文档库 最新最全的文档下载
当前位置:文档库 › 矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结
矩阵的初等变换及应用的总结

矩阵的初等变换及应用

内容摘要:

矩阵是线性代数的重要研究对象。矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。

一矩阵的概念

定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵

二矩阵初等变换的概念

定义:矩阵的初等行变换与初等列变换,统称为初等变换

1.初等行变换

矩阵的下列三种变换称为矩阵的初等行变换:

(1) 交换矩阵的两行(交换两行,记作);

(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作

);

(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,

记为).

1.初等列变换

把上述中“行”变为“列”即得矩阵的初等列变换

3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B

矩阵之间的等价关系具有下列基本性质:

(1) 反身性;

(2) 对称性若,则;

(3) 传递性若,,则.

三矩阵初等变换的应用

1.利用初等变换化矩阵为标准形

定理:任意一个m×n矩阵A,总可以经过初等变换把它化为标准形

2.利用初等变换求逆矩阵

求n阶方阵的逆矩阵:即对n×2n矩阵(A|E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)

即(A|E)经过初等变换得到(E|A^(-1))

这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,

若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

设矩阵可逆,则求解矩阵方程等价于求矩阵

为此,可采用类似初等行变换求矩阵的逆的方法,构造矩阵,对其施以初等行变换将矩阵化为单位矩阵,则上

述初等行变换同时也将其中的单位矩阵化为,即

.

这样就给出了用初等行变换求解矩阵方程的方法.

同理, 求解矩阵方程等价于计算矩阵亦可利

用初等列变换求矩阵. 即

.

3.利用矩阵初等变换求矩阵的秩

矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.

定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)

为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩

利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。

4.行列式的计算

一般格式:经过将行列式等行变换化为上三角形

5.求线性方程组的解

一般格式:

(1)齐次线性方程组AX=0,A是m×n矩阵

1°对系数矩阵A进行初等行变换,将其化为行阶梯矩阵,求出r(A)。

若r(A)=n,则AX=0,只有零解;若r(A)<n,则AX=0有非零解,转入2°

2°对阶梯阵继续施行初等行变换将其化为行最简形矩阵,写出其对应的

线性方程组,以非零行首个非零元对应的k个未知量为基本未知量,其余的n-k个

未知量为自由未知量,将自由未知量移到等式右端得到一般解,在一般解中分别令

自由未知量中一个为1,其余全为0,求得AX=0的基础解系:X1,X2,…,Xn-k

3°n-k个解向量的线性组合:C1X1+C2X2+…+Cn-kXn-k(C1,C2,…,Cn-k为任意常数)就是AX=0

的通解。

(2)非齐次线性方程组AX=B,A是m×n矩阵

1°对增广矩阵(AB)进行初等行变换,将其化为行阶梯矩阵,求出r(A)与r(AB),若r(A)<r(AB),则AX=B无解;若r(A)=r(AB) 则AX=B有解,转入2°

2°对行阶梯阵继续施行初等行变换,将其化为行最简形矩阵,写出其对应的线性方程组,此时若r(A)=r(AB)=n,则AX=B有唯一解,行最简形矩阵所对应的线性方程组就是这唯一解的表达式;若r(A)=r(AB)=k<n,则AX=B有无穷多解,转入3°

3°以非零行的首个非零元对应的k个未知量为基本未知量,其余n-k个未知元为自由未知量,将自由未知量移到等式右端,得到AX=B的一般解,令所有的自由未知量为0,求得AX=B的一个特解X0

4°在AX=B的一般解中去掉常数项,就得到导出组AX=0的一般解,分别令一个自由未知量为1其余自由未知量都为0,求出导出组AX=0的基础解系,X1,X2,…,Xn-k与通解C1X1+C2X2+…+C n-kXn-k

5°AX=B的一个特解加导出组AX=0的通解C1X1+C2X2+…+Cn-kXn-k+X0(C1,…,Cn-k为任意常数) 就是AX=B 的通解。

6.确定向量组的线性相关性

一般格式:设向量组为α1α2……αm,以α1α2……αm 为列构成矩阵A,对A施行

初等行变换,将它化成行阶梯形矩阵,求出其秩r(A),若r(A)=m,

则α1α2……αm线性无关,若r(A)

