合成型向天然型发展。基于生物多样性,开展了微生物絮凝剂的研究。微生物絮凝剂是一类由微生物在生长过程中产生的,可以使水体中不易降解的固体悬浮颗粒、菌体细胞及胶体粒子等凝集、沉淀的特殊高分子聚合物。是一种具有生物分解性和安全性的新型、高效、无毒、廉价的水处理剂,近些年来受到极大关注, 有逐步取代传统絮凝剂的趋势[2]。 1 合成絮凝剂的微生物种类 能产生絮凝剂的微生物有很多种类,细菌[3,5]、放线菌[4]、真菌[5]以及藻类[6]等(见表1)都可以产生絮凝剂。这些已经鉴定的絮凝微生物,大量存在于土壤、活性污泥和沉积物中,从这些微生物中分离出的絮凝剂不仅可以用于处理废水和改进活性污泥的沉降性能,还能用在微生物发酵工业中进行微生物细胞和产物的分离。 表1 一些能产生絮凝剂的微生物 微生物种类Microorganisms 絮凝剂主要成分Components of flocculats 细菌Bacteria Rhodococcus erythropolis蛋白质Protein Alcaligeues cupidus 酸性聚多糖Acid polysaccharide Pseudomouas sp 粘多糖Mucopolysaccharide Lactobacillus fermeutum 蛋白质Protein Flavobacterium sp 蛋白质Protein Zoogolea sp 氨基多糖Animopolysaccharide 放线菌Antinomyces Nocardia amarae 蛋白质Protein

微生物絮凝剂产生菌的筛选

随着人类经济活动的不断发展和生活水平的日益提高,相应产生出越来越多的各种生产生活废弃物,对环境造成了巨大的破坏作用。废水、废气、固体废弃物三大公害污染物中以废水的危害尤为突出,世界各国对于由污染而引起的水环境质量恶化现象十分重视,各种污水治理方法不断地被开发应用,其中污水的絮凝处理得到了广泛的认可和推广,絮凝剂也被广泛地应用于给水净化、工业用水与废水及城市污水处理以及污泥脱水等水处理工艺中,而且在发酵工业后处理、食品工业、选矿等的固液分离中也得到了较好的应用。 水处理工程中常用的絮凝剂有无机絮凝剂、有机高分子絮凝剂和天然高分子絮凝剂。无机及有机高分子絮凝剂都具有一定的毒性,且会对环境造成二次污染等,会对人类健康与生态系统产生严重影响[1]。在给水处理中使用最多的无机絮凝剂主要是无机铝盐,如聚合氯化铝(PAC),其对与原水浊度的去处有很好效果,但也会造成处理后出水中铝离子含量过高而易引起老年痴呆症等问题,聚丙烯胺(PAM)作为合成有机高分子絮凝剂的代表,虽然用量少,絮体沉降速度快等优点,但其单体有强烈的神经毒性和佷强的致畸、致癌、致突变效应,在应用上也受到很大的限制[2]。许多国家已禁止或限制使用此类絮凝剂。同样无机铁盐也是无机絮凝剂的主要代表,但在其使用过程中的不安全性和对环境的潜在二次污染越来越引起人们的重视。在实际应用中使用无机絮凝剂会导致处理后的水中残留金属离子,同时产生大量的含铁等污泥,处理处置难度大。此外铁盐有一定腐蚀性,而且容易残留铁离子,使被处理后的水带有颜色,影响水质感官。市场上已有被替代的趋势。有机合成高分子絮凝剂往往需要进行化学改性,而且其絮凝效能大都不如合成高分子絮凝剂,在研究和应用上有较大的局限性。因此,研究开发安全无毒,絮凝活性高效,廉价,易于降解,不造成二次污染,和对环境友好的新型絮凝剂具有特别重要意义。所以,微生物絮凝剂已成为该领域的研究热点,为水处理技术研究提供了一个新方向,幷引起国内外环保工作者的高度重视。天然生物高分子絮凝剂对人体无害,可以被生物降解,对生态环境无不利影响,远比无机絮凝剂与有机合成高分子絮凝剂安全。目前对微生物絮凝剂的研究大多都停留在实验室研究阶段,远未达到大规模的应用和工业化生产阶段。主要制约微生物絮凝剂未来发展的关键问题在于生产成本过高和产量过低。由于微生物絮凝剂可以克服无机高分子界絮凝剂方面研究的重要课题。

