文档库 最新最全的文档下载
当前位置:文档库 › 反射内存卡系统结构与使用

反射内存卡系统结构与使用

反射内存卡系统结构与使用
反射内存卡系统结构与使用

反射内存卡系统结构与使用

反射内存卡基于PCI 接口,是反射内存实时光纤网络产

品系

列中的一个。两个以上的反射内存卡,或反射内存卡系列

中的

它板卡可以用标准光纤线连接组成反射内存网,反射内存网络中的每

个板卡被称做一个“节

点”。

反射内存卡可以在使用在不同的体系结构和不同的操作系

统的

计算机,工作站,PLC 和其它嵌入式控制器中进行实时共享数据。5565

系统反射内存卡快速、灵活并且容易操作。一个数据写到

内存

(SDRAM)后该数据被传输到所有的网络上板卡的内存中。板

载的

电路自动进行数据传输,所有其它节点的数据更新都不需要CPU 的

参与。

经典的VMIPCI-5565 反射内存卡包括一组在PLX 芯片内的

控制

寄存器和一组FPGA 内的RFM 控制寄存器。因为这两组寄存器从物

理上分布在两个独立的器件上,通过两个不同的内存区域访问。相反,

反射内存卡的两组寄存器在同一个FPGA 内。两

组寄

存器可以被组合。但是为了保证软件连续性和向后兼容,两组寄存器

继续像VMIPCI-5565 中一样保持分离。此外,个别内部寄存器的位

功能,在适用的情况下,仍然是兼容

的。

反射内存卡反射内存只包括一个DMA 通

道。

射内存网中的每个反射内存节点(任何5565 反射内存卡)

菊花链的形式用光纤线跳线互联。第一块卡的发送必须连接到第二块

卡的接收端,第二块卡的发送端连接到第三块卡的接收端,以此类推,

直到再连接到第一块卡的接收端完成一个完整的环形连接。也可以将

所有节点连接到一个或多个ACC-5595 反射内存HUB,每个节

接收和发送都必须连接,如果没有检测到光信号或失去同步反射内存

卡RFM-5565 将不会发送数据包(例如光纤线已损坏)。反射内存网

中每个节点的节点号必须为一,节点号通过板上的拨码开关S2 进行

设置,任何两个节点不能有设置成同一个节点号,每个板卡的节点号

可以在通过NODEID 进行读取显示,节点号的顺序并不重

要。

主系统对反射内存卡的板载SDRAM 的写操作后,反射内内

卡的

硬件检测电路将自动发起一个整个反射内存网的数据传输动作。这个

写操作可以是一个简单的PIO 写或是一个DMA 周

期。

当产生一个对SDRAM 的写操作时,RFM-5565 反射内存卡

自动

将数据和其它相关的信息写入到发送缓冲器中(其它相关信息包

点号,数据地址等信息),在发送缓冲器中,发送电路检测数据,并

且将数据变成一个4 到64 字节长度可变的数据包。通过光纤接口发

送到下一个板卡的接收端

口。

接收电路检查数据包是否有错误,当无错误发生时数据被接

收。

接收电路解开数据包并且将数据存储到板载的接收缓冲器。在接收缓

冲器中,另一个电路将数据写入到本地的SDRAM 的和源节点相同的

地址中。同时,该电路将数据同时发送到发送FIFO 中,重复这个处

理过程直到这个数据返回到源节点的接收端,在源节点中,接收电路

检测到数据包的NODEID 和源节点的NODEID 相同,因此将数据包

从网络中移除,这样所有的节点数据都被更新

反射内存简介

反射内存网络(RFM网络)是基于环状/星状、高速复制的共享内存网络。它支持不同总线结构的多计算机系统,并且可以使用不同的操作系统来共享高速的,稳定速率的实时数据。 反射内存可广泛用于各种领域,例如实时的飞行仿真器、核电站仿真器、电讯、高速过程控制(轧钢厂和制铝厂)、高速测试和测量以及军事系统。 与那些需要为附加的软件开发时间,测试,维护,文档,以及额外的CPU要求提供开销的传统的连接方法相比,RFM产品的网络提供了性价比极为优越的高性能的选择。 反射内存的优点: ■ 高速的、基于2.12G波特率的网络,最大传输速率可达174Mbyte/s; ■ 简单易用; ■ 与操作系统和处理器无关; ■ 彻底省去软件开发开销和周期; ■ 可以实现实时连接的稳定的数据传输; ■ 可以与通用的计算机和总线连接; ■ 比标准通信和技术更为优越; ■ 极短的数据传输延迟; ■ 简单的软件,较低的管理费用和较高的抗干扰能力; ■ 节点间距离可达10公里(单模)/300米(多模)。 反射内存实时网的特点 VMIC反射内存是一种通过局域网在互连的计算机间提供高效的数据传输的技术,强实时网络设计人员已经越来越多地采用这种技术。VMIC反射内存实时局域网的概念十分简单,就是设计一种网络内存板,在分布系统中实现内存至内存的通信,并且没有软件开销。每台结点机上插一块反射内存卡,卡上带有双口内存,各层软件既可以读也可以写这些内存,当数据被写入一台机器的反射内存卡的内存中后,反射内存卡自动地通过光纤传输到其他连在网络上的反射内存卡的内存里,通常,只需几百纳秒的时间延迟,所有的反射内存卡上的内存将写入同样的内容。而各成员在访问数据时,只要访问本地的反射内存卡中的内存即可。VMIC反射内存具有以下主要特点:(1)高速度和高性能 VMIC5565系列,传输速度达到174M字节/秒。使用光纤,可以连接更多节点(最大到256个节点),具有很高的抗干扰能力。测试结果表明,从数据写入RAM到传到另一个结点的反射内存卡上,只有不到400纳秒的时延。 (2)使用方便 反射内存卡通过向每个节点机提供一套相同的数据备份使得各节点可以并发的访问相同的内