7.确定一向量能否由另一向量线性表出

一般格式:以向量组α1α2……αm与向量β为列构成矩阵A,然后对A施行初等行变换,化为行最简形矩阵B

8.求向量组的秩与极大无关组

一般格式:设向量组α1α2……αm,以它们为列构成矩阵A

B的非零行的首个元素所在的列向量对应的α1α2......αm中的向量αi1 (i)

构成一个极大无关组,其向量的个数即为向量组α1α2……αm 的秩。

结论

矩阵初等变换在解决线性代数的计算问题中有很多应用,这些计算格式有不少类似之处。但是由于这些计算格式有不同的原理,

所以,它们也有一些明显的区别。

计算格式1既可以用初等行变换也可以用初等列变换,施行这些变换时要注意使行列式保值。

计算格式3既可以用初等行变换也可以用初等列变换,但是我们一般只用初等行变换。

其余计算格式只能使用初等行变换。

矩阵的初等变换及其应用

线性代数 第一次讨论课 1.导语 2.讨论内容目录 3.正文 4.个人总结

导语: 矩阵是研究线性代数方程组和其他相关问题的有力工具,也是线性代数的主要研究啊、对象之一。它的理论和方法在自然科学、工程技术、社会科学等众多领域等都有极其广泛的应用。矩阵作为一些抽象数学的具体表现,在数学研究中占有极其重要的地位。本文从矩阵的概念讨论矩阵的运算及性质,进而讨论用途很广的矩阵的初等变换及其应用。 讨论内容目录 矩阵的初等变换及其应用 1.两个矩阵的等价 2.两个矩阵的乘积 3.将矩阵化为行阶梯型、行最简形、标准型 4.求矩阵的秩 5.求可逆矩阵的逆矩阵 6.求线性方程组的解 7.判断向量组的线性相关性 8.求向量组的秩与极大无关组 9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值) 10.二次型化为标准形 正文 一、矩阵的等价 1.定义:若矩阵A经过一系列初等行变换化为B矩阵,则称A

与B 行等价;若矩阵A 经过一系列初等列变换化为B 矩阵,则称A 与B 列等价;若矩阵A 经过一系列初等变换化为B 矩阵,则称A 与B 等价(相抵)。 2.矩阵的等价变换形式主要有如下几种: 1)矩阵的i 行(列)与j 行(列)的位置互换; 2)用一个非零常数k 乘矩阵的第i 行(列)的每个元; 3)将矩阵的第j 行(列)的所有元得k 倍加到第i 行(列)的对应元上去; 即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。 3. 矩阵等价具有下列性质 (1)反身性 任一矩阵A 与自身等价; (2)对称性 若A 与B 等价,则B 与A 等价; (3)传递性 若A 与B 等价,B 与C 等价,则A 与C 等价; 注意:矩阵作初等变换是矩阵的一种运算,得到的是一个新矩阵,这个矩阵一般与原矩阵不会相等。 下面举例说明矩阵等价及等价变换: 13640824100412204128--?? ?- ? ?-- ?-?? 13 r r +???→

矩阵的初等变换在线性代数中的应用[文献综述]

毕业论文文献综述 信息与计算科学 矩阵的初等变换在线性代数中的应用 一、前言部分 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 矩阵的初等变换起源于解线性方程组,是线性代数的一个基本概念,也是研究矩阵的一个非常重要的工具。矩阵作为线性代数中最基本的一个概念,在数学的各方面的有重要的意义。最基本的应用当然是在线性方程方面。但是,矩阵的意义其实可以说就是线性代数的意义,因为线性代数的每一个概念都与矩阵有着密切关系。而线性代数是整个高等数学的基础之一,可以应用到整个数学的方方面面,而其本身在物理学、生物学、经济学、密码学等方面发挥着重要作用。[1] 矩阵的初等变换在处理线性代数的有关问题时具有一定的独特作用。文章就详细地总结了矩阵的初等换在求逆矩阵、求矩阵的秩、求过渡矩阵、求向量组的秩及向量组的极大线性无关组、解方程组、化二次型为标准型以及求标准正交基等问题中的应用。本文就讨论应用矩阵初等变换的一些性质解决有限维向量空间中这些问题。[2] 二、主题部分 2.1矩阵和线性代数的概念介绍 2.1.1 线性代数的概念介绍