微生物絮凝剂

摘要:微生物絮凝剂(MBF7)处理废水效果显著。其生长条件对絮凝效果影响十分重要。实验表明,葡萄糖培养基较察氏培养基利于MBF7号菌生长;MBF7号菌的最佳培养条件为30℃,PH为7.5~8.5,摇床转速为150~200r/min,最佳菌龄为3~4天。为了确定微生物絮凝剂(MBF7)的应用范围和了解其处理废水的特性,本实验以微生物絮凝剂(MBF7)处理餐厅、印染和味精废水。结果表明,MBF7处理餐厅废水、印染废水和淀粉废水的浊度(或色度)的去除率分别达94%,90%和96%。MBF7处理效果优于AL2(SO4)3,安全高效,有很好的实际应用价值。 关键词:微生物絮凝剂废水絮凝效果浊度去除培养基生长条件 在近年的应用里,有通过向废水中投加絮凝剂的实例,其中多数为化学絮凝剂,最常用的无机絮凝剂主要为铝盐,它具有投药少,沉降速度快,除浊度好的优点[1]。但因为铝盐的长期使用会导致老年痴呆症,而且沉淀物无法回收利用。而微生物絮凝剂是一种高效且能自然降解的新型水处理剂,相比于第一和第二代絮凝剂,有无毒无害,可自然降解,沉淀物可回收利用等优点[2,3],近年受到人民的广泛关注。成文等[4]从广州市某污水处理厂的活性污泥中筛选出一种高效的微生物絮凝剂产生菌,经鉴定为青霉(Penicillium sp.),属于对称二轮青霉组,质地多为绒状,也有絮状,表面初为灰蓝色、蓝绿色,中间有淡黄色带,老后渐为灰绿色、暗灰色;背后为红棕色、深紫色和深褐色,色泽渗入培养基。该菌所产生的微生物絮凝剂称为MBF7。 微生物絮凝剂就是利用生物技术,从微生物或其分泌物提取、纯化而获得的一种安全、高效、且能自然降解的新型水处理剂,包括糖蛋白、多糖、纤维素、蛋白质和DNA等[5]。不同的絮凝剂产生菌产生絮凝剂的条件不同,主要影响因素为培养基的碳源、氮源、培养温度、初始pH值、通气速度等[6]。微生物的絮凝作用实际是由微生物所合成或分泌的高分子有机物质来实现的[7,8.9]。 由于影响微生物产生絮凝剂的因素很多,本文通过测定微生物在两种不同培养条件下产生的MBF7对废水的絮凝作用来探讨对微生物絮凝剂的产出有影响的环境因素以及这些因素的重要性,从而得到微生物絮凝剂产生菌的最佳生长条件。另外由于微生物絮凝剂的应用范围很广,不同生长条件的微生物絮凝剂,其应用范围也不同。为了探讨微生物絮凝剂(MBF7)的应用前景,本人利用微生物絮凝剂MBF7处理餐厅废水、印染废水、淀粉废水进行研究。 1、材料与方法: 1.1、菌种:为属于青霉的一株微生物絮凝剂产生菌,其产生的絮凝剂称作MBF7。 1.2、培养基: 葡萄糖培养基PDA medium(g/L): 葡萄糖20.0g,尿素0.5g,酵母膏2.0g,KH2PO4 2.0g,K2HPO4 5.0g,NaCl 0.1g,(NH4)2SO4 0.2g ,水1000ml,调节pH为7.5~8.5。 蔡氏培养基Czapek Agar(g/L ): 蔗糖30.0g ,KCl 0.5g,K2HPO4 1.0g,MgSO4.7H2O 0.5g,NaNO3 3.0g, FeSO4 0.01g,水1000ml,调节pH为7.0。 1.3、供试水样: 餐厅废水:广州某酒楼排放的餐厅废水,原水浊度为125.6。 印染废水:广州某丝绸印染厂废水,原水色度为34.5。