OTDR(光时域反射仪)操作手册

CMA8800光时域反射测试仪 操 作 手 册 郑州维修中心

目录 第一章快速开始 第二章概览 第三章OTDR测量模式 第四章储存及打印功能 附录 CMA8800的特点及日常维护

第一章快速开始 1.1仪器供电 CMA8800是通过220VAC适配器/充电器从外部供电。 注意:CMA8800不能用内置电池供电! 电源开关位于上面板的右侧。按下开关即可启动。 1.2启动顺序 当该单元上电后,首先出现了一个开始画面,包括软件版本及日期,接着单元进行自检。结果显示如图1-2所示。 当自检结束后,按下PAUSE可以读屏幕上的信息。按下“继续”可以继续进行操作。 图1-2典型设备和自检屏幕 1.3操作模式选择屏幕 当上电完成后,将显示一个可供选择模式的屏幕,每一种可见的模式均位于相应软键的旁边,你只要按下相应的键就按相应的模式进行操作。这里为有经验的用户出了每一种模式的快速操作信息,详细的信息见于手册中后面的章节。

1.3.1故障定位模式 故障定位模式是一种快速确定光纤端/断点位置的方法。当你按下FAULT LOCATE,首先就开始一个光纤接口质量的检查(如果在附加设置中,光纤接口质量的检查功能已启动),这个检查会告诉你基于用户在快速设置菜单中所定义的背向散射系数的连接是不好的、一般的还是好的。当检查进行测试完成后,光纤端/断点显示如图1-4所示。 通过按下硬键TEST/STOP或者模式屏幕软键可使测试取消,

1.3.2配置模式 按“配置模式”键进入“快速设置菜单”屏,在这里设置自动测试功能及测量参数,参见3.1节和3.2关于快速设置和附加设置的信息 按“启动”键显示光纤存储信息屏幕(如图1-5所示),从这里你可以输入描述新的测试的信息,按“继续”就到达了连接光纤屏幕,接着再按“继续”就开始进行测试。 如需要,此时可按“模式屏”回到模式选择屏幕。 1.3.3专家模式 专家级的OTDR模式是为那些想应用CMA8800更先进功能的用户而设计的,所有的OTDR功能均见于这种模式。 按软键“专家模式”进入快速设置菜单(参见图3-1);在此处,你可以在测试之前设置所有的必要的参数;目前的设置决定了自动执行哪些操作功能,如果“全自动”设为开,则所有的操作均被认定为自动执行,如果“全自动”设为关,则你必须选择哪一种操作是自动执行的。 按下“启动”进入显示曲线屏幕,按下硬键“REAL TIME”开始运行实时扫描,再按下硬键“REAL TIME”可以终止实时扫描状态。按下硬键“TEST/STOP即可开始测试。 1.3.3.1曲线显示屏幕 从设置状态按GO就显示了一个与图6-1相似的曲线屏。 1、图标行 在曲线图形区上方的图标行,显示了对比曲线和背景曲线参考的曲线文件名和其他信息,包括该曲线是否已被滤波、是否被施加衰减、是否进行过曲线分析的,测试平均是否未完成等产,对比曲线的文件名在屏幕左边显示,背景曲线(如果存在)的文件名在网络上的屏幕右边显示。 光标行图标:有效结果表 平滑已经运行 正在行进数据采集 差值比较 光标锁定 曲线被施加衰减

反射内存简介

反射内存简介 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

反射内存网络(RFM网络)是基于环状/星状、高速复制的共享内存网络。它支持不同总线结构的多计算机系统,并且可以使用不同的操作系统来共享高速的,稳定速率的实时数据。 反射内存可广泛用于各种领域,例如实时的飞行仿真器、核电站仿真器、电讯、高速过程控制(轧钢厂和制铝厂)、高速测试和测量以及军事系统。 与那些需要为附加的软件开发时间,测试,维护,文档,以及额外的CPU要求提供开销的传统的连接方法相比,RFM产品的网络提供了性价比极为优越的高性能的选择。 反射内存的优点: ■ 高速的、基于2.12G波特率的网络,最大传输速率可达174Mbyte/s; ■ 简单易用; ■ 与操作系统和处理器无关; ■ 彻底省去软件开发开销和周期; ■ 可以实现实时连接的稳定的数据传输; ■ 可以与通用的计算机和总线连接; ■ 比标准通信和技术更为优越; ■ 极短的数据传输延迟; ■ 简单的软件,较低的管理费用和较高的抗干扰能力; ■ 节点间距离可达10公里(单模)/300米(多模)。 反射内存实时网的特点 VMIC反射内存是一种通过局域网在互连的计算机间提供高效的数据传输的技术,强实时网络设计人员已经越来越多地采用这种技术。VMIC反射内存实时局域

