文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计习题

概率论与数理统计习题

概率论与数理统计习题
概率论与数理统计习题

习题一

1.01 口袋里装有若干个黑球与若干个白球,每次任取l个球,共抽取两次.设事件A表示第一次取到黑球,事件B表示第二次取到黑球,问:

(l)和事件A+B表示什么?

(2)积事件AB表示什么?

(3)差事件A-B表示什么?

(4)对立事件A表示什么?

(5)第一次取到白球且第二次取到黑球应如何表示?

(6)两次都取到白球应如何表示?

(7)两次取到球的颜色不一致应如何表示?

(8)两次取到球的颜色一致应如何表示?

1.02 甲、乙、丙三门炮各向同一目标发射一发炮弹,设事件A 表示甲炮击中目标,事件B表示乙炮击中目标,事件C表示丙炮击中目标,问:

(l)和事件A+B+C表示什么?

(2)和事件AB+AC+BC表示什么?

(3)积事件A B C表示什么?

(4)和事件A+B+C表示什么?

(5)恰好有一门炮击中目标应如何表示?

(6)恰好有两门炮击中目标应如何表示?

(7)三门炮都击中目标应如何表示?

(8)目标被击中应如何表示?

1.03 随机安排甲、乙、丙三人在一星期内各学习一天,求: (1)恰好有一人在星期一学习的概率; (2)三人学习日期不相重的概率.

1.04 箱子里装有4个一级品与6个二级品,任取5个产品,求: (1)其中恰好有2个一级品的概率; (2)其中至多有1个一级品的概率. 1.05 某地区一年内刮风的概率为154,下雨的概率为15

2

,既刮风又下雨的概率为

10

1

,求: (1)刮风或下雨的概率; (2)既不刮风又不下雨的概率.

1.06 盒子里装有5张壹角邮票、3张贰角邮票及2张叁角邮票,任取3张邮票,求:

(1)其中恰好有1张壹角邮票、2张贰角邮票的概率; (2)其中恰好有2张壹角邮票、1张叁角邮票的概率; (3)邮票面值总和为伍角的概率; (4)其中至少有2张邮票面值相同的概率.

1.07 市场上供应的某种商品只由甲厂与乙厂生产,甲厂占60%,乙厂占40%,甲厂产品的次品率为7%,乙厂产品的次品率为8%.从市场上任买l 件这种商品,求:

(1)它是甲厂次品的概率; (2)它是乙厂次品的概率.

1.08 某单位同时装有两种报警系统A与B,当报警系统A单独使用时,其有效的概率为0.70,当报警系统B单独使用时,其有效的概率为0.80,在报警系统A有效的条件下,报警系统B有效的概率为0.84.若发生意外时,求:

(1)两种报警系统都有效的概率;

(2)在报警系统B有效的条件下,报警系统A有效的概率;

(3)两种报警系统中至少有一种报警系统有效的概率;

(4)两种报警系统都失灵的概率.

1.09 口袋里装有6个黑球与3个白球,每次任取1个球,不放回取两次,求:

(1)第一次取到黑球且第二次取到白球的概率;

(2)两次取到球的颜色一致的概率.

1.10 在一批产品中有80%是合格品,验收这批产品时规定,先从中任取1个产品,若它是合格品就放回去,然后再任取l个产品,若仍为合格品,则接收这批产品,否则拒收.求:

(1)检验第一个产品为合格品且检验第二个产品为次品的概率;

(2)这批产品被拒收的概率.

1.11 甲、乙两厂相互独立生产同一种产品,甲厂产品的次品率为0.2,乙厂产品的次品率为0.1.从甲、乙两厂生产的这种产品中各任取l个产品,求:

(1)这2个产品中恰好有1个正品的概率;

(2)这2个产品中至少有1个正品的概率.

1.12 一场排球比赛采用“三局两胜”制,在甲、乙两队对阵中,若甲队在各局取胜与否互不影响,且在每局取胜的概率皆为0.6,求甲队在一场比赛中取胜的概率.

1.13 甲、乙、丙三人相互独立向同一目标各射击一次,甲击中目标的概率为O.8,乙击中目标的概率为0.7,丙击中目标的概率为

0.6,求目标被击中的概率。

1.14 市场上供应的某种商品由甲厂、乙厂及丙厂生产,甲厂占50%,乙厂占30%,丙厂占20%,甲厂产品的正品率为88%,乙厂产品的正品率为70%.丙厂产品的正品率为75%,求:

(l)从市场上任买1件这种商品是正品的概率;

(2)从市场上已买1件正品是甲厂生产的概率.