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

矩阵的初等变换及应用的总结

矩阵的初等变换及应用 内容摘要: 矩阵是线性代数的重要研究对象。矩阵初等变换是线性代 数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。 一矩阵的概念 定义:由于m x n 个数aij (i=1 , 2,….,m; j=1 , 2,…., n)排成的m行n列的数表,称为m行n列,简称m x n矩阵 二矩阵初等变换的概念 定义:矩阵的初等行变换与初等列变换,统称为初等变换 1. 初等行变换 矩阵的下列三种变换称为矩阵的初等行变换: ⑴交换矩阵的两行佼换一两行,记作.); (2) 以一个非零的数 '乘矩阵的某一行(第.行乘数卜,记作…); (3) 把矩阵的某一行的,倍加到另一行(第一行乘 '加到.行, 记为). 1.初等列变换 把上述中“行”变为“列”即得矩阵的初等列变换 3,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B 矩阵之间的等价关系具有下列基本性质:

⑴反身性; (2) 对称性若小丄,,则; (3) 传递性若丄丄,/,则」. 三矩阵初等变换的应用 1.利用初等变换化矩阵为标准形 定理:任意一个m x n矩阵A,总可以经过初等变换把它化为标准形 ■ 4■ ■ 1 F行二0 ■ ■ < 泓1 2. 利用初等变换求逆矩阵 求n阶方阵的逆矩阵:即对n x 2n矩阵(A| E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A A(-1) 即(A|E)经过初等变换得到(E|AA(-1)) 这种计算格式也可以用来判断A是否可逆,当我们将A化 为行阶梯形矩阵时, 若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

分块矩阵的初等变换及其应用[含论文、综述、开题-可编辑]

设计 (20 届)分块矩阵的初等变换及其应用 所在学院 专业班级信息与计算科学 学生姓名学号 指导教师职称 完成日期年月

摘要:本文介绍了矩阵,分块矩阵的一些基本概念,同时也介绍了分块矩阵的初等变换,分块矩阵的初等变换在一些问题中的相关应用,如利用分块矩阵的初等变换计算矩阵的行列式,求矩阵的逆,在秩问题中的应用,在相似问题中的应用以及在其他方面的应用,用22 分块矩阵的初等变换证明实对称矩阵的正定性。并根据各种的应用给出了大量的例题,充分体现了分块矩阵的初等变换在代数学中所具有一定的优越性。 关键词:分块矩阵;初等变换;行列式;矩阵的逆;应用

Elementary block matrix transform and its application Abstract:This article introduces some basic concepts of the matrix and partitioned matrix,also introduces the elementary transformation of partitioned matrix and the related application in some problems. For example, using the elementary transformation of partitioned matrix to compute matrix's determinant or get the inverse of a matrix. Also it introduces the application of partitioned matrix in some rank problems, similar problems and other problems, using the 22 elementary transformation of partitioned matrix to prove the definiteness of symmetric matrix. According to different kinds of application, it lists a lot of examples, which fully indicate the superiority of partitioned matrix's elementary transformation in algebra. Key words:partitioned matrices; elementary transformation; determinant; the inverse of a matrix; Application

矩阵的初等变换及应用的总结

… 矩阵的初等变换及应用 内容摘要: 矩阵是线性代数的重要研究对象。矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。 一矩阵的概念 定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵 二矩阵初等变换的概念 定义:矩阵的初等行变换与初等列变换,统称为初等变换 ! 1.初等行变换 矩阵的下列三种变换称为矩阵的初等行变换: (1) 交换矩阵的两行(交换两行,记作); (2) 以一个非零的数乘矩阵的某一行(第行乘数,记作 ); (3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为). 1.初等列变换 把上述中“行”变为“列”即得矩阵的初等列变换 3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B —