网的概念十分简单,就是设计一种网络内存板,在分布系统中实现内存至内存的通信,并且没有软件开销。每台结点机上插一块反射内存卡,卡上带有双口内存,各层软件既可以读也可以写这些内存,当数据被写入一台机器的反射内存卡的内存中后,反射内存卡自动地通过光纤传输到其他连在网络上的反射内存卡的内存里,通常,只需几百纳秒的时间延迟,所有的反射内存卡上的内存将写入同样的内容。而各成员在访问数据时,只要访问本地的反射内存卡中的内存即可。VMIC反射内存具有以下主要特点: (1)高速度和高性能 VMIC5565系列,传输速度达到174M字节/秒。使用光纤,可以连接更多节点(最大到256个节点),具有很高的抗干扰能力。测试结果表明,从数据写入RAM到传到另一个结点的反射内存卡上,只有不到400纳秒的时延。 (2)使用方便 反射内存卡通过向每个节点机提供一套相同的数据备份使得各节点可以并发的访问相同的内容在访问反射内存卡的内存时与访问自身的内存没有差别。各节点间数据一致性是由反射内存卡保证,对应用软件是透明的。安装简单,将反射内存卡插在主板一个可用槽口上,再将各台主机通过光纤网或扁平数据线连在一起即可。 (3)独立于操作系统和处理机 反射内存卡可以VME、PCI、PMC、Compact PCI、Multibus I等多种总线上使用,可以将ALPHA、Power PC、Macintosh、奔腾等计算机通过反射内存卡实时网络连接在一起,组成一个集群系统。 (4)确定的数据传输时间

光时域反射仪(OTDR)作业指导书

光时域反射仪(OTDR)作业指导书 为规范测试单模光纤的光时域反射仪的操作,特制定本规定,本标准适用于本公司使用的光时域反射仪。 2.引用文件 《GB15972.40-2008-T_光纤试验方法规范_第40部分衰减》 《G652D单模光纤检验规范》 3.测试工具 光时域反射仪、切割刀、尾纤、树脂剥除钳、光纤连接器、匹配液等。 4.操作程序 4.1测试程序 4.1.1打开主机电源开关,机器预热30分钟,将尾纤与设备连接(连接后确保实时图像中尾纤部分平直)。 4.1.2 打开测试软件,将点检光纤外端通过光纤耦合器与尾纤连接。 4.1.3手动测试 (1)将下面如图(1)所示的参数设定好后(量程选择光纤长度的1.5到2倍之间),点击“FREERUN”,出现光纤连接的实时图像(要求尾纤与光纤的连接大致在一条斜线)。 选择波长(1310nm和1550nm)选择量程更改择射率 图(1) (2) 点击“AVERAGE”,开始测试,点击LSA键读取1310nm和1550nm的衰减值。 4.1.4自动测试 (1)选择菜单栏上Analysis, 出现如图(2)所示界面。选择TDF.wsf,开始测试。

图(2) (2)出现图(3)画面,根据提示,输入光纤盘号。 图(3) (3)出现图(4)画面,根据提示,输入光纤各种信息,主要是光纤长度。 图(4) (4)如果连接正常,点击确定。如图所示: (5)根据提示,将待检光纤里端连接仪器,点击确定。如果连接正常,点点击确定,继续测试。 (6)结束后,将测试结果记录于点检表中,判断点检是否合格。 (7)每天由下班组提前10分钟,做好所有设备和地面的清洁卫生工作。 5.注意事项 5.1输入光纤盘号时不能重复使用同一个盘号。 5.2 对于不同光棒生产出的光纤,要更改光纤的折射率,否则对光纤长度测量的准确性会有影响,选用 1550nm波长测量光纤长度。 5.3光纤未连接时不能测量数据,容易造成仪器损坏。 6.安全和环境要求 6.1设备放置于固定位置,防冲击,防污染,以保证设备使用的安全。 6.2在常温常湿的环境下进行测量。

反射内存网与以太网技术比较

反射内存网与以太网技术比较 一、通信确定性与实时性 反射内存(RFM)是基于环状/星状的,高速复制的共享内存网络。它支持不同总线结构的多计算机系统,并且可以使用不同操作系统来共享高速的、稳定速率的实时数据。 基于反射内存构建的实时网络是一种强实时高带宽局域网技术,在互连的计算机间提供高效的数据传输。反射内存网在所有互连的节点中虚拟出一段全局共享的网络内存,在分布系统中实现内存至内存的通信,因此应用程序没有软件开销。每台结点机上插一块反射内存卡,卡上带有双端口内存。每个节点机的各层应用软件可以直接读写反射内存卡上内存。当数据被写入一台机器的反射内存网卡的内存中后,反射内存卡自动通过光纤传输到所有其他连在网络上的反射内存卡的内存里相应位置,传输延迟只有400纳秒。 除了极短的传输延迟外,反射内存网的节点间延时是确定的、可预测的,因此在对通信确定性与实时性要求很高的实时仿真、工业控制等领域,反射内存技术得到了广泛的应用。 以太网是一种总线式网络,采用载波侦听多路访问/冲突(碰撞)检测CSMA/CD(Carrier Sense Multiple Access/Collision Detect)协议进行传输控制。各个节点采用BEB(Binary Exponential Back-off)算法处理冲突,具有排队延迟不确定的缺陷,每个网络节点要通过竞争来取得信息包的发送权。通信时节点监听信道,只有发现信道空闲时,才能发送信息;如果信道忙碌则需要等待。信息开始发送后,还需要检查是否发生碰撞,信息如发生碰撞,需退出重发,因此无法保证确定的排队延迟和通信响应确定性,不能满足实时仿真、工业控制在实时性上的要求,甚至在通信繁忙时,还存在信息丢失的危险。故此,以太网技术一直被视为“非确定性”的网络。