1.15 盒子里装有5支红圆珠笔与8支蓝圆珠笔,每次任取1支圆珠笔,不放回取两次,求:

(1)两次都取到红圆珠笔的概率;

(2)第二次取到红圆珠笔的概率.

1.16 某种产品中有90%是合格品,用某种方法检查时,合格品被认为合格品的概率为98%,而次品被误认为合格品的概率为3%,从中任取1个产品,求它经检查被认为合格品的概率.

1.17 已知甲袋里装有1个白球与2个黑球,乙袋里装有2个白球与1个黑球,先从甲袋中任取1个球放入乙袋,再从乙袋中任取2个球,求从乙袋中取出两个球都是白球的概率.

1.18 设A,B为两个事件,且已知概率P(A)=0.5,P

(B)=0.6,P(B A )=0.4,求:

(1)概率P(A B); (2)概率P(AB); (3)条件概率P(B A ); (4)概率P(A+B). 1.19 填空题

(1)甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件_表示.

(2)已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.

(3)设A,B 为两个事件,若概率P(A)=41

,P(B)=32,P(AB)=6

1,则概率P(A+B)=__.

(4)设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__.

(5)设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A B ,则条件概率P(B A )=__.

(6)设A,B 为两个事件,若概率P(B)=103,P(B A )=61

,P(A+B)=5

4,

则概率P(A)=__.

(7)设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__.

(8)设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__.

(9)设A,B,C 为三个事件,且已知概率P(A)=0.9,P(B)=0.8,P(C)=0.7,若事件A,B,C 相互独立,则概率P(A+B+C)=__.

(10)设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__.

1.20 单项选择题

(1)设A,B 为两个事件,若事件A ?B ,则下列结论中( )恒成立.

(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 (2)设A,B 为两个事件,则事件B A +=( ). (a)A +B (b)A-B (c)A B (d)AB

(3)投掷两颗均匀般子,则出现点数之和等于6的概率为( ).

(a)

111 (b)115 (c)361 (d)36

5

(4)盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).

(a)

114 (b)74 (c)83 (d)5

3

(5)设A,B 为两个事件,若概率P(A)=31

,P(A B )=32,P(A B )=5

3,则概率P(B)=__.

(a)5

1 (b)52

(c)5

3 (d)54

(6)设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A B,下列等式中( )恒成立.

(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B) (c)P(AB)=P(A)P(B) (d)P(B A )=1 (7)设A,B 为两个事件,则概率P(A+B)=( ). (a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B) (c)1-P (B A ) (d)1-P( A )P(B ) (8)设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=12

1

,则( ).

(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 (9)设A,B 为两个事件,且已知概率P(A)=5

3

,P(A+B)=10

7

,若事件A,B 相互独立,则概率P(B)=( ).

(a)

161 (b)10

1 (c)41 (d)52

(10)设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.

(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )

习题二

2.01 口袋里装有3个黑球与2个白球,任取3个球,求取到白球个数X 的概率分布.

2.02 汽车从出发点至终点,沿路直行经过3个十字路口,每个十字路口都设有红绿信号灯,每盏红绿信号灯相互独立,均以3

2的概率允许汽车往前通行,以3

1的概率禁止汽车往前通行,求汽车停止前进时所通过的红绿信号灯盏数X 的概率分布.

2.03 一批零件的正品率为p (0

2.04 设离散型随机变量X 的概率分布如表2-31:

表2-31

c

42c c p 3

21-x

求:

(1)常数c 值; (2)概率}2{ X P .

2.05 某菜市场零售某种蔬菜,进货后第一天售出的概率为0.7,每500g 售价为10元;进货后第二天售出的概率为0.2,每500g 售价为8元;进货后第三天售出的概率为0.1,每500g 售价为4元.求任取500g 蔬菜售价X 的数学期望)(X E 与方差)(X D .

2.06 已知离散型随机变量X 的概率分布如表2-32:

表2-32

14121P

3

21X

求:

(l)数学期望)(X E ; (2)方差)(X D .