矩阵之间的等价关系具有下列基本性质: (1) 反身性; (2) 对称性若,则; (3) 传递性若,,则. 三矩阵初等变换的应用 1.\ 2.利用初等变换化矩阵为标准形 定理:任意一个m× n矩阵A,总可以经过初等变换把它化为标准形 3.利用初等变换求逆矩阵 求n阶方阵的逆矩阵:即对n×2n矩阵(A|E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1) 即(A|E)经过初等变换得到(E|A^(-1)) :

这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时, 若其中的非零行的个数等于n时,则A可逆,否则A不可逆。 设矩阵可逆,则求解矩阵方程等价于求矩阵 , 为此,可采用类似初等行变换求矩阵的逆的方法,构造矩 阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即 . 这样就给出了用初等行变换求解矩阵方程的方法. 》 同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即 . 3.利用矩阵初等变换求矩阵的秩 矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.

矩阵初等变换的一些性质及应用

矩阵初等变换的一些性质及应用 摘要:矩阵的初等变换是线性代数中应用十分广泛的重要工具。文章证 明了矩阵初等变换的两个性质, 以此为基础, 归纳说明了矩阵的初等变 换在线性代数课程中的应用, 并给出了一些实例。 关键词:矩阵初等变换性质应用 Abstract: The elementary alternate of matrix is an important tool broadly used in linear algebra. The paper discusses its properties and application. Key w o rd: matrix, elementary alternate, properties, application 0 引言 矩阵是数域P上的m行n列矩阵,矩阵的行(列)初等变换是指对矩阵施行如下的变换: (1)交换矩阵的两行(列),对调i,j两行,记作←(记作←); (2)以非零数 k 乘矩阵某一行( 列) 的所有元素,第i行(列)乘k,记作×k(记作×k); (3)把某一行(列)所有元素的 k 倍加到另一行(列)对应元素上去,如第j 行(列)的k 倍加到第i行(列)上, 记作+(记作+)。 矩阵的初等变换在高等代数课程中有着十分广泛的应用, 也是本课程的基本工具之一。矩阵的初等行变换和初等列变换具有同等的地位和作用, 只是在使用过程中有所区别。本文首先证明初等行变换和初等列变换具有同等的地位和作用,再以具体实例说明矩阵初等变换在求极大无关组和秩的应用。 一、初等变换的性质证明 定理1 第一种初等变换可以由第二、三种初等变换实施得到。 证明: 设是为数域P上的m×n 矩阵(i= 1,2,…,m; j=1,2,…,n) 对矩阵A 施行第二、三种初等行变换:

矩阵的初等变换及其应用

线性代数 第一次讨论课 1;要求 2;正文 3;个人总结 丁俊成00101209 第一部分:要求 线性代数课程的主要任务是夯实工程问题的数学基础,培养学生的逻辑思维、定量分析、数学建模、科学计算的数学能力,提高数学素养。 讨论课是以学生为主导,其内容包括理论内容的专题讨论、探究性应用案例的数学模型的建立。通过对理论内容的深入探讨,加深学生对知识的深刻理解与掌握,培养学生自主学习能力、逻辑思维能力、对知识的归纳梳理与综合能力,提高学生分析问题与数学建模的能力。 第一次讨论课内容 矩阵初等变换及其应用 请卓越班的同学们按照下面的提纲(内容包括概念、求解方法、举例、应用案例等)准备。要求做成word或PPT文档。同学们自荐或推荐上讲台讲课。希望同学们踊跃参与。 第一次讨论课的时间初步定在5月中旬。