光时域反射仪OTDR的基本原理

OTDR的基本原理 OTDR勺基本原理 什么是OTDR? 基础 OTDR将激光光源和检测器组合在一起以提供光纤链路的内视图。激光光源发送信号到光纤中,检测器接收从链路的不同元素反射的光。激光光源发送信号到光纤中,检测器在光纤中接收从链路的不同元素反射的光。发送的信号是一个短脉冲,其携带有一定数量的能量。然后,时钟精确计算出脉冲传播的时间,然后将时间转换为距离,便可以得知该光纤的属性。当脉冲沿着光纤传播时,由于连接和光纤自身的反射,一小部分脉冲能量会返回检测器。当脉冲完全返回检测器时,发送第二个脉冲一直到取样时间结束。因此,会立刻执 行多次取样并平均化以提供链路元件的清晰特性图。取样结束后,执行信号处理,除了计算 总链路长度、总链路损耗、光回损(ORL)和光纤衰减外,还计算每个事件的距离、损耗和 反射。使用OTDR的主要优势在于单端测试,只需要一位操作人员和一台仪器来鉴定链路质 量或查找网络故障。图#1显示了OTDR的框图。 图1. OTDR框图 图1 OTOR框图* 反射是关键 如前文所述,OTDR通过读取从所发送脉冲返回的光级别以显示链路情况。请注意,有两种类型的反射光:光纤产生的连续低级别光称为Rayleigh 背向散射,连接点处的高反射 峰值称为Fresnel反射。Rayleigh背向散射用于作为距离的函数以计算光纤中的衰减级别(单位是dB/km),在OTDR轨迹中显示为直线斜率。该现象来源于光纤内部杂质固有的反射 和吸收。当光照射到杂质上时,一些杂质颗粒将光重定向到不同的方向,同时产生了信号衰减和背向散射。波长越长,衰减越少,因此,在标准光纤上传输相同距离所需的功率越小。 图2说明了Rayleigh 背向散射。 图2. Rayleigh 背向散射 -iOR Puuse GEhJERATOft Dlf Ei?Tl JNAL C OUPLER ? Waller —Distance range

光时域反射仪(OTDR)操作规程

光时域反射仪(OTDR)操作规程 1、试验目的:测量光纤长度、光纤的传输衰减、接头衰减和故障定位 2、试验人员:试验协助员负责连接光纤、操作仪器,试验负责人负责监护 3、试验设备:Micro-OTDR光时域反射仪,其工作电源为5V电池可靠供电,测量范围:500m—240kM可自适应选择,平均时间为15秒—3分钟可供选择,脉冲宽度为 30—300ns、1us—2.5us,波长可选1550波长或1310波长 4、注意事项: 4.1避免设备磕碰损坏 4.2 禁止非专业人员拆卸或任意打开部件 4.3 使用完毕后拧紧法兰头 5、操作步骤: 5.1 OTDR试验前的准备 5.1.1 检查光缆两端有无光源;有光源须通知试验协助员关闭两侧设备光源,无 光源可直接测试 5.1.2检查设备接口是否良好确无异物,有异物须用酒精棉擦拭干净 5.1.3 通知试验协助人员取下需测量光纤并记录光纤序号 5.2试验设备与测量准备 5.2.1 准备测试仪 5.2.2 连接光纤前确认设备电源处于关闭状态 5.2.3 开机检查仪器电池电源充足检查设备状态完好 5.3 试验设备操作 5.3.1 打开电源开关,进入设备主菜单 5.3.2 连接尾光纤至设备上端OTDR接口处并拧紧接头

图1:连接尾光纤至设备 5.3.3 测试实验前检查设备参数信息设置(可选择自动模式) 图2:检查设备参数设置注意接口牢固可靠 选择测 量参数 按下选择参 数信息配置 当前配置参数

5.3.4 点击键测试键开始测试 图3:按下Real 键测试 5.3.5 点击info 查看测试结果 图4:试验参数记录 1、查看当前光纤通道总长度 2、查看测试记录波长 3、记录当前光纤总衰减(平均距离衰减度0.2—0.5dB 为合格) 观察测试状态 点击测试

反射内存网在远距离分布式系统中的应用

反射内存网在远距离分布式系统中的应用 反射内存网作为一种成熟技术,经过多年发展,目前在半实物实时仿真、 飞行器模拟器、自动检测系统、发动机试验台,电站模拟器,高速数据采集, 超视距雷达等应用领域得到广泛的应用。反射内存独特的硬件结构,最大程度 的简化了大量数据的实时传输问题。软件开发人员不需要理解复杂的数据传输 过程,重发机制。只读进行本机的内存读写操作,由硬件自动完成与反射内存 网中其它节点的数据同步。这种机制使得数据传输简单迅速,其极高的易用性 简化了系统设计。反射内存网中节点网络的全局化内存、高速数据传输以及软 件透明,使得反射内存卡在多机通讯方案中具有无可比拟的优势。反射内存卡 的系统框图如图1 所示。该系统主要由SFF 光模块、FPGA 控制模块、SDRAM 存储模块、电源与时钟模块、串行解串器组成。其中,SFF 光模块实现FPGA 控制模块与网络中其它反射内存卡之间的高速通信互联,提供2.125Gbps 光纤通道连接;FPGA 控制模块选用高性能的FPGA 芯片,实现整个数据发送与接收逻辑;板载128M 或256M SDRAM,用于暂存网络中各反射内存卡的共享数据;电源与时钟模块为系统提供所需的电源与时钟。FPGA 模块将内存中发生改变的数据通过通过串行解串器和SFF 光模块传输至网络中其它反射内存节点;同时,如果网络中其它反射内存卡内存中的数据发生改变,FPGA 模块也将通过专用的串行通信模块接收SFF 光模块传输的改变数据,并写入板载内存中,以实现局域网中计算机间的高带宽数据的交互共享。图1: 反射内存卡硬件原理框图图2:环形拓扑结构反射内存网提供了一个通过多模 或单模光缆以2.12Gbaud 速率运行的数据插入环形架构网络。与以太网系统不同,任意节点间传输不会影响到其它节点间的通讯,反射内存网可避免列队与 检查数据包所需的复杂性、确保合适的连通性,不存在附加负载限制或终端规