2.07 已知离散型随机变量X 的概率分布如表2-33:

表2-33

616

16

12

16321P

X -

求:

(1)数学期望)(X E ; (2)方差)(X D

2.08 设离散型随机变量X 的概率分布如表2-34,

表2-34

c

c c 32P

3

2

1X 1

求:

(1)常数c 值; (2)概率}20{<

2.09 某种型号电子元件的寿命X 小时是连续型随机变量,其概率密度为

?????≥=其他

,0100

,100

)(2x x

x ? 任取1只这种型号电子元件,求它经使用150小时不需要更换的概率.

2.10 某城镇每天用电量X 万度是连续型随机变量,其概率密度为

???<<-=其他

,010),1()(2x x kx x ?

求:

(1)常数k 值;

(2)当每天供电量为0.8万度时,供电量不够的概率. 2.11 设连续型随机变量X 的概率密度为

?

??≤≤=其他,042,)(x cx x ?

求:

(1)常数c 值; (2)概率}3{>X P .

2.12 设连续型随机变量X 的概率密度为

?????

≤≤=其他

,00,2

cos )(π

?x x k x 求:

(1)常数k 值;

(2)概率?

??

<

-

ππ

X P .

2.13 设连续型随机变量X 的概率密度为

)0,0(,010,)(>>?

??<<=α?αk x kx x 其他

已知数学期望5

4

)(=X E ,求常数k 与α的值.

2.14 已知连续型随机变量X 的概率密度为

?

??≤≤=其他,01

0,3)(2x x x ?

求:

(1)数学期望)(X E ; (2)方差)(X D .

2.15 已知连续型随机变量X 的概率密度为

???

??≤≤=其他

,01,ln 2)(e x x

x

x ? 求:

(1)数学期望)(X E ; (2)方差)(X D .

2.16 设连续型随机变量X 的概率密度为

??

?<<=其他

,02

0,)(x cx x ?

求:

(1)常数c 值; (2)概率}11{<<-X P ;

(3)数学期望)(X E ; (4)方差)(X D .

2.17 已知随机变量X 的数学期望-2)(=X E ,方差5)(=X D ,求: (l)数学期望)25(-X E ; (2)方差)52(+-X D .

2.18 已知随机变量X 的数学期望)(X E 与方差)(X D 都存在,且方差0)(≠X D ,若随机变量)

()

(X D X E X Y -=

,求: (1)数学期望)(Y E ; (2)方差)(Y D . 2.19 填空题

(1)设离散型随机变量X 的概率分布如表2-35:

表2-35

c c c c P

X

4322101-

则常数c =__.

(2)已知离散型随机变量X 的概率分布如表2-36:

表2-36

14121P

3

2

1X

则概率P {3

(3)已知离散型随机变量X 的概率分布如表2-37:

表2-37

6632P

2

13-X 11

则数学期望)(X E =__.

(4)设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.

(5)设连续型随机变量的概率X 密度为

??

???<<-=其他,0210,1)(2

x x k

x ? 则常数k =__.

(6)设连续型随机变量X 的概率密度为

???≤≤=其他

,00,24)(2r x x x ?

则常数r =__.

(7)已知连续型随机变量X 的概率密度为

?????≥=-其他

,00,2)(2

x xe x x ?

则概率}11{<<-X P =__.

(8)已知连续型随机变量X 的概率密度为

?????≤≤=其他

,02

1,2

)(2

x x x ? 则数学期望)(X E =_____.

(9)设X 为随机变量,若数学期望1)12

(=-X

E ,则数学期望)(X E =__.

(10)设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__. 2.20单项选择题

(1)表2-38中( )可以作为离散型随机变量X 的概率分布. 表2-38

(a)

6

321-P

3

2

1

X

1 (b)

6

5

3-21P

3

2

1

X 1

(c)

6

321P

3

2

1X 1

1 (d)

6

5321P

3

2

1

X 1

(2)已知离散型随机变量X 的概率分布如表2-39:

表2-39

5

25

110

15110

14

21

01P

X -

则下列概率计算结果中( )正确.

(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=

(3)设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<

(a)O (b)l (c)p q - (d)2)(p q - (4)设连续型随机变量X 的概率密度为

???

??≥+=其他

,00,1)(2

x x k

x ? 则常数k =( ).

