文档库 最新最全的文档下载
当前位置:文档库 › 应用回归分析,第2章课后习题参考答案

应用回归分析,第2章课后习题参考答案

应用回归分析,第2章课后习题参考答案
应用回归分析,第2章课后习题参考答案

第二章 一元线性回归分析

思考与练习参考答案

2.1 一元线性回归有哪些基本假定?

答: 假设1、解释变量X 是确定性变量,Y 是随机变量;

假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n

假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n

误差εi (i=1,2, …,n )仍满足基本假定。求β1的最小二乘估计 解: 得:

2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:

其中:

即: ∑e i =0 ,∑e i X i =0

∑∑+-=-=n

i

i i n

i X Y Y Y Q 1

2102

1

))??(()?(ββ211

1

2)?()?(i

n

i i n

i i i e X Y Y Y Q β∑∑==-=-=

01????i i

i i i

Y X e Y Y ββ=+=-0

1

00??Q

Q

β

β

??==??

2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什

么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n

所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:

使得Ln (L )最大的0

?β,1?β就是β0,β1的最大似然估计值。 同时发现使得Ln (L )最大就是使得下式最小,

上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在εi ~N (0, σ2 )的假设下求得,最小二乘估计则不要求分布假设。

所以在εi ~N(0, σ2 ) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。

2.5 证明0

?β是β0的无偏估计。 证明:)1[)?()?(1

110∑∑==--=-=n

i i xx i n i i

Y L X X X Y n E X Y E E ββ )] )(1

([])1([1011i i xx i n i i xx i n

i X L X X X n E Y L X X X n E εββ++--=--=∑∑==

1010)()1

(])1([βεβεβ=--+=--+=∑∑==i xx i n

i i xx i n

i E L X X X n

L X X X n E 2.6 证明 证明:

)] ()1([])1([)?(102110i i xx i n

i i xx i n

i X Var L X X X n

Y L X X X n Var Var εβββ++--=--=∑∑== ∑∑+-=-=n

i

i i n i X Y Y Y Q 1

21021

))??(()?(ββ()

)

1()1()?(2

2

2

1

2

2

xx n

i i

L X n X X

X n

Var +=-+=∑=σσβ

2

2221

2]1[])(2)1[(σσxx xx i xx i n

i L X n L X X X nL X X X n +=-+--=∑=

2.7 证明平方和分解公式:SST=SSE+SSR

证明:

2.8 验证三种检验的关系,即验证: (1)2

1)2(r r n t --=

;(2)22

2

1

??)2/(1/t L n SSE SSR F xx ==-=σ

β 证明:(1)

?t ===

=

=

=

(2)

2

2

2

22011111

1

1

1

??????()()(())(())n

n

n

n

i i i

i xx i i i i SSR y y x y y x x y x x L βββββ=====-=+-=+--=-=∑∑∑∑2212?/1

?/(2)xx L SSR F t SSE n βσ

∴===-

2.9 验证(2.63)式:2

211σ)L )x x (n ()e (Var xx i i ---=

证明:

11

222

2

222

???var()var()var()var()2cov(,)???var()var()2cov(,())()()11[]2[]()1[1]i i i i i i i i

i

i

i

i i xx xx

i xx

e y y

y y y y y x y y x x x x x x n L n L x x n L β

ββσσσσ

=-=+-=++-+---=++-+-=--

()()

∑∑==-+-=-=n i i

i i n i i Y Y Y Y Y Y SST 1212

]?()?[()

()

()

∑∑∑===-+--+-=n

i i

i n

i i i i n

i i

Y Y Y Y Y Y Y Y 1

2

1

12

)??)(?2?(

)()

SSE

SSR )Y ?Y Y Y ?n

1

i 2

i

i n

1

i 2i +=-+-=∑∑

==

其中:2

22221

111))(1()(1))(,()()1,())(?,(),())(?,(σσσββxx

i xx i n

i i xx i

i i n

i i i i

i i i i L x x n L x x n y L x x y Cov x x y n y Cov x x y Cov y y Cov x x y y Cov -+=-+=--+=-+=-+∑∑==

2.10 用第9题证明是σ2的无偏估计量

证明:

2

2

211

221122

11??()()()22()111var()[1]221

(2)2

n n i i i i n n i i i i xx E E y y E e n n x x e n n n L n n σσσσ=====-=---==----=

-=-∑∑∑∑ 2.11 验证决定系数与F 值之间的关系式

2

2-+=

n F F

r

证明:

21

1/1

2

1/(/(2))1221SSR SSR r SST SSR SSE SSE SSR

n SSR SSE n F n F n F =

==

++=-+

-==

-+-+

2.14 为了调查某广告对销售收入的影响,某商店记录了5个月的销售收入y (万元)和广告费用x (万元),数据见表2.6,要求用手工计算: 表2.6

(1) 画散点图(略)

(2) X 与Y 是否大致呈线性关系? 答:从散点图看,X 与Y 大致呈线性关系。

2?22-=

∑n e

i

σ

(3) 用最小二乘法估计求出回归方程。

计算表

(4) 求回归标准误差

先求SSR (Q e )见计算表。 所以

(5) 给出 的置信度为95%的区间估计; 由于(1-α)的置信度下, 的置信区间是 查表可得 915.110

667

.36?2?1

==

=

xx

L S σβ 所以 的95%的区间估计为:(7—3.182*1.915,7+3.182*1.915),即(0.906,13.094)。

351.6)10

25

51(667.36)1(?22

?