1.两个矩阵的等价 2.两个矩阵的乘积 3.将矩阵化为行阶梯型、行最简形、标准型 4.求矩阵的秩 5.求可逆矩阵的逆矩阵 6.求线性方程组的解 7.判断向量组的线性相关性 8.求向量组的秩与极大无关组 9.求矩阵的对角化矩阵(采用行列初等变换,对角线元素为特征值) 第二部分:正文 矩阵的初等变换及其应用 矩阵是线性代数最基本也是最重要的概念之一,几乎线性代数所有的概念或者其使用里面都可以见到矩阵的身影,作为矩阵核心,矩阵的初等变换及其应用是及其重要的,本文将对矩阵初等变换及其应用做简单讨论。 一.两个矩阵的等价 矩阵等价的定义为: 若矩阵A经过一系列初等行变换化为矩阵B,则称A与B行等价。若矩阵A经过一系列初等列变换化为矩阵B,则称A与B列等价。若矩阵A经过一系列初等变换化为矩阵B,则称A与B等价(相抵)。 根据性质,矩阵的等价变换形式主要有如下几种: 1)矩阵的i行(列)与j行(列)的位置互换; 2)用一个非零常数k乘矩阵的第i行(列)的每个元; 3)将矩阵的第j行(列)的所有元得k倍加到第i行(列)的对应元上去; 即如果两个矩阵可通过有限次上述变换中的一个或几个的组合变为一样的,两个矩阵等价。矩阵等价具有下列性质 (1)反身性任一矩阵A与自身等价;

开题报告-矩阵初等变换在线性代数中的应用

毕业论文开题报告 信息与计算科学 矩阵初等变换在线性代数中的应用 一、选题的背景、意义 1、选题的背景 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意 义 , 并且数学上用它能立刻写出物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造 性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 2、选题的意义 矩阵的初等变换起源于解线性方程组,是线性代数的一个基本概念,也是研究矩阵的一个非常重要的工具。矩阵作为线性代数中最基本的一个概念,在数学的各方面的有重要的意义。最基本的应用当然是在线性方程方面。但是,矩阵的意义其实可以说就是线性代数的意义,因为线性代数的每一个概念都与矩阵有着密切关系。而线性代数是整个高等数学的基础之一,可以应用到整个数学的方方面面,而其本身在物理学、生物学、经济学、密码学等方面发挥着重要作用。[1] 矩阵的初等变换在处理线性代数的有关问题时具有一定的独特作用。文章就详细地总结了矩阵的初等换在求逆矩阵、求矩阵的秩、求过渡矩阵、求向量组的秩及向量组的极大线性无关组、解方程组、化二次型为标准型以及求标准正交基等问题中的应用。本文就讨论应用矩阵初等变换的一些性质解决有限维向量空间中这些问题。[2] 二、研究的基本内容与拟解决的主要问题

线性代数矩阵的性质及应用举例

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

矩阵初等变换的性质及其应用

摘要 本文探讨矩阵初等变换的性质及其在代数中的若干应用,主要从矩阵的逆、矩阵的秩、求解线性方程组及矩阵方程、求一元多项式的最大公因式、求解指派问题等若干方面进行阐述。 关键词:矩阵的初等变换;矩阵的秩;可逆矩阵;线性方程组;最大公因式

Abstract This paper is mainly to discuss the application of the elementary transfor mation of matrix in algebra, using matrix elementary transformation to solve th e matrix inverse, matrix rank, solving linear equations and matrix equations, on e yuan polynomial greatest common divisor, solving assignment problem of the se aspects of the application. Keywords:Elementary transformation of matrix;Matrix rank;Invertible matrix; System of linear equations;Greatest common factor

目录 1 引言 ............................ 错误!未定义书签。 2 矩阵的初等变换及其性质 (1) 2.1 矩阵初等变换的定义 (1) 2.2 矩阵初等变换相关性质 (2) 3 矩阵初等变换的若干应用 (2) 3.1 利用矩阵初等变换求矩阵的逆 (1) 3.2 利用矩阵的初等变换来求矩阵的秩 (5) 3.3 利用矩阵初等变换求解线性方程组及矩阵方程 (7) 3.4 利用矩阵的初等变换求一元多项式最大公因式 (11) 3.5 利用矩阵初等变换解决指派问题 (13) 参考文献 (16)