(a)π

1

(b)π

(c)π2 (d)2

π

(5)下列函数中( )不能作为连续型随机变量X 的概率密度.

(a)???≤≤-=其他,001,3)(2x x x f (b)????

?≤≤-=其他

,021,2)(x x x g (c)?????≤≤=其他,020,cos )(πx x x h (d)?????

≤≤=其他

,02

,sin )(π

πx x x h (6)设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.

(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P (7)已知连续型随机变量X 的概率密度为

?????<<=其他

,04

0,8

1

)(x x x ? 则数学期望)(X E =( ).

(a)21

(b)2

(c)83 (d)3

8

(8)设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).

(a)O (b))(X E

(c))(2X E (d)2))((X E

(9)设X 为随机变量,若方差)(X D =4,则方差)43( X D =( ). (a)12 (b)16 (c)36 (d)40

(10)设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).

(a)1 (b)7 (c)5 (d)7

习题三

3.01 口袋里装有4个红球与2个白球,每次任取1个球,放回取4次,求恰好有3次取到红球的概率.

3.02 某机构有一个3人组成的顾问小组,每位顾问提出正确意见的概率皆为0.8,现在该机构对某方案的可行性同时分别征求各位顾问意见,并按多数人意见作出决策,求作出正确决策的概率.

3.03 某张试卷上有4道单项选择题,每道单项选择题列出四项备选答案,其中只有一项备选答案是正确的,要求将正确备选答案前面的字母填在括号内,求考生仅凭猜测至少答对1道题的概率.

3.04 某车间只有5台同型号机床,每台机床开动时所消耗的电功率皆为15单位,每台机床开动的概率皆为3

2

,且各台机床开动与否是相互独立的,求:

(l )这个车间消耗电功率恰好为60单位的概率; (2)这个车间消耗电功率至多为30单位的概率; (3)开动机床台数的均值; (4)开动机床台数的标准差.

3.05 设离散型随机变量X ~),2(p B ,若概率9

5}1{=≥X P ,求: (l)参数p 值; (2)概率}2{=X P ; (3)数学期望)(X E ; (4)方差)(X D .

3.06 一页书上印刷错误的个数X 是一个离散型随机变量,它服

从参数为λ(λ>0)的泊松分布,一本书共400页,有20个印刷错误,求:

(l )任取l 页书上没有印刷错误的概率; (2)任取4页书上都没有印刷错误的概率.

3.07 某种产品表面上疵点的个数X 是一个离散型随机变量,它服从参数为λ=2

3的泊松分布,规定表面上疵点的个数不超过2个为合格品,求产品的合格率。

3.08 每10分钟内电话交换台收到呼唤的次数X 是一个离散型随机变量,它从参数为λ(λ>0)的泊松分布,已知每10分钟内收到3次呼唤与收到4次呼唤的可能性相同,求:

(1)平均每10分钟内电话交换台收到呼唤的次数; (2)任意10分钟内电话交换台收到2次呼唤的概率.

3.09 设离散型随机变量X 服从参数为λ(λ>0)的泊松分布,且已知概率}1{=X P =

3

3

e ,求: (l)参数λ值; (2)概率P {1

3.10 某商品计价以元为单位,并将小数部分经四舍五人归为整数,所产生的误差X 元是一个连续型随机变量,它服从区间(-0.5,0.5]上的均匀分布,求:

(1)误差的绝对值小于0.2的概率;

(2)误差的均值.

3.11 已知连续型随机变量X服从区间[1,9]上的均匀分布,求:

(1)概率P{2

(2)概率P{X≥6};

(3)数学期望)

E;

(X

(4)方差)

D

(X

3.12 某种型号日光灯管的使用寿命X小时是一个连续型随机变量,它服从参数为λ(λ>0)的指数分布,且平均使用寿命为800小时,求:

(l)任取l只日光灯管使用1200小时不需要更换的概率;

(2)任取3只日光灯管各使用1200小时都不需要更换的概率.

3.13 设连续型随机变量X服从参数为λ(λ>0)的指数分布,且

1,求:

已知方差D(X)=

4

(1)参数λ值;

(2)概率P{0≤X<1};

(3)数学期望E(4X-3);

(4)方差D(4X-3).