=+=+=xx L X n S σβ 所以 的95%的区间估计为:(-1-3.182*6.351,-1+3.182*6.351),

即(-21.211, 19.211)。^0β的置信区间包含0,表示^

0β不显著。

(6) 计算x 和y 的决定系数

10?,?ββ2

2

????(,)i

i

i i t s t s ααββ

ββ-?+?i

β?182

.3)3()2(025.02/==-t n t α1?

β0?

β

说明回归方程的拟合优度高。 (7) 对回归方程作方差分析

方差分析表

F 值=13.364>F 0.05(1,3)=10.13(当n 1=1,n 2=8时,α=0.05查表得对应的值为10.13),所以拒绝原假设,说明回归方程显著。

(8)做回归系数β1的显著性检验H0: β1=0

656.3915.1/7/?1

?1=

==β

βS t t 值=3.656>t 0.05/2(3)=3.182,所以拒绝原假设,说明x 对Y 有显著的影响。

(8) 做相关系数R 的显著性检验

R 值=0.904>R 0.05(3)=0.878,所以接受原假设,说明x 和Y 有显著的线性关系。

(9) 对回归方程作残差图并作相应的分析

残差图(略) .从残差图上看出,残差是围绕e=0在一个固定的带子里随

机波动,基本满足模型的假设e i ~N(0, σ2 ), 但由于样本量太少, 所以误差

较大.

(10) 求广告费用为4.2万元时,销售收入将达到多少?并给出置信度为95%的置信区间.

解: 当X 0=4.2时,

4.282.471???0

100=?+-=+=X Y ββ

所以广告费用为4.2万元时, 销售收入将达到28.4万元. 由于置信度为1-α时,Y 0估计值的置信区间为:

)10

44

.1511(667.36)(11(?202

?0

++=-++=-xx Y

Y L X X n S σ

所以求得Y 0的95%的置信区间为: [6.05932 ,50.74068] 预测误差较大.

2.15 一家保险公司十分关心其总公司营业部加班的制度,决定认真调查一下现状。经过十周时间,收集了每周加班工作时间的数据和签发的新保单数目,x 为每周新签发的保单数目,y 为每周加班工作时间(小时)。见表2.7。

表2..7

2、由散点图可以看出, x 与y 之间大致呈线性关系。

02

2

?000

?0??Y

Y Y Y S t Y Y S t Y --?+<

3、用最小二乘法求出回归系数

由表可知:118.0β

= 00359.0β1

= 回归方程为:

x 00359.0118.0y ?+=

4、求回归标准误差σ

?

由方差分析表可以得到:SSE=1.843

故回归标准误差2

^2

SSE

n σ=-,^σ=0.48。

5、给出回归系数的置信度为95%的区间估计

由回归系数显著性检验表可以看出,当置信度为95%时:

^

0β的预测区间为[-0.701,0.937], ^

1β的预测区间为[0.003,0.005].

^0β的置信区间包含0,表示^

0β不拒绝为零的假设。

6、决定系数

由模型概要表得到决定系数为0.9接近于1,说明模型的拟合优度高。

7. 对回归方程作方差分析 由方差分析表可知:

F 值=72.396>5.32(当n 1=1,n 2=8时,查表得对应的值为5.32) P 值≈0,所以拒绝原假设,说明回归方程显著。 8、对^

1β的显著性检验

从上面回归系数显著性检验表可以得到^

1β的t 统计量为t=8.509,所对应的p 值近似为0,通过t 检验。说明每周签发的新保单数目x 对每周加班工作时间y 有显著的影响。

9.做相关系数显著性检验

相关系数达到0.949,说明x 与y 显著线性相关。 10、对回归方程作残差图并作相应分析

从残差图上看出,残差是围绕e=0随即波动,满足模型的基本假设。

11、该公司预计下一周签发新保单X0=1000张,需要的加班时间是多少?

当x 0=1000张时,7032.31000*00359.0118.0y =+=小时 12、给出Y 0的置信水平为95%的预测区间

通过SPSS 运算得到Y 0的置信水平为95%的预测区间为: (2.5195,4.8870)。

13 给出E (Y 0)的置信水平为95%的预测区间

通过SPSS 运算得到Y 0的置信水平为95%的预测区间为:(3.284,

4.123)。

2.16 表是1985年美国50个州和哥伦比亚特区公立学校中教师的人均年工资y(美元)和学生的人均经费投入x(美元).