光时域反射仪OTDR测量复杂鬼影分析

“鬼影”是使用光时域反射仪(OTDR)测量时经常会出现的现象,是一种与事实不相符合的影像。常常在测量较短光纤链路中出现。我们知道,OTDR测量是通过发出探测光脉冲对光纤进行探测,在遇到有介质不同(折射率不同)的位置,如机械式连接器、冷接端子等就会发生反射,OTDR会检测到这些反射光,在曲线上反应出来的就是反射事件。 “鬼影”产生的原因一般是由于反射光遇到连接器发生了第二次反射,有时由于反射光能量较强,链路又较短会发生多次反射,对光纤链路进行了多次的探测,形成多个“鬼影”。如下图: 由以上原因,我们可以了解到由于再次探测光纤在曲线上又会反应出另一个反射事件,因此“鬼影”的位置信息一定是实际反射位置信息的整倍数关系。如上图,a=b。那么判断“鬼影”主要利用这种位置信息的关系来判断。 下面给大家分析一些实例,这些实例远比上图复杂的多。 1、鬼影实例一

这条测试曲线看起来反射事件非常多,复杂得令人眩目。但我们仔细分析一下就会发现,大多数反射事件均是鬼影,只有峰1和峰2才是真正得反射事件。应用鬼影发生得原因可以分析出那些是鬼影。这些鬼影对实际测试影响很大,如果不仔细进行分析很难分辨。为什么会出现如此复杂的测试曲线呢?究其原因是几个原因造成。 1、链路短。因此反射光能量很强,造成多次反射,形成多个鬼影。 2、链路中存在多个机械连接器,且距离较近。峰2的反射到峰1就发生再次反射,重新探测以峰1作为开始点的光纤链路,由于峰1与峰2距离很近,这股连续反射光始终保持了相当的强度。因此后边连续出现了多个峰2的鬼影。 2、鬼影实例二 上图中,真正的反射事件只有1、2、3、5几个,其他均是鬼影,结束点应该是峰5。其形成原因与分析方法与实例一是一样的,只是该曲线更具有隐蔽性,需要仔细研究光路才能作出正确分析。

光时域反射仪使用说明书

AQ7260 OTDR 光时域反射仪 简易操作手册 第1版 2005年3月

前言 感谢您购买AQ7260。本操作手册循序渐进地介绍了实际测量工作流程,简单的仪表操作,使初学者容易上手。同 时我们还提供AQ7260用户手册(英文版),该手册介绍仪表的所有功能以及使用时的安全注意事项。使用前请阅 读两本手册。 目录 第一章 测量前的准备事项..............................................31-1 连接光模块和连接适配器.............................................3 1-2 打开电源..........................................................31-2-1 连接电源....................................................3 1-2-2 接通电源....................................................31-3 连接测量光纤......................................................3第二章 按键和显示画面说明...........................................42-1 按键..............................................................4 2-2 显示画面..........................................................4 2-3 画面显示设定......................................................5第三章 测量..........................................................63-1 使用单键进行自动测量...............................................63-1-1 开始测量....................................................6 3-1-2 停止测量....................................................6 3-1-3 确认和改变测量条件..........................................7 3-1-4 初始化测量条件..............................................83-2 手动测量..........................................................93-2-1 设置测量条件................................................9 3-2-2 实时测量...................................................10 3-2-3 平均化操作.................................................11 3-2-4 放大、缩小和移动波形........................................11 3-2-5 距离测量...................................................12 3-2-6 测量连接损耗...............................................14 3-2-7 测量回波损耗量.............................................153-3 自动搜索.........................................................16第四章 测量数据的记录...............................................174-1 保存.............................................................17 4-2 调用.............................................................19 4-3 删除.............................................................20 4-4 打印.............................................................214-4-1 打印显示画面...............................................21 4-4-2 打印文件数据...............................................214-5 复制.............................................................23 1

光时域反射仪

光时域反射仪 科技名词定义 中文名称:光时域反射仪 英文名称:optical time-domain reflectometer;OTDR 定义:通过对测量曲线的分析,了解光纤的均匀性、缺陷、断裂、接头耦合等若干性能的 仪器。 所属学科:通信科技(一级学科);通信计量(二级学科) 光时域反射仪OTDR(Optical Time Domain Reflectometer), 是利用光线在光纤中传输时的瑞利散射所产生的背向散射而制成的 精密的光电一体化仪表。 OTDR用于光缆线路的施工、维护之中,可以进行光纤长度、光 纤的传输衰减、接头衰减和故障定位等的测量。 编辑本段 9.6.1 光时域反射仪概述 ? 光时域反射仪OTDR(Optical Time Domain Reflectometer),是利用光线 在光纤中传输时的瑞利散射所产生的背向散射而制成的精密的光电一体化仪表,广泛应用于实验、教学和施工现场。OTDR采用背向散射测试技术,能够测试整个光纤链路的衰减,并能提供和长度有关的衰减细节。OTDR同时 可测试接头损耗及故障点。它具有非破坏性且只需在一端测试的优点。OTDR 功能多、操作简便、测量的重复性高、体积小、不许其它仪表配合、 能自动存储和打印测量结果,目前已成为光通信系统工程检测中最重要的仪表。如图9-13所示是HP8147光时域反射仪。光时域反射仪(OTDR)的主要 功能为: ? (1)单光盘光缆传输损耗和光缆长度的检测。