3.14 已知连续型随机变量X~N(0,1),求

(1)概率P{X=1};

(2)概率P{0

(3)概率P{X<-1.5;

(4)概率P{X>1.2};

(5)概率P{X≤1};

(6)概率P{X≥3}.

3.15 某批袋装大米重量X kg是一个连续型随机变量,它服从参数为kg

μ的正态分布,任选1袋大米,求这袋大米重量kg1.0

,

10=

9.9kg~10.2kg之间的概率.

3.16 某批螺栓直径X cm是一个连续型随机变量,它服从均值为0.8cm、方差为0.0004cm2的正态分布,随机抽取1个螺栓,求这个螺栓直径小于0.81cm概率.

3.17 某省文凭考试高等数学成绩X分是一个离散型随机变量,近似认为连续型随机变量,它服从正态分布N(58,102),规定考试成绩达到或超过60分为合格,求:

(1)任取1份高等数学试卷成绩为合格的概率;

(2)任取3份高等数学试卷中恰好有2份试卷成绩为合格的概率.

3.18 已知连续型随机变量X~N(3,4),求:

(1)概率}5

P;

-X

<

3

{≤

(2)概率P{3

X>3.92};

-

(3)数学期望E(-X+5);

(4)方差D(-X+5).

3.19 填空题

(1)若在4次独立重复试验中,事件A都发生的概率与都不发生的概率相等,则事件A在一次试验中发生的概率为__.

26,

(2)若在3次独立重复试验中,事件A至少发生1次的概率为

27

数三概率论与数理统计教学大纲

数三《概率论与数理统计》教学大纲 教材:四川大学数学学院邹述超、何腊梅:《概率论与数理统计》,高等教育出版社出,2002年8月。 参考书:袁荫棠:《概率论与数理统计》(修订本),中国人民大学出版社。 四川大学数学学院概率统计教研室:《概率论与数理统计学习指导》 总学时:60学时,其中:讲课50学时,习题课10学时。 学分:3学分。 说明: 1.生源结构:数三的学生是由高考文科生和一部分高考理科生构成。有些专业全是文科生或含极少部分理科生(如:旅游管理,行政管理),有些专业约占1/4~1/3的理科生(国贸,财政学,经济学),有些专业全是理科生(如:国民经济管理,金融学)。 2.高中已讲的内容:高中文、理科都讲了随机事件的概率、互斥事件的概率、独立事件的概率,即教材第一章除条件概率以及有关的内容以外,其余内容高中都讲了。高中理科已讲离散型随机变量的概率分布(包括二项分布、几何分布)和离散型随机变量的期望与方差,统计基本概念、频率直方图、正态分布、线性回归。而高中文科则只讲了一点统计基本概念、频率直方图、样本均值和样本方差的简单计算。 3.基本要求:学生的数学基础差异大,不同专业学生对数学课重视程度的差异大,这就给讲授这门课带来一定的难度,但要尽量做到“分层次”培养学生。高中没学过的内容要重点讲解,学过的内容也要适当复习或适当增加深度。讲课时,既要照顾数学基础差的学生,多举基本例子,使他们掌握大纲要求的基本概念和方法;也要照顾数学基础好的学生,使他们会做一些综合题以及简单证明题。因为有些专业还要开设相关的后继课程(如:计量经济学),将用到较多的概率统计知识;还有一部分学生要考研,数三的概率考研题往往比数一的难。 该教材每一章的前几节是讲述基本概念和方法,习题(A)是针对基本方法的训练而编写的,因此,这一部分内容须重点讲解,并要求学生必须掌握;每一章的最后一节是综合例题,习题(B)具有一定的综合性和难度,可以选讲部分例题,数学基础好的学生可选做(B)题。 建议各章学时分配(+号后面的是习题课学时): 第一章随机事件及其概率 一、基本内容 随机事件的概念及运算。概率的统计定义、古典定义及公理化定义。概率的基本性质、加法公式、条件概率与乘法公式、全概率公式、贝叶斯公式。事件的独立性,独立随机试验、