解答:(

由上图可以看出y 与x 的散点分布大致呈直线趋势。 (2)建立y 对x 的线性回归。

利用SPSS 进行y 和x 的线性回归,输出结果如下:

表1 模型概要

1) 由表1可知,x 与y 决定系数为697.0=r ,说明模型的拟合效果一般。x

与y 线性相关系数R=0.835,说明x 与y 有较显著的线性关系。 2) 由表2(方差分析表中)看到,F=112.811,显著性Sig.p 000.0≈,说明回

归方程显著。

3) 由表3 可见对1β的显著性t 检验P 值近似为零,故1β显著不为0,说明

x 对y 有显著的线性影响。

4) 综上,模型通过检验,可以用于预测和控制。

x 与y 的线性回归方程为:

x y

*314.3629.12112?+=

(3)绘制标准残差的直方图和正态概率图

图1 标准残差的直方图

图2 标准残差的正态概率P-P 图

由图1可见标准化后残差近似服从正态分布,由图2可见正态概率图中的各个散点都分布在45°线附近,所以没有证据证明误差项服从同方差的正态分布的假定是不真实的,即残差通过正态性检验,满足模型基本假设。

观测值概率

理论正

态概率

应用回归分析课后习题

y1 1 x11 x12 x1p 0 1 3.1 y2 1 x21 x22 x2p 1 + 2 即y=x + yn 1 xn1 xn2 xnp p n 基本假定 (1)解释变量x1,x2…,xp 是确定性变量,不是随机变量,且要求 rank(X)=p+1

n 注 tr(H) h 1 3.4不能断定这个方程一定很理想,因为样本决定系数与回归方程中 自变量的数目以及样本量n 有关,当样本量个数n 太小,而自变量又较 多,使样本量与自变量的个数接近时, R 2易接近1,其中隐藏一些虚 假成分。 3.5当接受H o 时,认定在给定的显着性水平 下,自变量x1,x2, xp 对因变量y 无显着影响,于是通过x1,x2, xp 去推断y 也就无多大意 义,在这种情况下,一方面可能这个问题本来应该用非线性模型去描 述,而误用了线性模型,使得自变量对因变量无显着影响;另一方面 可能是在考虑自变量时,把影响因变量y 的自变量漏掉了,可以重新 考虑建模问题。 当拒绝H o 时,我们也不能过于相信这个检验,认为这个回归模型 已经完美了,当拒绝H o 时,我们只能认为这个模型在一定程度上说明 了自变量x1,x2, xp 与自变量y 的线性关系,这时仍不能排除排除我 们漏掉了一些重要的自变量。 3.6中心化经验回归方程的常数项为0,回归方程只包含p 个参数估计 值1, 2, p 比一般的经验回归方程减少了一个未知参数,在变量较 SSE (y y)2 e12 e22 1 2 1 E( ) E( - SSE* n p 1 n p n 2 [D(e) (E(e))2] 1 n (1 1 n 2 en n E( e 1 1 n p 1 1 n p 1 1 "1 1 n p 1 J (n D(e) 1 (p 1)) 1_ p 1 1 1 n p 1 2 2 n E(e 2) (1 h ) 2 1

应用回归分析,第8章课后习题参考答案

第8章 非线性回归 思考与练习参考答案 8.1 在非线性回归线性化时,对因变量作变换应注意什么问题? 答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。如: (1) 乘性误差项,模型形式为 e y AK L αβε =, (2) 加性误差项,模型形式为y AK L αβ ε = + 对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。 一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。 8.2为了研究生产率与废料率之间的关系,记录了如表8.15所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。 表8.15 生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图: 5000.00 4000.003000.002000.001000.00x 12.00 10.00 8.006.00 y

从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。 (1)二次曲线 SPSS 输出结果如下: Model Summ ary .981 .962 .942 .651 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x. ANOVA 42.571221.28650.160.001 1.6974.424 44.269 6 Regression Residual Total Sum of Squares df Mean Square F Sig.The independent variable is x. Coe fficients -.001.001-.449-.891.4234.47E -007.000 1.417 2.812.0485.843 1.324 4.414.012 x x ** 2 (Constant) B Std. E rror Unstandardized Coefficients Beta Standardized Coefficients t Sig. 从上表可以得到回归方程为:72? 5.8430.087 4.4710y x x -=-+? 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。 由x 2的系数检验P 值小于0.05,得到x 2的系数通过了显著性检验。 (2)指数曲线 Model Summ ary .970 .941 .929 .085 R R Square Adjusted R Square Std. E rror of the Estimate The independent variable is x.