微生物絮凝剂的应用及研究进展

微生物絮凝剂的应用及研究进展 刘敏,张兴 作者简介:刘敏(1986-),女,在读研究生,主要研究方向:微生物絮凝剂 通信联系人:张兴(1964-),男,教授,重要从事环境生物技术的研究. E-mail: kuangdazhang@https://www.wendangku.net/doc/405474217.html, (中国矿业大学化工学院,江苏 徐州 221008) 摘要:微生物絮凝剂(MBF)是利用生物技术,从微生物或其分泌物中提取、纯化而获得的一种安全、高效,且能自然降解的新型水处理剂,微生物絮凝剂种类直接利用微生物细胞的絮凝剂、利用微生物细胞提取物的絮凝剂、利用微生物细胞代谢产物的絮凝剂。微生物絮凝剂可广泛应用于废水处理、饮料工业、生物制药、重金属废水处理及贵重金属回收与选择性絮凝选矿等方面。 关键词:微生物絮凝剂;絮凝;水处理;应用;进展 Development and Application of Microbial Flocculant Liu Min, Zhang Xing (Department of Chenistry,CUMT, JiangSu XuZhou 221008) Abstract: Microbial Flocculant (MBF) is to use biotechnology, is taken from microorganisms or their secretions extract, purification, then get a safe, efficient, and natural degradation of water dispose reagent and oakum of the main coagulant directly from the cells flocculant, using microorganisms's cell extract flocculant, using flocculant bring by microorganisms cell metabolism. Microbial flocculant widely applied in waste treatment and beverage industry, the biological waste treatment and pharmaceutical, the heavy metal waster water treatment , metal reclaim noble metal and selectivity flocculant mill run. Keywords:MBF;flocculate;water treatment;application;development 0 引言 微生物的絮凝作用首先是由路易斯·帕斯特于1876年在酵母菌中观察到的,两年后类似现象亦在细菌中发现。1976年J. Nakamura 等从霉菌、细菌、放线菌和酵母菌等214种菌株中筛选出19种具有絮凝能力的微生物,其中以酱油曲霉(Asperillussojae)AJ7002产生的絮凝剂效果最好。1985年H. Takagi 等研究了拟青霉属(Paecilomyces sp .I-1)微生物产生的絮凝剂,精制获得PF-101絮凝剂。1986年R. Kurane 等从能降解酞酸酯的微生物中筛选出日本旱田土壤中常见的红平红球菌(Rhodococcuserythropolis),并利用该菌研制开发了絮凝剂NOC-1。该絮凝剂对大肠杆菌、酵母、泥浆水、河水、粉煤灰水、活性碳水、膨胀污泥、纸浆废水均有良好的絮凝和脱色效果[1~4]。 生物絮凝剂能絮凝处理的对象广泛,包括粉煤灰、活性污泥、木炭、墨水、泥水、饮用水、河低沉积物、高岭土、印染废水、果汁、细菌、酵母菌以及各种生产废水等。如现已研制成的生物絮凝NOC —1是以红平红球菌为主体,在Ca 2+存在下,对大肠杆菌、酵母、泥浆水、河底泥水、河底沉积物、粉煤灰、活性炭粉水、畜产废水、膨胀污泥、瓦长废水、纸浆废水、染料废水有极好的絮凝和脱色效果,该产品已商业化。生物絮凝对悬浊液絮凝速度快、用量少、效果好,对胶体、溶液均有较好的絮凝效果,对富含有机质的屠宰水等也有较好的絮凝、去色效果,而其它絮凝剂由于各自的特点在某些应用领域的应用受到限制。不足之处是,生物絮凝的效果容易受到有毒物质的干扰,菌体生长受影响较多,因此,被处理废