概率论与数理统计期末试卷+答案

一、单项选择题(每题2分,共20分) 1.设A 、B 是相互独立的事件,且()0.7,()0P A B P A ?==则 ()P B = ( A A. 0.5 B. 0.3 C. 0.75 D. 0.42 2、设X 是一个离散型随机变量,则下列可以成为X 的分布律的是 ( D ) A. 10 1p p ?? ?-??( p 为任意实数) B. 123450.1 0.3 0.3 0.2 0.2x x x x x ?? ??? C. 3 3()(1,2,...) ! n e P X n n n -== = D. 3 3()(0,1,2,...) ! n e P X n n n -== = 3.下列命题 不正确的是 ( D ) (A)设X 的密度为)(x f ,则一定有?+∞ ∞-=1 )(dx x f ; (B)设X 为连续型随机变量,则P (X =任一确定值)=0; (C)随机变量X 的分布函数()F x 必有01)(≤≤x F ; (D)随机变量X 的分布函数是事件“X =x ”的概率; 4.若()()() E XY E X E Y =,则下列命题不正确的是 ( B ) (A)(,)0Cov X Y =; (B)X 与Y 相互独立 ; (C)0=XY ρ; (D)()()D X Y D X Y -=+; 5. 已知两随机变量X 与Y 有关系0.80.7Y X =+,则X 与Y 间的相关系数 为 ( B ) (A)-1 ( B)1 (C)-0.8 (D)0.7 6.设X 与Y 相互独立且都服从标准正态分布,则 ( B ) (A)(0)0.25P X Y -≥= (B)(min(,)0)0.25P X Y ≥=

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

华东师范大学末试卷(概率论与数理统计)复习题

华东师范大学期末试卷 概率论与数理统计 一. 选择题(20分,每题2分) 1. 已知随机变量X ~N(0,1),则2X 服从的分布为: A .)1(χB 。)1(2 χC 。)1,0(N D 。)1,1(F 2. 讨论某器件的寿命,设:事件A={该器件的寿命为200小时},事件B={该器件的寿 命为300小时},则: A . B A =B 。B A ? C 。B A ? D 。Φ=AB 3.设A,B 都是事件,且1)(,0)(,1)(≠>=A P A P B A P ,则=)(A B P () A.1 B.0 C.0.5 D.0.2 4.设A,B 都是事件,且2 1 )(= A P ,A, B 互不相容,则=)(B A P () B.41 C.0 D. 5 1 5.设A,B 都是事件,且2 1 )(= A P , A, B 互不相容,则=)(B A P () B. 41 C.0 D. 5 1 B 。若A,B 互不相容,则它们相互独立 C .若A,B 相互独立,则它们互不相容 D .若6.0)()(==B P A P ,则它们互不相容 7.已知随机变量X ~)(λπ,且}3{}2{===X P X P ,则)(),(X D X E 的值分别为: A.3,3 B.9,9 C.3,9 D.9,3 8.总体X ~),(2 σμN ,μ未知,4321,,,X X X X 是来自总体的简单随机样本,下面估计量中的哪一个是μ的无偏估计量:、

A.)(31 )(21T 43211X X X X +++= C.)432(5 1 T 43213X X X X +++= A.)(4 1 T 43214X X X X +-+= 9.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,下列μ的无偏估计量哪一个是较为有效的估计量: A.54321141)(81)(41T X X X X X ++++= B.)(61 )(41T 543212X X X X X ++++= D.)2(6 1 T 543214X X X X X ++++= 10.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,记 ∑==n i i X n X 1 1, 21 21 )(11X X n S n i i --=∑=, 2 1 22 )(1X X n S n i i -=∑=, 21 23 )(1μ-=∑=n i i X n S ,21 24)(1μ-= ∑=n i i X n S ,则服从自由度为1-n 的t 分布的 1X t 2 --=n S μ C.n S 3X t μ-= D .n S 4 X t μ -= 11.如果存在常数)0(,≠a b a ,使1}{=+=b aX Y p ,且+∞<<)(0X D ,则Y X ,