应用回归分析课后答案

应用回归分析课后答案 第二章一元线性回归 解答:EXCEL结果: SUMMARY OUTPUT 回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值5 方差分析 df SS MS F Significance F 回归分析125 残差3 总计410 Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限%上限% Intercept X Variable 15 RESIDUAL OUTPUT 观测值预测Y残差 1 2 3 4 5 SPSS结果:(1)散点图为:

(2)x 与y 之间大致呈线性关系。 (3)设回归方程为01y x ββ∧ ∧ ∧ =+ 1β∧ = 12 2 1 7()n i i i n i i x y n x y x n x -- =- =-=-∑∑ 0120731y x ββ-∧- =-=-?=- 17y x ∧ ∴=-+可得回归方程为 (4)22 n i=1 1()n-2i i y y σ∧∧=-∑ 2 n 01i=1 1(())n-2i y x ββ∧∧=-+∑ =222 22 13???+?+???+?+??? (10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1 169049363 110/3= ++++= 1 330 6.13 σ∧=≈ (5)由于2 11(, )xx N L σββ∧ :

t σ ∧ == 服从自由度为n-2的t分布。因而 /2 |(2)1 P t n α α σ ?? ?? <-=- ?? ?? 也即: 1/211/2 (p t t αα βββ ∧∧ ∧∧ -<<+=1α - 可得 1 95% β∧的置信度为的置信区间为(7-2.3537+2.353即为:(,) 2 2 00 1() (,()) xx x N n L ββσ - ∧ + : t ∧∧ == 服从自由度为n-2的t分布。因而 /2 (2)1 P t n α α ∧ ?? ?? ?? <-=- ?? ?? ?? ?? ?? 即 0/200/2 ()1 pβσββσα ∧∧∧∧ -<<+=- 可得 1 95%7.77,5.77 β∧- 的置信度为的置信区间为() (6)x与y的决定系数 2 21 2 1 () 490/6000.817 () n i i n i i y y r y y ∧- = - = - ==≈ - ∑ ∑ (7)

应用回归分析第2章课后习题参考答案

2.1 一元线性回归模型有哪些基本假定? 答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。 2. 等方差及不相关的假定条件为 ? ? ? ? ? ? ??????≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1, 0)(2 σεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。 3. 正态分布的假定条件为 ???=相互独立 n i n i N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。 4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。 在整个回归分析中,线性回归的统计模型最为重要。一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。因此,线性回归模型的理论和应用是本书研究的重点。 1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计; 2. 对回归方程及回归系数的种种假设进行检验; 3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。 2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。求1β的最小二 乘估计。 答:∑∑==-=-=n i n i i i i x y y E y Q 1 1 2112 1)())(()(ββ

应用回归分析课后习题参考答案

应用回归分析课后习题 参考答案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第二章一元线性回归分析 思考与练习参考答案 一元线性回归有哪些基本假定 答:假设1、解释变量X是确定性变量,Y是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(ε i )=0 i=1,2, …,n Var (ε i )=2i=1,2, …,n Cov(ε i, ε j )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X之间不相关: Cov(X i , ε i )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 ε i ~N(0, 2) i=1,2, …,n 考虑过原点的线性回归模型 Y i =β 1 X i +ε i i=1,2, …,n 误差εi(i=1,2, …,n)仍满足基本假定。求β1的最小二乘估计解: 得: 证明(式),e i =0 ,e i X i=0 。 证明: ∑ ∑+ - = - = n i i i n i X Y Y Y Q 1 2 1 2 1 )) ? ?( ( )? (β β 其中: 即:e i =0 ,e i X i=0 2 1 1 1 2) ? ( )? ( i n i i n i i i e X Y Y Y Qβ ∑ ∑ = = - = - = ) ? ( 2 ?1 1 1 = - - = ? ?∑ = i i n i i e X X Y Q β β ) ( ) ( ? 1 2 1 1 ∑ ∑ = = = n i i n i i i X Y X β 01 ?? ?? i i i i i Y X e Y Y ββ =+=- 01 00 ?? Q Q ββ ?? == ??

应用回归分析,第4章课后习题参考答案.

第4章违背基本假设的情况 思考与练习参考答案 4.1 试举例说明产生异方差的原因。 答:例4.1:截面资料下研究居民家庭的储蓄行为 Y i=β0+β1X i+εi 其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。 由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。 例4.2:以某一行业的企业为样本建立企业生产函数模型 Y i=A iβ1K iβ2L iβ3eεi 被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。 4.2 异方差带来的后果有哪些? 答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果: 1、参数估计量非有效 2、变量的显著性检验失去意义 3、回归方程的应用效果极不理想 总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。 4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。 答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。然而在异方差