微生物絮凝剂的污泥脱水性能研究

第28卷 第3期 2009年 5月环 境 化 学ENV I RONMENT AL CHE M I ST RY Vol .28,No .3M ay 2009  2008年6月13日收稿.  3广东省科技计划项目(2005B33301004)133通讯联系人. 微生物絮凝剂的污泥脱水性能研究 3叶何兰1 叶锦韶1,233 钟子嘉1 尹 华1 彭 辉1 张 娜 1(1 暨南大学环境工程系,广州,510632;2 中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广州,510640)摘 要 采用酱油曲霉发酵制备的微生物絮凝剂对广州市猎德污水处理厂浓缩污泥的脱水性能进行研究1实验结果表明,酱油曲霉分泌的微生物絮凝剂对浓缩污泥有较好的脱水效果,调理后的污泥比阻可降至819×1011m ?kg -1,显著地改善了污泥的脱水性能1与对照样相比,脱水率提高了7%,含水率降低了6%1当絮凝剂的投加量为污泥体积的5%、干重质量浓度为518mg ?l -1时,污泥的脱水效果最佳,污泥脱水率从7516%提高到8216%,污泥含水率从8214%降到7614%1微生物絮凝剂和聚丙烯酰胺(P AM )复合使用有助于改善污泥的脱水性能,当10mL 116mg ?l -1微生物絮凝剂和6mL 1g ?l -1P AM 复合使用时,污泥的脱水率为8219%,脱水后污泥的含水率为7611%1 关键词 酱油曲霉,微生物絮凝剂,污泥1 城市污水厂的浓缩污泥含水率高,脱水性能差,不利于储藏、运输和消纳1因此,污泥的脱水技术和脱水效果直接决定了污泥的处置容积和污泥资源化的价值1脱水前,通过投加絮凝剂进行调理是改善污泥脱水性能最常用的方法1聚丙烯酰胺(P AM )和聚合氯化铝(P AC )等常用的无机和有机高分子絮凝剂,具有生物毒性、难以被生物降解,微生物絮凝剂(MBF )是利用生物技术从微生物体或其分泌物中提取、纯化而获得的一类安全、高效,且能自然降解、无二次污染的新型水处理剂和污泥调理剂,在污泥无害化脱水中,具有广阔的应有前景[1—8] 1 本文采用酱油曲霉(A spergillus sojae )发酵制备的MBF,对广州市猎德污水处理厂浓缩污泥的脱水性能进行研究,将有助于拓展MBF 的研究和应用,增强污泥的资源化利用价值11 实验方法 将酱油曲霉(A sperg illus sojae )菌体接种于250m l 培养液中,置于32℃恒温摇床培养箱内,以150r ?m in -1振荡培养3d 1培养物于3000r ?m in -1 离心机中离心5m in,然后进行污泥絮凝脱水实验1 取离心后的发酵液以真空干燥法浓缩至原体积的20%左右,放置在4℃冰箱中预冷1然后用2倍体积预冷至4℃的无水乙醇沉淀提取,在冰箱中放置16h 后离心,弃去上清液,用75%的乙醇洗涤沉淀,将沉淀真空冷冻干燥,得到生物絮凝剂,确定絮凝剂的质量浓度(质量浓度=生物絮凝剂质量/发酵液体积). 取200m l 浓缩污泥置于烧杯中,投加定量微生物絮凝剂,以150r ?m in -1 快速搅拌3m in,再以50r ?m in -1慢速搅拌6m in 1将絮凝调理后的污泥倒入装有滤布的离心管中,以3000r ?m in -1离心7m in 1然后取滤布上的污泥称重,计算污泥脱水率,脱水率=(脱水前污泥质量-脱水后污泥质量)/脱水前污泥质量1 将离心后的污泥于103—105℃烘箱中烘干至恒重,测含水率,含水率=(烘干前污泥质量-烘干后污泥质量)/烘干前污泥质量. 2 微生物絮凝剂投加量对污泥脱水效果的影响 于2007年7月至10月,采集广州市猎德污水处理厂的浓缩污泥池的污泥1污泥的含水率、比阻 和沉降比分别为9713%±017%(017%),517×1013m ?kg -1±117×1013m ?kg -1(2918%)和41%±311%(716%).由于污泥比阻高达(517±117)×1013m ?kg -1,所以猎德污水处理厂的浓缩污泥