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

概率论与数理统计课本_百度文库

第二章随机变量及其分布第一节随机变量及其分布函数 一、随机变量 随机试验的结果是事件,就“事件”这一概念而言,它是定性的。要定量地研究随机现象,事件的数量化是一个基本前提。很自然的想法是,既然试验的所有可能的结果是知道的,我们就可以对每一个结果赋予一个相应的值,在结果(本事件)数值之间建立起一定的对应关系,从而对一个随机试验进行定量的描述。 例2-1 将一枚硬币掷一次,观察出现正面H、反面T的情况。这一试验有两个结果:“出现H”或“出现T”。为了便于研究,我们将每一个结果用一个实数来代表。比如,用数“1”代表“出现H”,用数“0”代表“出现T”。这样,当我们讨论试验结果时,就可以简单地说成结果是1或0。建立这种数量化的关系,实际上就相当于引入一个变量X,对于试验的两个结果,将X的值分别规定为1或0。如果与样本空间 { } {H,T}联系起来,那么,对于样本空间的不同元素,变量X可以取不同的值。因此,X是定义在样本空间上的函数,具体地说是 1,当 H X X( ) 0,当 T 由于试验结果的出现是随机的,因而X(ω)的取值也是随机的,为此我们称 X( )X(ω)为随机变量。 例2-2 在一批灯泡中任意取一只,测试它的寿命。这一试验的结果(寿命)本身就是用数值描述的。我们以X记灯泡的寿命,它的取值由试验的结果所确定,随着试验结果的不同而取不同的值,X是定义在样本空间 {t|t 0}上的函数 X X(t) t,t 因此X也是一个随机变量。一般地有 定义2-1 设 为一个随机试验的样本空间,如果对于 中的每一个元素 ,都有一个实数X( )与之相对应,则称X为随机变量。 一旦定义了随机变量X后,就可以用它来描述事件。通常,对于任意实数集合L,X在 L上的取值,记为{X L},它表示事件{ |X( ) L},即 。 {X L} { |X( ) L} 例2-3 将一枚硬币掷三次,观察出现正、反面的情况。设X为“正面出现”的次数,则X是一个随机变量。显然,X的取值为0,1,2,3。X的取值与样本点之间的对应关系如表2-1所示。 表2-1 表2-1

概率论与数理统计试卷及答案(1)

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B) = 2、设事件A 与B 独立,A 与B 都不发生的概率为1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,, ,n X X X 为其样本,1 1n i i X X n ==∑为样本均值, 则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置 信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

概率论与数理统计试题库及答案(考试必做)[1]

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7, 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,01 0,x b ax ,且{1/2}5/8P x >=,则 a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2 +ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院 《概率论与数理统计》模拟试卷一 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。 一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。 [A] P (A)=1-P (B ) [B] P (A│B)=0 [C] P (A│B )=1 [D] P (A B )=0 2、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。 [A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A│B )=P (B ) [D] P (A│B )=P(A ) 3、若A 、B 相互独立,则下列式子成立的为( )。 [A] )()()(B P A P B A P = [B] 0)(=AB P [C] )()(A B P B A P = [D] )()(B P B A P = 4、下面的函数中,( )可以是离散型随机变量的概率函数。

[A] {}1 1(0,1,2)!e P k k k ξ-=== [B] {}1 2(1,2)! e P k k k ξ-=== [C] {}31 (0,1,2)2 k P k k ξ=== [D] {}41 (1,2,3)2 k P k k ξ== =--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使 12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。 [A]1 ,2a =-32 b = [B] 2,3a = 23b = [C] 3,5a = 2 5 b =- [D] 1,2a = 32 b =- 二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T ,错误的填F ,填在答题卷相应题号处。 6、事件“掷一枚硬币,或者出现正面,或者出现反面”是必然事件。 ( ) 7、通过选取经验函数()12;,,...,k x a a a μ中的参数使得观察值i y 与相应的函数值 ()12;,,...,i k x a a a μ之差的平方和最小的方法称之为方差分析法。 ( ) 8、在进行一元线性回归时, 通过最小二乘法求得的经验回归系数^ b 为xy xx l l 。 ( ) 9、连续抛一枚均匀硬币6 次,则正面至少出现一次的概率为 9 2 。( ) 10、设某次考试考生的成绩服从正态分布( )2 70,N σ ,2 σ 未知,为了检验样本均 值是否显著改变,抽取36名同学测得平均成绩为66.5分,标准差为15分,显著水平0.05α=,则应该接受原假设。 ( )

概率论与数理统计知识点(打印版)