的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。这样对残差所提供信息的重要程度作一番校正,以提高参数估计的精度。 加权最小二乘法的方法: 4.4简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法。 答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回归的类似。多元线性回归加权最小二乘法是在平方和中加入一个适当的权数i w ,以调整各项在平方和中的作用,加权最小二乘的离差平方和为: ∑=----=n i ip p i i i p w x x y w Q 1211010)( ),,,(ββββββ (2) 加权最小二乘估计就是寻找参数p βββ,,,10 的估计值pw w w βββ?,,?,?10 使式(2)的离差平方和w Q 达极小。所得加权最小二乘经验回归方程记做 22011 1 ???()()N N w i i i i i i i i Q w y y w y x ββ===-=--∑∑22 __ 1 _ 2 _ _ 02 222 ()() ?()?1 11 1 ,i i N w i i i w i w i w w w w w kx i i i i m i i i m i w x x y y x x y x w kx x kx w x σβββσσ==---=-= = ===∑∑1N i =1 1表示=或

简单线性回归分析思考与练习参考答案

第10章 简单线性回归分析 思考与练习参考答案 一、最佳选择题 1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。 A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错 2.如果相关系数r =1,则一定有( C )。 A .总SS =残差SS B .残差SS =回归 SS C .总SS =回归SS D .总SS >回归SS E. 回归MS =残差MS 3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。 A .ρ=0时,r =0 B .|r |>0时,b >0 C .r >0时,b <0 D .r <0时,b <0 E. |r |=1时,b =1 4.如果相关系数r =0,则一定有( D )。 A .简单线性回归的截距等于0 B .简单线性回归的截距等于Y 或X C .简单线性回归的残差SS 等于0 D .简单线性回归的残差SS 等于SS 总 E .简单线性回归的总SS 等于0 5.用最小二乘法确定直线回归方程的含义是( B )。 A .各观测点距直线的纵向距离相等 B .各观测点距直线的纵向距离平方和最小 C .各观测点距直线的垂直距离相等 D .各观测点距直线的垂直距离平方和最小 E .各观测点距直线的纵向距离等于零 二、思考题 1.简述简单线性回归分析的基本步骤。 答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。 2.简述线性回归分析与线性相关的区别与联系。

应用回归分析,第7章课后习题参考答案

第7章岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X|≈0,回归系数估计的方差就很大,估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其统计思想是对于(X’X)-1为奇异时,给X’X加上一个正常数矩阵 D, 那么X’X+D接近奇异的程度就会比X′X接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k有哪几种方法? 答:最优 是依赖于未知参数 和 的,几种常见的选择方法是: 岭迹法:选择 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多;

方差扩大因子法: ,其对角线元 是岭估计的方差扩大因子。要让 ; 残差平方和:满足 成立的最大的 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随着k的增加迅速趋近于零。像这样岭回归系数不稳定、震动趋于零的自变量,我们也可以予以剔除; 3. 去掉标准化岭回归系数很不稳定的自变量。如果有若干个岭回归系数不稳定,究竟去掉几个,去掉那几个,要根据去掉某个变量后重新进行岭回归分析的效果来确定。

应用回归分析-第9章课后习题答案

第9章 含定性变量的回归模型 思考与练习参考答案 9.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为: t t t t kt k t t D D D X X Y μαααβββ++++++=332211110 其中含有k 个定量变量,记为x i 。对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为: ????? ? ?? ?? ? ?=00011001011000101001 0010100011 )(6 165154143 132121 11k k k k k k X X X X X X X X X X X X D X, 显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。这就是所谓的“虚拟变量陷井”,应避免。 当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。称Tol j =1-2 j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。 ??? ??? ? ??=k βββ 10β??? ??? ? ??=4321ααααα

应用回归分析第三版·何晓群-第三章所有习题答案

应用回归分析第三章习题 3.1 y x =β 基本假定: (1) 诸1234n x ,x x ,x x ……非随机变量,rank (x )=p+1,X 为满秩矩阵 (2) 误差项()()200i i j E ,i j cov ,,i j ?ε=? ?δ=?εε=??≠?? (3)()2 0i i j ~N ,,?εδ??εε??诸相互独立 3.2 ()10111 ?X X X X |rank(X X )p rank(X )p n p -'β'≠'=+≥+≥+存在,必须使存在。即|则必有故 3.3 ()()()() ()22 11 122 12 22211111111 n n n i i ii i i i n ii i n i i E e D e h n h n p ?E E e n p n p n p =====??==-δ ????? =-δ=--δ ??? ??∴δ ==--δ=δ ? ----??∑∑∑∑∑ 3.4 并不能这样武断地下结论。2 R 与回归方程中的自变量数目以及样本量n 有关,当样本量n 与自变量个数接近时,2 R 易接近1,其中隐含着一些虚假成分。因此,并不能仅凭很大的2 R 就模型的优劣程度。 3.5 首先,对回归方程的显著性进行整体上的检验——F 检验 001230p H :β=β=β=β==β=……