微生物絮凝剂的絮凝机理及应用研究

环境与可持续发展 2009年第2期E NVIRONME NT AND S UST AI NAB LE DE VE LOPME NT N o12,2009 微生物絮凝剂的絮凝机理及应用研究 赵 凤 张蔚萍 胡庆华 (九江学院化学化工学院,江西九江,332005) 【摘要】微生物絮凝剂是一种新型的絮凝剂,本文对微生物絮凝剂的絮凝机理,影响微生物絮凝剂形成的因素及其在环境工程中的应用进行了综述,并对其发展问题做了探讨。 【关键词】微生物絮凝剂;絮凝机理;影响因素;应用 中图分类号:X70311 文献标识码:A 文章编号:1673-288X(2009)02-0006-03 ,从微生物体或其分泌物中富集、分离、筛选、纯化而获得的一种安全、高效、无二次污染、易生物降解的新型水处理絮凝剂。微生物絮凝剂可以克服无机高分子和有机合成高分子絮凝剂本身固有的缺陷,因此而成为国内外科学工作者竞相研究和开发的热点之一。近年来,生物絮凝剂的研究开发取得了很大的进展,已分离、鉴定和培养出多种能够分泌出具有絮凝效果的高分子化合物的微生物,并且也取得了初步的成效,但由于微生物自身的特点使菌体生长受到很多因素的制约,并且由于微生物的培养成本较高,使其在工业化生产和应用受到一定的限制,所以我们应该对微生物絮凝剂的絮凝机理、培养条件、应用等方面做进一步的研究,从而得到优化的培养基、高效的微生物絮凝剂产生菌,进而对微生物絮凝剂与其他无机或有机高分子絮凝剂及无机试剂的配伍使用情况做更高层次的探讨,使试验达到投料量少,成本低,絮凝率高的效果。 浪费资源的行为;把节能、节水、节财、节粮、垃圾分类回收及减少一次性用品的使用等逐步变为每个公民的自觉行为。 进行提高循环经济的社会认知工作时,注意宣传实际效果,增强公众对循环经济的感性认识。一方面要有所分工,针对不同人群及其社会需要有不同的宣传形式,使社会各阶层及时、准确地了解循环经济的内涵及外延。另一方面大众传媒加强配合,广泛传播循环经济的政策及工作进展,加大循环经济工作的透明度。 社会认知不能简单等同于社会告知,大众传媒在向社会宣传循环经济的同时,还要及时接受公众反馈意见及建议,并将其纳入到政府开展有关循环经济工作的参考意见之中,鼓励和支持公众的创造精神,形成公众参与、公众受益及公众监督下的循环经济系统。媒体的广泛宣传,为循环经济发展创造了良好的社会氛围〔6〕。 5 结语 中国目前的循环经济社会认知水平较低,一定程度上阻碍了循环经济的发展。充分利用大众传媒的影响力进行宣传,可以为循环经济发展建立广泛的社会基础。政府要勇于面对公众认知与参与过程中出现的各种各样困难与阻力,将循环经济理念的宣传工作扎扎实实进行下去。 参考文献 1 毛如柏,冯之浚.论循环经济〔M〕.北京:经济科学出版社, 2003:1~2,185~187. 2 R ozin P.R oyman E B.Oegativity bias,negativity dom inance,and con-tagion.Pers onality and S ocial Psychology Review.2001,(5):296~320. 3 戈登?布朗,伊恩?霍金等,张继明等译.心理学导论〔M〕.北京:北京大学出版社,2007:56~60. 4 周宏春.我国发展循环经济有着深厚的文化基础〔J〕.理论参考, 2005,(8):55~56. 5 孙永健,曹佳春.循环经济实践的国内外比较〔J〕.水利经济, 2006,24(5):17~20. 6 国务院研究发展中心“中国循环经济的理论与实践研究”课题组.中国循环经济的理论与实践研究〔J〕.经济研究参考,2006, (46):2~9. 作者简介:赵慧坤(1977-),女,河南商丘人,硕士,工程师,主要从事环境评价与环境管理方面的工作。