? (2)光缆连接工艺的监测。 ? (3)中继段状态的测量,包括各盘光缆的损耗、各个接头的损耗及整个种极端的平均损耗的测量。 ? (4)线路故障原因及故障点位置的准确判断。 ? (5)OTDR自动存储、打印的背向散射信号曲线可以作为线路的重要技术档案。 9.6.2 OTDR 9.6.2 OTDR工作原理工作原理 1.瑞利散射 瑞利散射:当光线在光纤中传播时,由于光纤中存在着分子 级大小的结构上的不均匀,光线的一部分能量会改变其原有传 播方向向四周散射,这种现象被称为瑞利散射。其强度与波长 的4次方(λ4)成反比,其中又有一部分散射光线和原来的传播 方向相反,被称为背向散射,如图9-14所示。

横河(安藤)光时域反射仪AQ7260

日本横河(安藤)光时域反射仪AQ7260 产品简介 紧凑、轻量、电池供电,AQ7260的这些特点使它非常 适合应用于现场测试及其它测量场合。该仪器的动态 范围很大,从而适于长距离线路及大损耗线路的测试 和维护。AQ7260 OTDR主机有多种OTDR光模块可选, 加上其他种类丰富的可选模块,可以满足光网络安装 及维护的各种应用要求。另外,可选模块高速打印机 和光功率计可以安装在AQ7260主机上。这样在一个施 工现场,就不需要携带很多仪表。该产品具有一个很 大的彩色屏幕(8.4 inch TFT-LCD)并新增一个20MB的 内存。另外软件方面的改善给用户提供了一个友好的 人机界面,从而提高了工作效率。 产品特点 A.高的性价比;全中文显示,中文仿真软件,中文汉字输入 B.特别小巧紧凑轻便,A4X6CM.A4纸大小,重约3Kg C.强化塑料机壳 D.快速测量,在大多数条件下10-30秒完成测量,最快10秒即可测试出0.01dB的光纤损耗 E.彩色TFT-LCD大显示屏8.4 inch TFT彩色显示,更大更宽的视角,从不同角度一样可以看得很清楚,即使在强光下也不会影响对测量数值及波形的观察 F.更大的内存容量:20MB无需外部存储设备,内置20M存储空间可以存储1500条测试曲线 G.实用的USB接口,可进行设备连接及数据存储。直接用优盘存取数据,是目前业内唯一具有USB接口的一款光时域反射仪。大批量测试数据可以被简单的处理。AQ7260内部有20MB 存储空间,存在里面的测试数据可以通过USB口传到计算机里。AQ7260可以通过USB口实现远端控制。支持存储器,键盘,打印机 H.更短的盲区:事件盲区2m,衰减盲区7/8 m I.采样分辨率:最小5 cm ;采样点数:最大60,000点 J.高距离精度±(2.0×10-5×di stance)m K.最大脉宽50us L.SOR数据的存储与读取Telecordia GR 196& SR-4731 M.同时显示曲线及事件列表。执行自动搜索后,同时显示曲线及事件列表。也可以选择仅显示曲线或者事件列表 N.事件列表中事件类型直观显示,非常方便;电池可连续工作7小时

基于反射内存的实时系统设计

基于反射内存的实时网络系统设计 唐长春1,林晓焕1,柳文安2 (1.西安工程大学电信学院,陕西西安,710048;2.山西北方惠丰机电有限公司,山西长治,046012) 摘要:本文中针对实时网络系统设计,提出了基于反射内存的实时网设计方法,介绍了利用反射内存实现实时通讯的原理和基于VMI-5565反射内存卡的实时网络的组建方式,分析了两种反射内存地址分配方式、通讯过程并给出了实时通讯协议,同时简要说明了在Windows系统下实现实时通讯的方法,最后对该实时网络的性能进行了定性分析并给出了实际的测试结果。 关键词:反射内存,实时网络组建,存储空间分配,通讯协议 中图法分类号:TP393.04 文献标识码:A 文章编号: Abstract: To aim at the real-time network system design, the real-time network design method that was based on the reflection memory was put forward in this paper.The principle of using the reflection memory to effect real-time communication and the formation method of real-time network basing on the reflective memory card(VMI-5565) were introduced.The allocation method of two reflective memory address and the communication process were analyzed to give the real-time communication protocol.At the same time, the method of realizing real-time communication under Windows system was briefly explained.Finally,the qualitative analysis of this real-time network’s performance and the actual test results are presented. Keywords:Reflective Memory, The formation of real-time network, Storage space assignment,Communication Protocol 0 引言 在半实物仿真系统中需要实时地传输、操作和分析数据,并在此基础上作出相应的控制,实时网络技术是半实物仿真系统中必不可少技术之一。基于反射内存的实时网络技术目前已发展较为成熟的一种性能优异、概念新颖的实时网络技术[1]。相对于以往基于TCP/IP或UDP/IP实时网络技术来说,它极大的提高了系统实时通讯、数据反射和信号调试的能力,使分布式仿真系统结构的设计及实现更为简单。本文介绍了基于VMI-5565反射内存卡组建实时网络的方法,并就利用VC++6.0实现实时网络通讯进行了研究。 1反射内存通讯原理及实时网络构建 1.1 反射内存通讯原理 反射内存光纤网络采用了先进特殊的技术,具备了很强的支持分布实时系统的数据传输能力[2]。在每个需要实时通讯的节点上插入反射内存网卡(节点卡),每块节点卡都有自己独立的局部内存,它通过局部内存映射将网卡上的局部内存映射到主机内存,用户读写网卡上的数据就如同读写主机内存上的数据一样快速方便。另外,每块反射内存网卡又通过网络内存映射,将分布节点卡上的局部内存映射到一个虚拟的全局内存,即每个节点在写入本地节