接受原假设:在显著水平α下,表示随机变量y 与诸x 之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y 与诸x 之间有显著的线性关系 第二,对单个自变量的回归系数进行显著性检验。 00i H :β= 接受原假设:认为i β=0,自变量i x 对y 的线性效果并不显著 3.6 原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。 3.7 11 22 011122201122p p p p p p p ?????y x x x ??????y y (x x )(x x )(x x )????y x x )x x )x x )y =β +β+β++β-=β+β-+β-++β--ββ=-+-++-=对最小二乘法求得一般回归方程: ……对方程进行如下运算: …… ……*j j ?+β=……即 3.8 121321233132212312212331 312311232332 13 231313********* 111 r r r r r r r r r r r r r r r r r r r r r ?? ?= ? ????==-?= =-?= =-即证

应用回归分析 课后习题参考答案

第二章 一元线性回归分析 思考与练习参考答案 一元线性回归有哪些基本假定? 答: 假设1、解释变量X 是确定性变量,Y 是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=?2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, ?2 ) i=1,2, …,n 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n 误差εi (i=1,2, …,n )仍满足基本假定。求 β1的最小二乘估计 解: 得: 证明(式),?e i =0 ,?e i X i =0 。 证明:∑∑+-=-=n i i i n i X Y Y Y Q 1 2102 1 ))??(()?(ββ 其中: 即: ?e i =0 ,?e i X i =0 211 1 2)?()?(i n i i n i i i e X Y Y Y Q β∑∑==-=-=0)?(2?11 1 =--=??∑=i i n i i e X X Y Q ββ) () (?1 2 1 1 ∑∑===n i i n i i i X Y X β01????i i i i i Y X e Y Y ββ=+=-0 1 00??Q Q β β ??==??

回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。 答:由于εi ~N(0, ?2 ) i=1,2, …,n 所以Y i =β0 + β1X i + εi ~N (β0+β1X i , ?2 ) 最大似然函数: 使得Ln (L )最大的0 ?β,1?β就是β0,β1的最大似然估计值。 同时发现使得Ln (L )最大就是使得下式最小, ∑∑+-=-=n i i i n i X Y Y Y Q 1 21021 ))??(()?(ββ 上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在εi ~N (0, ?2 )的假设下求得,最小二乘估计则不要求分布假设。 所以在εi ~N(0, ?2 ) 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。 证明0 ?β是β0的无偏估计。 证明:)1[)?()?(1 110∑∑==--=-=n i i xx i n i i Y L X X X Y n E X Y E E ββ )] )(1 ([])1([1011i i xx i n i i xx i n i X L X X X n E Y L X X X n E εββ++--=--=∑∑== 1010)()1 (])1([βεβεβ=--+=--+=∑∑==i xx i n i i xx i n i E L X X X n L X X X n E 证明 证明: )] ()1([])1([)?(102110i i xx i n i i xx i n i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== () ) 1()1()?(2 2 2 1 2 2 xx n i i L X n X X X n Var +=-+=∑=σσβ

第一章课后习题解答(应用回归分析)

1、 变量间统计关系和函数关系的区别是什么 答:函数关系是一种确定性的关系,一个变量的变化能完全决定另一个变量的变化;统计关系是非确定的,尽管变量间的关系密切,但是变量不能由另一个或另一些变量唯一确定。 2、 回归分析与相关分析的区别和联系是什么 答:联系:刻画变量间的密切联系; 区别:一、回归分析中,变量y 称为因变量,处在被解释的地位,而在相关分析中,变量y 与x 处于平等地位;二、相关分析中y 与x 都是随机变量,而回归分析中y 是随机的,x 是非随机变量。三、回归分析不仅可以刻画线性关系的密切程度,还可以由回归方程进行预测和控制。 3、 回归模型中随机误差项ε的意义是什么主要包括哪些因素 答:随机误差项ε的引入,才能将变量间的关系描述为一个随机方程。主要包括:时间、费用、数据质量等的制约;数据采集过程中变量观测值的观测误差;理论模型设定的误差;其他随机误差。 4、 线性回归模型的基本假设是什么 答:1、解释变量非随机;2、样本量个数要多于解释变量(自变量)个数;3、高斯-马尔科夫条件;4、随机误差项相互独立,同分布于2(0,)N σ。 5、 回归变量设置的理论根据在设置回归变量时应注意哪些问题 答:因变量与自变量之间的因果关系。需注意问题:一、对所研究的问题背景要有足够了解;二、解释变量之间要求不相关;三、若某个重要的变量在实际中没有相应的统计数据,应考虑用相近的变量代替,或者由其他几个指标复合成一个新的指标;四、解释变量并非越多越好。 6、 收集、整理数据包括哪些内容 答:一、收集数据的类型(时间序列、截面数据);二、数据应注意可比性和数据统计口径问题(统计范围);三、整理数据时要注意出现“序列相关”和“异

应用回归分析部分答案

第9章非线性回归 9.1 在非线性回归线性化时,对因变量作变换应注意什么问题? 答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式,还要注意误差项的形式。如: (1)乘性误差项,模型形式为, (2)加性误差项,模型形式为。 对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。 一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。 9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。 表9.14 生产率x(单位/周) 1 35 000 废品率y(%) 5.2 6.5 6.8 8.1 10.2 10.3 13.0 解:先画出散点图如下图: 从散点图大致可以判断出x和y之间呈抛物线或指数曲线,由此