关于微生物絮凝剂的作用机理综述

关于微生物絮凝剂的作用机理综述 金华职业技术学院工业分析与检验101 张晓炯 摘要:微生物絮凝剂可以克服无机高分子和合成有机高分子絮凝剂本身固有的缺陷最终实现无污染排放,因此微生物絮凝剂是最具发展潜力的新型高效环保型絮凝剂。 关键词:微生物高分子无污染排放环保絮凝剂 前言:目前广泛应用于水处理中的絮凝剂主要有无机高分子絮凝剂和有机高分子絮凝剂。由于无机絮凝剂一般用量较大且可能对环境产生二次污染,有机高分子絮凝剂的残留物不易被微生物降解,且其单体具有强烈的神经毒性和"三致"(致畸形、致突变、致癌)效应。而微生物絮凝剂可以克服无机高分子和合成有机高分子絮凝剂本身固有的缺陷,最终实现无污染排放,因此微生物絮凝剂是最具发展潜力的新型高效环保型絮凝剂。正文: 1. 微生物絮凝剂化学组成及微观结构 微生物絮凝剂是一类由微生物或其分泌物产生的代谢产物,它是利用微生物技术,通过细菌、真菌等微生物发酵、提取、精制而得的,是具有生物分解性和安全性的高效、无毒、无二次污染的水处理剂。 微生物产生的絮凝剂物质为糖蛋白、粘多糖、蛋白质、纤维素、DNA等高分子化合物,相对分子质量在105以上。 2. 微生物絮凝剂的絮凝机理 关于微生物絮凝剂的作用机理目前较为普遍接受的是"桥联作用"机理。该机理认为,絮凝剂大分子借助离子键、氢键和范德华力,同时吸引多个胶体颗粒,因而在颗粒中起了"中间桥梁"的作用,形成一种网状三维结构而沉淀下来。该理论可以解释大多数微生物絮凝剂引起的絮凝现象,以及一些因素对絮凝的影响。絮凝体的形成是一个复杂的过程,"桥联"机理并不能解释所有的现象,絮凝剂的广谱活性说明它是由多种机理共同起作用。为了更进一步解释絮凝机理,还需作更深入地研究。 3. 微生物絮凝剂的合成 微生物絮凝剂的合成与微生物代谢活动有关。微生物代谢变缓之后,由于自身的分解才能释放絮凝剂,形成絮体。最好在细菌对数生长后期或静止早期收获微生物絮凝剂,此后,絮凝活性即使不下降也不会再有提高。 4. 影响微生物絮凝剂絮凝效果的因素

微生物絮凝剂及其研究进展

微生物絮凝剂及其研究进展 摘要介绍了近几年来国内外微生物絮凝剂和絮凝微生物的一些发展概况,列举了近几年发现的一些微生物絮凝剂的物质属性和组成,重点讨论了胞外絮凝剂的絮凝机理,重点综述了环境中的物化生等因素对絮凝剂的生成和絮凝作用的研究进展,分析讨论了微生物絮凝剂的应用概况,提出微生物絮凝剂的发展趋势和研究方向。 关键词:微生物絮凝;絮凝剂;絮凝作用;絮凝机理 微生物的絮凝作用最先由法国的Louis Pasteur 在1876 年研究酵母菌Levure casseeuse 时发现。20 世纪80 年代后期, 日本在微生物絮凝剂开发上取得了引人瞩目的成果, 仓根隆一郎等从土壤中筛选到红平红球菌的S-1 菌株, 并制成了NOC-1微生物絮凝剂。此后, 许多国家的科学工作者对微生物絮凝剂及其絮凝剂产生菌进行了大量的研究工作, 取得了许多标志性的研究成果, 为微生物絮凝剂的工业应用展示了良好的前景。 絮凝剂被广泛地应用于工业废水处理、食品生产和发酵等工业中。一般把絮凝剂分为3 类:①无机絮凝剂,如硫酸铝、聚合氯化铝、聚合硫酸铁等;②有机合成高分子絮凝剂,如聚丙烯酰胺及其衍生物、聚乙烯亚胺、聚苯乙烯磺酸盐等; ③天然高分子絮凝剂,如改性淀粉、聚氨基葡萄糖、壳聚糖、藻酸钠、几丁质和微生物絮凝剂。 长期以来给水与污水处理过程中最常用的絮凝剂包括两大类:无机盐及其聚合物如铁盐、铝盐等;有机合成的高分子化合物,如聚丙烯酰胺等。这两类絮凝剂都存在着毒性较大,会造成二次污染等问题。有关研究表明,饮用水摄入过多铝离子的人群中,老年性痴呆症的患者比例较高。而丙烯酰胺单体具有强烈的神经毒性和致癌作用。另外,这两类絮凝剂都是不可生物降解的,存在絮凝沉降后污泥难处理的问题。近20年来,天然有机高分子絮凝剂受到人们的广泛重视。作为一类较新的水处理剂,天然有机高分子絮凝剂是利用蛋白质、多聚糖、木质素、几丁质等生物体分泌的天然有机高分子,通过化学改性制成。由于天然高分子具有无毒、环境无害且能安全降解的特点,所以曾一度引起人们的研究热情。但这类可生物降解的絮凝剂也存在一些缺点,因为它们是天然物质,一般絮凝效果较合成的化学絮凝剂差,通过改良技术提高这些天然材料的絮凝能力也较困