概率论与数理统计知识点 概率论与数理统计初步主要考查考生对研究随机现象规律性的 基本概念、基本理论和基本方法的理解,以及运用概率统计方 法分析和解决实际问题的能力。 随机事件和概率考查的主要内容有: (1)事件之间的关系与运算,以及利用它们进行概率计算; (2)概率的定义及性质,利用概率的性质计算一些事件的概率; (3)古典概型与几何概型; (4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝 叶斯公式计算概率; (5)事件独立性的概念,利用独立性计算事件的概率; (6)独立重复试验,伯努利概型及有关事件概率的计算。 要求考生理解基本概念,会分析事件的结构,正确运用公式, 掌握一些技巧,熟练地计算概率。 随机变量及概率分布考查的主要内容有: (1)利用分布函数、概率分布或概率密度的定义和性质进行计算; (2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算; (3)会求随机变量的函数的分布。 (4)求两个随机变量的简单函数的分布,特别是两个独立随机变 量的和的分布。 要求考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机 变量函数的分布。 随机变量的数字特征考查的主要内容有: (1)数学期望、方差的定义、性质和计算; (2)常用随机变量的数学期望和方差; (3)计算一些随机变量函数的数学期望和方差; (4)协方差、相关系数和矩的定义、性质和计算; 要求考生熟练掌握数学期望、方差的定义、性质和计算,掌握 由给出的试验确定随机变量的分布,再计算有关的数字的特征 的方法,会计算协方差、相关系数和矩,掌握判断两个随机变 量不相关的方法。 大数定律和中心限定理考查的主要内容有: (1)切比雪夫不等式;(2)大数定律;(3)中心极限定理。 要求考生会用切比雪夫不等式证明有关不等式,会利用中心极 限理进行有关事件概率的近似计算。 数理统计的基本概念考查的主要内容有: (1)样本均值、样本方差和样本矩的概念、性质及计算;(2)χ2分布、t分布和F分布的定义、性质及分位数; (3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。 要求考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、 t分布和 F分布的定义和性质推导有关正态总体某些统计的计量的分布。 参数估计考查的主要内容有: (1)求参数的矩估计、极大似然估计; (2)判断估计量的无偏性、有效性、一致性; (3)求正态总体参数的置信区间。 要求考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。 假设检验考查的显著的主要内容有: (1)正态总体参数的显著性检验; (2)总体分布假设的χ2检验。 要求考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。 常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有: (1)确定事件间的关系,进行事件的运算; (2)利用事件的关系进行概率计算; (3)利用概率的性质证明概率等式或计算概率; (4)有关古典概型、几何概型的概率计算; (5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率; (6)有关事件独立性的证明和计算概率; (7)有关独重复试验及伯努利概率型的计算; (8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率; (9)由给定的试验求随机变量的分布; (10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率; (11)求随机变量函数的分布 (12)确定二维随机变量的分布; (13)利用二维均匀分布和正态分布计算概率; (14)求二维随机变量的边缘分布、条件分布;

新版精选2019概率论与数理统计期末考试题库200题(含答案)

2019年概率论与数理统计期末测试复习题200题[含 答案] 一、选择题 1.设)(x Φ为标准正态分布函数,100, ,2, 1, 0A ,1 =???=i X i 否则,发生事件且 ()0.6P A =,10021X X X ,,, 相互独立。令∑==1001i i X Y ,则由中心极限定理知Y 的分布 函数)(y F 近似于(B )。 A. )(y Φ B. Φ C.(60)y Φ- D.60()24y -Φ 2.设随机变量X ~N(μ,9),Y ~N(μ,25),记}5{},3{21+≥=-≤=μμY p X P p ,则( B )。 A. p1p2 D. p1与p2的关系无法确定 3.设随机变量X, Y 相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是( B )。 A. X Y B. (X, Y ) C. X — Y D. X + Y 4.连续型随机变量X 的密度函数f (x)必满足条件( C )。 A. 0() 1 B. C. () 1 D. lim ()1x f x f x dx f x +∞ -∞→+∞≤≤==?在定义域内单调不减 5.某切割机在正常工作时,切割得每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。今从一批产品中随机抽取16段进行测量,计算平均长度为x =10.48cm 。假设方差不变,问在0.05α=显著性水平下,该切割机工作是否正常? 0.050.050.025((16)=2.12, (15)=2.131, 1.960 )t t U =已知: 解: 待检验的假设为 0:H 10.5μ= 选择统计量x U = 当0H 成立时, U ~ ()0,1N 0.025{||}0.05P U u >= 取拒绝域w={|| 1.960U >}

相关文档
相关文档 最新文档