采用二次方程式和指数函数进行曲线回归。 (1)二次曲线 SPSS输出结果如下: 从上表可以得到回归方程为: 由x的系数检验P值大于0.05,得到x的系数未通过显著性检验。由x2的系数检验P值小于0.05,得到x2的系数通过了显著性检验。(2)指数曲线

从上表可以得到回归方程为: 由参数检验P值≈0<0.05,得到回归方程的参数都非常显著。 从R2值,σ的估计值和模型检验统计量F值、t值及拟合图综合考虑,指数拟合效果更好一些。

9.3 已知变量x与y的样本数据如表9.15,画出散点图,试用αeβ/x来拟合回归模型,假设: (1)乘性误差项,模型形式为y=αeβ/x eε (2)加性误差项,模型形式为y=αeβ/x+ε。 表9.15 序号x y 序号x y 序号x y 1 4.20 0.086 6 3.20 0.150 11 2.20 0.350 2 4.06 0.090 7 3.00 0.170 12 2.00 0.440 3 3.80 0.100 8 2.80 0.190 13 1.80 0.620 4 3.60 0.120 9 2.60 0.220 14 1.60 0.940 5 3.40 0.130 10 2.40 0.240 15 1.40 1.620 解:散点图: (1)乘性误差项,模型形式为y=αeβ/x eε 线性化:lny=lnα+β/x +ε令y1=lny, a=lnα,x1=1/x .

应用回归分析,第3章课后习题参考答案

第3章 多元线性回归 思考与练习参考答案 3.2 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响? 答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。如果n<=p 对模型的参数估计会带来很严重的影响。因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。 2. 解释变量X 是确定性变量,要求()1rank p n =+

应用回归分析-课后习题参考复习资料

自变量选择与逐步回归 5章第思考与练习参考答案 5.1 自变量选择对回归参数的估计有何影响? 答:回归自变量的选择是建立回归模型得一个极为重要的问题。如果模型中丢掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关性,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使 得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。 5.2自变量选择对回归预测有何影响? 答:当全模型(m元)正确采用选模型(p元)时,我们舍弃了个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差,所以全模型正确而误用选模型有利有弊。当选模型(p元)正确采用全模型(m元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选模型的大,所以回归自变量的选择应少而精。 5.3 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣?

则应使用如果所建模型主要用于预测,答:统计量达到最小的1 / 8 准则来衡量回归方程的优劣。 5.4 试述前进法的思想方法。 答:前进法的基本思想方法是:首先因变量Y对全部的自变量 x12建立m个一元线性回归方程, 并计算F检验值,选择偏回归平方和显著的变量(F值最大且大于临界值)进入回归方程。每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的两变量变量(F值最大且大于临界值)进入回归方程。在确定引入的两个自变量以后,再引入一个变量,建立m-2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的三个变量(F值最大)进入回归方程。不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值F α(11),回归过程结束。 5.5 试述后退法的思想方法。 答:后退法的基本思想是:首先因变量Y对全部的自变量x12建立一个m元线性回归方程, 并计算t检验值和F检验值,选择最不显著(P值最大且大于临界值)的偏回归系数的自变量剔除出回归方程。每一步只剔除一个变量,再建立m-1元线性回归方程,计算t检验值和F检验值,剔除偏回归系数的t检验值最小(P值最大)的自变量,再建立新的回归方程。不断重复这一过

应用回归分析-第8章课后习题参考答案

| 第8章 非线性回归 思考与练习参考答案 在非线性回归线性化时,对因变量作变换应注意什么问题 答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。如: (1)乘性误差项,模型形式为 e y AK L αβε =, (2)加性误差项,模型形式为 y AK L αβε=+。 对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。 一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。 " 为了研究生产率与废料率之间的关系,记录了如表所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。 表 生产率x (单位/周) 1000 2000 3000 3500 4000 · 4500 5000 废品率y (%) , 解:先画出散点图如下图:

从散点图大致可以判断出x和y之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。 (1)二次曲线 SPSS输出结果如下: ]

从上表可以得到回归方程为:72? 5.8430.087 4.4710y x x -=-+? 由x 的系数检验P 值大于,得到x 的系数未通过显著性检验。 由x 2的系数检验P 值小于,得到x 2的系数通过了显著性检验。 (2)指数曲线 — 从上表可以得到回归方程为:0.0002t ? 4.003y e = 由参数检验P 值≈0<,得到回归方程的参数都非常显著。

从R2值,σ的估计值和模型检验统计量F值、t值及拟合图综合考虑,指数拟合效果更好一些。 已知变量x与y的样本数据如表,画出散点图,试用αeβ/x来拟合回归模型,假设: (1)乘性误差项,模型形式为y=αeβ/x eε (2)加性误差项,模型形式为y=αeβ/x+ε。 " 表 y 序号x y序号x y序号` x 16^ 11 27《12

回归分析课后习题

第一章习题 1.1变量间统计关系和函数关系的区别是什么? 1.2回归分析与相关分析的区别和联系是什么? 1.3回归模型中随机误差项的意义是什么? 1.4线性回归模型中的基本假设是什么? 1.5回归变量设置的理论依据是什么?在设置回归变量时应注意哪些问题? 1.6收集、整理数据包括哪些基本内容? 1.7构造回归理论模型的基本依据是什么? 1.8为什么要对回归模型进行检验? 1.9回归模型有哪几个方面的应用? 1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合?