GE反射内存实时通讯网络解决方

GE反射内存实时通讯网络解决方 GE反射内存实时通讯网络解决方案 实时通讯网络是用于需要较高实时性要求的应用领域的专用网络通讯技术,一般采用基于高速网络的共享存储器技术实现。它除了具有严格的传输确定性和可预测性外,还具有速度高、通信协议简单、宿主机负载轻、软硬件平台适应性强、可靠的传输纠错能力、支持中断信号的传输等特点。本方案选用GE FANUC 公司的反射内存卡构建实时反射内存网络。该实时网络除具有一般共享内存网络的优点外,还具有网络延迟小、技术成熟、可靠性高、集成简单、扩展方便等优势。反射内存卡连接方式分为单向环形连接和星形连接两种,单向环形网络结构具有先天的“无冲突”、“全负载”、自然排序和严格确定传输延迟功能。这种网络结构下,所有的节点无论以何种方式,同时以最大的速率突发或持续传送数据,环形网络都可以借助物理结构自然的实现无冲突的排序和传播,不会对网络实时性能和传输性能构成任何不利影响。网络一旦构成,任意两点间的传输延迟都是严格确定的。不仅如此,数据发送方还能利用环形回路,实时可靠的计算传输延迟和接收确认,具有极高的容错性和可靠性。但是单向环形连接方法存在一个弊病,就是传输时所有的板卡必须加电才可以连通工作。解决此弊病的方法是采用星形连接,通过反射内存HUB 来旁路损坏或者掉电的板卡,构成更稳定的网路结构。反射内存是一种强实时高带宽局域网技术,在互连的计算机间提供高效的数据传输。强实时网络应用领域已经越来越广泛的采用这种技术。反射内存网络在所有互连的节点中

虚拟出一段全局共享的网络内存,在分布系统中实现内存至内存的通信,因此应用程序没有软件开销。每台结点机上插一块反射内存卡,卡上带有双端口内存。每个节点机的各层应用软件可以直接读写反射内存卡上的内存。当数据被写入一台机器的反射内存卡的内存中后,反射内存卡自动通过光纤传输到所有其他连在网络上的反射内存卡的内存里相应的位置,传输延迟只有几百纳秒。即,所有反射内存卡上的内存总是同步更新为完全相同的内容,就像虚拟出一段全局共享内存一样。而各节点机在访问数据时,只要访问本地的反射内存卡内存即可,无需设备驱动程序和网络协议。反射内存网络具有以下主要特点高速度和高性能由于反射内存网络可以 大幅度的提高集群系统之间的通讯速度,因此特别适合替代传统的LANs 、总线转发器和DMA 不能满足需求的应用。GE FUNAC 最新推出的55 65 系列反射内存卡,其传输速度已达到174M 字节/ 秒。使用光纤,不仅可以连接更多的节点(最大到256 个节点),而且具有很高的抗冲击、抗干扰性能。反射内存卡是完全的物理通讯,不需要任何软件协议开销,这是其他局域网传输无法相比的。测试结果表明,从数据写入RAM 到传到另一个结点的反射内存卡上,只有不到400 纳秒的时延。使用方便在使用全局共享内存时,由于对内存的访问是独占型的,所以存在仲裁问题。而反射内存通过向每个节点机提供一套相同的数据备份来避免这一问题,这使得各节点可以并发的访问相同的内容,不再需要考虑仲裁的问题,访问反射内存卡的内存与访问自身的内存没有差别。各节点间的数据一致性是由反射内存保证的,对应用软件是透明的。另外,反射内存卡的安装也十分简单,只需将反射内存卡插在机器主板的一个可用槽口上,再

AXS-110 光时域反射仪操作讲解

AXS-110讲解 AXS-110系列有很多配置,不同的波长不同的选件价格不一样,目前中国电信集采的两波长AXS-110-023B(数量至少600套)为标准配置:功能为1310/1550nm,37/35DB 的OTDR功能、1310/1550nm 的光源功能、接口为FC圆头。 测试前先检测查双方接头的规格(跳线应该为FC/UPC)、清洁程度(最好是用棉签沾点高浓度酒精擦一下)、自身对整条测试线路的初步判断和理解。 1.操作讲解: a.如果不知道整条线路有多长,先用自动测试测试一下,只需要 选择波长就可以了,其他不用选择,再按下测试健就可以了。 b.如果对线路长度非常了解,需要更精确地测试,就用手动测试: 选择长度(只需要比实际长度长点且接近它的距离)、脉冲(根 据长度的变化而增加)、时间(15-30秒),再按下测试健就可 以了。 c.如果不需要保存且需要实时监控话就用实时测试。 d.曲线的分析:灵活运用F1,F2及其旁边的左右健。 上面有参数、保存、事件信息、曲线信息、打开 保存:测试完可以按保存直接保存,也可以再测试自动保存。 事件信息:对测试曲线的一个简单分析。 曲线信息:比较详细的信息。 打开:用于调前面的曲线观看,一条好的曲线是有起端有终端,