矩阵初等变换及其应用毕业论文

矩阵初等变换及其应用毕业论文 矩阵初等变换及其应用毕业论文 摘 要:初等变换是高等代数和线性代数学习过程中非常重要的,使用非常广泛的一种工具。本文列举了矩阵初等变换的几种应用,包括求矩阵的秩、判断矩阵是否可逆及求逆矩阵、判断线性方程组解的状况、求解线性方程组的一般解及基础解系、证向量的线性相关性及求向量的极大无关组、求向量空间两个基的过渡矩阵、化二次型为标准形。并用具体例子说明矩阵初等变换在以上几种应用中是如何运用的。 关键词:矩阵 初等变换 初等矩阵 在代数的学习过程中,我发现矩阵的初等变换有许多应用,几乎贯穿着始终。本文将对矩阵的初等变换进行介绍并以具体例子说明矩阵初等变换的七种应用。虽然这些计算格式有不少类似之处,但是也指出由于这些计算格式有不同的原理,所以它们的应用也有一些明显的区别。 定义1:矩阵的行(列)初等变换是指对一个矩阵施行的下列变换: (1)交换矩阵的两行(列)(交换第i ,j 两行(列),记作()ij ij r c ); (2)用一个不等于零的数乘矩阵的某一行(列)即用一个不等于零的数乘矩阵的某一行(列)的每一个元素(用数k 乘以第i 行(列),记作()(())i i r k c k ; (3)用某一个数乘矩阵的某一行(列)后加到另一行(列),即用某一数乘矩阵的某一行(列)的每一个元素再加到另一行(列)的对应元素上(第i 行(列)k 倍加到第j 行(列),记作()(())ij ij r k c k 。 初等行、列变换统称为初等变换。 定义2:对单位矩阵I 仅施以一次初等变换后得到的矩阵称为相应的初等矩阵,分别记为第1、2、3类行(列)初等矩阵为()ij ij R C ,()(())i i R k C k ,()(())ij ij R k C k ,有 ij R =ij C =1011 1?? ? ? ? ? ? ? ? ? ?? ?

矩阵的初等变换及应用

目录 摘要 (1) 1 矩阵的初等变换 (2) 1.1矩阵的初等变换 (2) 1.2阶梯矩阵与最简化阶梯矩阵 (3) 1.3初等矩阵与初等变换关系 (4) 2 矩阵初等变换的应用 (5) 2.1齐次线性方程组的解空间 (5) 2.2求解线性方程组 (6) 2.3求可逆矩阵 (8) 2.4求极大线性无关组 (9) 2.5对称矩阵A的对角化 (10) 参考文献 (13) 致谢 (13)

矩阵的初等变换及应用 【摘要】本文主要讲矩阵的初等变换与初等变换的广泛应用,初等变换包括行变换与列变换,主要以行变换为例,通过行变换将一个矩阵化成与之等价的简化阶梯矩阵用于求其次线性方程组的解空间,解方程组,判断矩阵是否可逆,若可逆求逆矩阵以及用初等变换法在n R中求极大线性无关组和对称矩阵A的对角化等等。 【关键词】矩阵初等变换应用 【ABSTRACT】this paper about the elementary transformation matrix with primary transpositions is widely, elementary transformation and transform matrix included, mainly transformation of line as an example, through the transformation of line into A matrix and the equivalent for the next step matrix simplify the solution of linear equations, the solution of equations, the space is reversible, if the judgement matrix inverse matrix and reversible elemtntary transformation in the maximal linear irrelevant for bisymmetric matrices and A group of diagonalization etc. 【KEY-WORDS】matrix ; elementary ; transformation

矩阵初等变换的应用

摘要 矩阵是线性代数中的重要内容,也是高等数学研究问题的工具。在线性代数及其许多的领域中都能看到矩阵的身影,它能把抽象的问题用矩阵表示出来,通过对矩阵进行计算得出结果。本文首先介绍了矩阵的化简和分块矩阵的初等变换以及利用矩阵初等变换求逆矩阵、伴随矩阵、矩阵的秩和特征向量,其次阐述了矩阵初等变换在解线性方程组、解矩阵方程、判断向量组的线性相关性、求极大线性无关组问题中的应用,最后对矩阵在数论中的应用进行了一些说明。作为矩阵的基础及核心,矩阵的初等变换及应用是非常重要的,它能够把各种复杂的矩阵转化成我们需要的矩阵形式,从而使计算变得更加的简便。 关键词:矩阵,初等变换,逆矩阵,秩