第二章 习题 2.1一元线性回归模型有哪些基本假定? 2.2 考虑过原点的线性回归模型 1,1, ,i i i y x i n βε=+= 误差1, ,n εε仍满足基本假定。求1β的最小二乘估计。 2.3证明(2.27)式, 1 0n i i e ==∑,1 0n i i i x e ==∑。 2.4回归方程01Ey x ββ=+的参数01,ββ的最小二乘估计与极大似然估计在什么条件下等价?给出证明。 2.5 证明0 ?β是0β的无偏估计。 2.6 证明(2.42)式 () ()2 22 02 1,i x Var n x x βσ??=+??-???? ∑成立 2.7 证明平方和分解式SST SSR SSE =+ 2.8 验证三种检验的关系,即验证: (1 )t == (2)2212?1 ?2xx L SSR F t SSE n βσ ===- 2.9 验证(2..63)式: ()()22 1var 1i i xx x x e n L σ??-=--?????? 2.10 用第9题证明()22 1 1??2n i i i y y n σ==--∑是2 σ的无偏估计。 2.11* 验证决定系数2 r 与F 值之间的关系式 2 2 F r F n = +- 以上表达式说明2r 与F 值是等价的,那么我们为什么要分别引入这两个统计量,而不是只使用其中的一个。 2.12* 如果把自变量观测值都乘以2,回归参数的最小二乘估计0?β和1 ?β会发生什么变化?

应用回归分析-课后习题答案-何晓群

第二章 一元线性回归 解答:(1)散点图为: (2)x 与y 之间大致呈线性关系。 (3)设回归方程为01y x ββ∧ ∧ ∧ =+ 1β∧ = 1 2 2 1 7()n i i i n i i x y n x y x n x -- =- =-=-∑∑ 0120731y x ββ-∧- =-=-?=- 17y x ∧ ∴=-+可得回归方程为 (4)22 n i=1 1()n-2i i y y σ∧∧=-∑ 2 n 01i=1 1(())n-2i y x ββ∧∧=-+∑ =222 22 13???+?+???+?+??? ( 10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1 169049363 110/3 = ++++=

6.1σ∧=≈ (5)由于 2 11 (,) xx N L σ ββ ∧ t σ ∧ == 服从自由度为n-2的t分布。因而 /2 |(2)1 P t n α α σ ?? ?? <-= - ?? ?? 也即: 1/211/2 (p t t αα βββ ∧∧ ∧∧ -<< +=1α - 可得 1 95% β∧的置信度为的置信区间为(7-2.3537+2.353即为:(,) 2 2 00 1() (,()) xx x N n L ββσ - ∧ + t ∧∧ == 服从自由度为n-2的t分布。因而 /2 (2)1 P t n α α ∧ ?? ?? ?? <-=- ? ? ?? ?? ?? ?? 即 0/200/2 ()1 pβσββσα ∧∧∧∧ -<<+=- 可得 1 95%7.77,5.77 β∧- 的置信度为的置信区间为() (6)x与y的决定系数 2 21 2 1 () 490/6000.817 () n i i n i i y y r y y ∧- = - = - ==≈ - ∑ ∑

应用回归分析,第7章课后习题参考答案

第7章 岭回归 思考与练习参考答案 7.1 岭回归估计是在什么情况下提出的? 答:当自变量间存在复共线性时,|X’X |≈0,回归系数估计的方差就很大, 估计值就很不稳定,为解决多重共线性,并使回归得到合理的结果,70年代提出了岭回归(Ridge Regression,简记为RR)。 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其 统计思想是对于(X ’X )-1为奇异时,给X’X 加上一个正常数矩阵D, 那么X’X+D 接近奇异的程度就会比X ′X 接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue 。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7.3 选择岭参数k 有哪几种方法? 答:最优k 是依赖于未知参数β和2σ的,几种常见的选择方法是: ○ 1岭迹法:选择0k 的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多; ○ 2方差扩大因子法:11()()()c k X X kI X X X X kI --'''=++,其对角线元()jj c k 是岭估计的方差扩大因子。要让()10jj c k ≤; ○ 3残差平方和:满足()SSE k cSSE <成立的最大的k 值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这 样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k 值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随

相关文档
相关文档 最新文档