微生物絮凝剂在水处理上的应用分析

微生物絮凝剂在水处理上的应用分析 摘要微生物絮凝剂因其高效性、无毒性而成为近年来国内外研究开发的热点课题,但对于它在净化废水过程中的实验条件探索,尚未详细研究。本文对微生物絮凝剂在工业实际应用上的效果进行了纤细的分析和解说,并对微生物絮凝剂的发现、絮凝机理、活性的因素及可分解的物质进行了详细的研究和讨论 关键词微生物;絮凝剂;污水处理;应用分析 中图分类号TU991.2 文献标识码A 文章编号 1674-6708(2010)24-0148-02 0 引言 目前,水处理方法很多,如吸附法、好氧法、厌氧法、混凝沉淀法、化学氧化法等等。其中混凝沉淀法以其见效快、构造简单、应用范围广而受到中外学术界和环保行业的高度重视,而混凝沉淀法应用过程中尤以混凝剂的选择为其处理效果好坏的决定因素。微生物絮凝剂(MBF)因其高效性、无毒性而成为近年来国内外研究开发的热点课题,但对于它在净化废水过程中的实验条件探索,尤其是在工业废水处理中的实践应用,很少有人问津。 1 微生物絮凝剂概述

1.1 微生物絮凝剂的发现 70年代,日本学者在研究酞酸酯生物降解的过程中发现了具有絮凝作用的微生物培养液,以后的研究表明生物絮凝剂对水中胶体和悬浮颗粒物具有絮凝作用。随后对培养基、菌种、生产条件等进行了大量研究,开发出在废水处理中有广泛用途且无二次污染,代号为NOC-1的生物絮凝剂。 1.2 微生物絮凝剂的主要种类 1.2.1 生物细胞的絮凝剂 生物细胞的絮凝剂,如某些细菌、霉菌、放线菌和酵母,他们大量存在于土壤、活性污泥和沉积物中。 1.2.2 利用微生物细胞壁提取物的絮凝剂 微生物细胞壁提取物的絮凝剂,如酵母细胞壁的葡聚糖、甘露聚糖、蛋白质和N―乙酰葡萄糖胺等成分均可用作絮凝剂。 1.2.3 利用微生物细胞代谢产物的絮凝剂 微生物细胞分泌到细胞外的代谢产物主要是细菌的荚 膜和粘液质,除水分外,其主要成分为多糖及少量的多肽、蛋白南、脂类及其复合物。其中多糖在某种程度上可用作絮凝剂。 至今发现的具有絮凝性的微生物已经超过17种,包括霉菌、细菌、放线菌和酵母茵。一般来说,这些微生物产生的絮凝物质的分子质量多在1×105以上,如假单胞菌属

相关文档