The application of elementary transformation of matrix ABSTRACT .Matrix is an important content in linear algebra, is a problem of higher mathematics research tools. In linear algebra and matrix can be seen in many areas, it can turn abstract problems expressed in matrix, based on the matrix to calculate the results. This article first introduces the elementary transformation of matrix of reduction and partitioned matrix and the matrix elementary transformation and adjoint matrix inverse matrix, rank of matrix and characteristic vector, then expounds the matrix elementary transformation in solving linear equations, the solution of matrix equation, judge linear correlation, as well as the application of maximum linearly independent group, finally the application of matrix in number theory with some instructions. As the foundation of the matrix and core, the elementary transformation of matrix and its application is very important, it is able to convert all kinds of complex matrix to matrix form, we need to make the calculation more simple. Key words: Matrix, Elementary transformation, inverse matrix, rank

#矩阵的初等变换在向量空间中的应用

矩阵的初等变换在向量空间中的使用 摘 要:向量贯穿了整个高等代数的学习。本文主要谈论了向量空间的一些核心问题,辅以不同的解法,通过对比,显示出矩阵的初等变换在向量空间中的重要作用,体现出用矩阵解向量空间中问题的优越性。 关键词:矩阵的初等变换;线性相关;线性无关 Abstract :The vector throughout the learning of the higher algebra. This article mainly talking about some of the core problems of the vector space, combined with a different solution, by contrast, shows the important role of elementary transformation matrices in the vector space, reflecting with matrix solution for the vector space superiority. Key words :Elementary transformation matrix; linear correlation; linearly independent 1 相关定理及问题的引出 设12,,...,n n p αααβ∈ 定义1.11?? ?? n 维向量:数域p 中n 个数组成的有序数组12(,,...)n a a a 定义1.21?? ?? n 维向量空间:以数域p 中的数作为分量的n 维向量的全体,同时考虑到定义在它们上面的加法和数量乘法,称为数域p 上的n 维向量空间。 n 维向量空间表面上看是一个非常陌生的概念,其实质只不过是由很多个n 维向量作为小单元,并且这些向量对于定义在它们上面的加法和数量乘法满足封闭性,即若12,n P αα?∈,12n P αα+∈,,n k P k P α?∈∈具有这样性质的向量构成的向量组。 故对于向量空间有关问题的讨论,应该从向量组出发。之所以向量空间让我们感觉变化多端,关键在于这些向量对于定义在它们上面的加法和数量乘法满足封闭性。 向量空间的理论的核心问题是向量间的线性关系,其主要内容有向量的线性表示、向量组的线性相关性、向量组的极大无关组、两个向量组的等价、向量空间的基和维数、一个基到另一个基的过渡矩阵和线性变换等。在向量空间中主要

矩阵初等变换的应用

目录 1. 引言 (2) 2. 预备知识 (3) 3. 矩阵初等变换在整数理论中的应用 (6) 3.1 求两个整数的最大公因数和最小公倍数 (6) 3.2 求n个整数的最大公因数 (9) 4. 矩阵初等变换在多项式理论中的应用 (11) 4.1 求两个一元多项式的最大公因式和最小公倍式 (11) 4.2 求n个一元多项式的最大公因式 (15) 4.3 求解两个二元多项式的最大公因式 (20) 4.4 求n个二元多项式的最大公因式 (22) 致谢 (23) 参考文献 (24) 附件: 课题任务书 (25) 外文翻译 (28) 文献综述 (38) 开题报告 (43)