中间如果有大事件(如大损耗)还会有大的事件点。末端成端了一定有波峰(没有成端或断了就没有波峰) e.测试参数:最好是不要更改,直接用厂家的默认值。如果不小 心更改了,就按MENU进入OTDR设置为默认值。 f.曲线的导出:插可以识别的U盘,按MENU进入信息管理器,活 用ENTER及其旁边的上下左右健复制到U盘上,在电脑上装后台软件,看的更加细致。 g.如果路径太多,无法操作时,按ESC健直接到开机界面,对于 曲线的放大或缩小,这个进入曲线界面在F1,F2上面的字自然可以看到。 2、注意事项: a.测试事件表第一行有个反射率,在-40左右最佳,如果实际测 试反射率大好多(可能是接头没有接好、接头太脏了、跳线质 量太差等,必须纠正)。 b.接头为FC圆头,千万记得连接跳线也要是FC圆头的。连接其 他头很容易把FC圆头里面的陶瓷芯弄坏,FC圆头是耗材。 c.电池为两块电池,装上去后扭动按钮,盖好盖子(如果有时候 开不了机,就要检查电池和盖子是否正常弄好)。前三次充电 每次都次充满后用完再充满,充电时候的左边指示灯刚开始显 示绿色的,后来慢慢变黄和变红。如果长时间不用电池就要把 电池取出来(锂电子电池就算长时间放在手机里不用手机,电 池都有可能出问题),电池也为耗材。

光时域反射仪otdr的工作原理及测试方法

光时域反射仪otdr的工作原理及测试方法 OTDR的工作原理:光纤光缆测试是光缆施工、维护、抢修重要技术手段,采用OTDR(光时域反射仪)进行光纤连接的现场监视和连接损耗测量评价,是目前最有效的方式。这种方法直观、可信并能打印出光纤后向散射信号曲线。另外,在监测的同时可以比较精确地测出由局内至各接头点的实际传输距离,对维护中,精确查找故障、有效处理故障是十分必要的。同时要求维护人员掌握仪表性能,操作技能熟练,精确判断信号曲线特征。 OTDR测试是通过发射光脉冲到光纤内,然后在OTDR端口接收返回的信息来进行。当光脉冲在光纤内传输时,会由于光纤本身的性质,连接器,接合点,弯曲或其它类似的事件而产生散射,反射。其中一部分的散射和反射就会返回到OTDR中。返回的有用信息由OTDR的探测器来测量,它们就作为光纤内不同位置上的时间或曲线片断。从发射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离。 d=(ct)/2(IOR) 在这个公式里,c是光在真空中的速度,而t是信号发射后到接收到信号(双程)的总时间(两值相乘除以2后就是单程的距离)。因为光在玻璃中要比在真空中的速度慢,所以为了精确地测量距离,被测的光纤必须要指明折射率(IOR)。IOR是由光纤生产商来标明。OTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。OTDR就测量回到OTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信号都有所损耗。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,OTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。OTDR的工作原理就类似于一个雷达。它先对光纤发出一个信号,然后观察从某一点上返

VMIC反射内存卡

VMIC内存卡、VMIC反射内存卡、VMIC内存卡、VMIC反射内存网、VMIC内存板、VMIC 反射内存板 GE VMIC反射内存是支持环形,星形的高速复制的共享内存网络,VMIC反射内存实时网是一个实时的,基于内存的网络系统,其所有的工作都是由硬件完成的,没有软件的开销,再加上采用光纤传输介质,因此可以达到数十兆字节的数据传输率和百纳秒级的数据传输延迟,更重要的是这种网络的传输延迟是确定和可以预期的,这是传统的网络难以达到的。能支持256个节点的互连。它支持PCI/VME/PMC不同总线结构的多计算机系统,并且可以使用不同的操作系统来共享高速的、稳定速率和实时数据。 VMIC反射内存产品具有高带宽、低延迟和低成本等优势,VMIC反射内存可广泛用于各种领域,既可用于实时控制,还可用作大量数据传输,和大规模机群的基础建设,实物和半实物仿真系统、电讯、工业自动化中高速过程控制、高性能机群、高速数采系统、容错和冗余系统、自动测试系统。 在每个需要实时通信的节点上插入VMIC反射内存卡,在每块卡上都有自己独立的局部内存,它通过局部内存映射将网卡上的局部内存映射到主机内存,用户读写网卡上的数据就如同读写主机内存上的数据一样快速,方便。另外,每块VMIC反射内存卡又通过网络内存映射,将分布在节点卡上的局部内存,映射到一个虚拟的全局内存,即每个节点在写入本地节点卡的数据同时也写入所有其他节点卡的内存,这样,用户对本地节点内存的读写相当于对全局内存进行读写,而这个全局内存是所有分布节点都可共享的,从而实现了分布节点间的实时数据通信。通过这种方式,所有的节点能透明地并确定地传送中断,消息或者数据块到其它的节点。工作速率为2.1G波特率。网络中的下一个反射内存板接收到这个新的数据,其本地内存将在400ns之内被更新。 上海智川工贸有限公司优惠供应VMIC内存卡、VMIC反射内存卡、VMIC内存卡、VMIC 反射内存网、VMIC内存板、VMIC反射内存板

相关文档
相关文档 最新文档