矩阵初等变换的若干应用 学生: 指导老师: 教学单位:数学与统计学院 摘要:本文研究了如何利用矩阵的初等变换来解决初等数论和多项式理论方面的相关问题,解决了初等数论中求解两个整数的最大公因数、最小公倍数和多个整数的最大公因数等问题;同时也解决了多项式理论中求两个一元多项式的最大公因式、最小公倍式以及多个一元多项式的最大公因式等问题,在此基础上进一步解决了二元多项式的最大公因式的求法问题。特别地,在解决多项式理论中两个甚至多个多项式的最大公因式的相关问题时,为了简化求多项式最大公因式的运算,我们将所求最大公因式的那两个或多个多项式的系数与两行或多行矩阵表示式对应起来,起到了很明显的简化效果,具有很强的实用性与价值性。Abstract: In this paper, we researched how to use the elementary transformation matrix to solve problems related to elementary number theory and the theory of polynomials, and not only provided a method to find the greatest common divisor of two integers and the least common multiple and greatest common factor of more integers and other issues, but also gave a way to find the greatest common divisor and least common multiple and more than polynomial in one indeterminate. Furthermore, we solved the problem of finding the greatest common divisor of binary polynomial. Especially, in order to solve the polynomial problems of finding the greatest common divisor of two or more indeterminate, we can simplify the process of finding the greatest common divisor polynomial arithmetic, and build a relation between the coefficient of two or multi-polynomial and the matrix with two or more rows, it is efficient and valuable. 关键词:矩阵;初等变换;最大公因式;最小公倍式 Key words: matrix;elementary transformation ;The greatest common divisor ;The least common multiple

矩阵的初等变换及其应用(Elementary transformation of matrix and its application)

矩阵的初等变换及其应用(Elementary transformation of matrix and its application) Elementary transformation of matrix and its application Wang Dan Elementary transformation of matrix and its application Abstract Elementary transformation of matrix is an important method of studying matrix, and it is the core of application in linear algebra. This paper introduces some concepts and properties associated with the matrix, on the basis of matrix rank, the basis for judgment matrix is invertible, after inverse matrix equations, eigenvalues and eigenvectors, two types of standard form, and illustrate the application of elementary transformation of matrix in the above is how to play the role of. Keywords: matrix, elementary transformation, application The, elementary, transformation, of, matrix, and, its, applications Abstract Elementary transformation matrix is an important means of Matrix is the core linear algebra applications. This article briefly describes some of the concepts and properties

一 矩阵初等变换及其应用

一矩阵初等变换及其应用 1.两个矩阵的等价 定义:若矩阵A经过一系列初等行变换化为矩阵B,则称A与B行等价;若经过一系列初等列变换,则称为A与B列等价。若矩阵A经过一系列初等变换化为矩阵B, 则称A与B等价(相抵),记为A->B. 定理:任意m*n矩阵A总可以经初等行变换化成行阶梯型矩阵及行最简型矩阵。 应用:求一个矩阵的秩;求线性无关组;判断矩阵是否可逆。 2.两个矩阵的乘积 条件:例如,A*B,那么A的列数必须等于B的行数。C(m*p)=A(m*n)B(n*p), 注意事项:A*B一般不等于B*A,即矩阵乘法不具有交换律。但n阶单位矩阵E和任何n阶方阵乘法可交换。 3.将矩阵化为行阶梯型、行最简型、标准型 化为行阶梯型:反复对矩阵进行三种初等行变换,直到矩阵满足行阶梯型矩阵的形式。 化为行最简型:在矩阵已经化为行阶梯型的基础上将首非零元化为“1” 4.求矩阵的秩 将矩阵化为行阶梯型矩阵,其秩为非零行行数。 5求可逆矩阵的逆矩阵 如果矩阵A可逆,求其逆矩阵,可构造矩阵(A|E),用处等行变换将其化为(E|B)的形式,其中B就是A的逆矩阵。 6.求线性方程组的解 对于n元线性方程组Ax=b,先判断R(A)是否等于R(B),B为增广矩阵。 有解的充要条件是R(A)=R(B);有唯一解的充要条件是R(A)=R(B)=n; 有无穷多个解的充要条件是R(A)=R(B)n时,m个n维向量组成的向量组a1,a2,…..am,一定线性相关。 含有零向量的向量组一定线性相关。 8.求向量组的极大无关组与秩 设向量组T的一个部分组a1,a2,….,ar,满足 1.a1,a2,…..,ar线性无关。 2.向量组T中每一个向量都可以由a1,a2,……ar线性表示。 则称a1,a2,…..ar是向量组T的一个极大线性无关组,其中所含向量的个数称为该向量组的秩。 求法: 1.将a1,a2,…..ar,按列排成矩阵A。 2.对A进行有限次初等行变换化为阶梯型矩阵J。 3.该向量组的极大线性无关组是J的各个首非零元所在列对应的向量组成。

相关文档
相关文档 最新文档