文档库 最新最全的文档下载
当前位置:文档库 › 同角三角函数的基本关系式的应用

同角三角函数的基本关系式的应用

同角三角函数的基本关系式的应用
同角三角函数的基本关系式的应用

同角三角函数的基本关系式题型总结(人教版)

同角三角函数的基本关系式由原来的8个基本关系式减少为2个基本关系式,即平方关系2

2

sin cos 1αα+=,与商数关系sin tan cos α

αα

=,大大减轻了学生学习数学的负担,这些基本题型就需要我们熟练掌握。

题型一 已知一个角的某一个三角函数值,求此角的其他三角函数值

例1 (1)已知12

sin 13

α=,并且α是第二象限角,求ααtan ,cos . (2)已知4

cos 5

α=-,求sin ,tan αα. (3)已知)2,(,3

4

tan ππαα∈=

,求ααcos ,sin 解:(1)∵22

sin cos 1αα+=, ∴2

2

22125

cos 1sin 1(

)()1313

αα=-=-=, 又∵α是第二象限角,∴cos 0α<,即有5cos 13α=-,从而sin 12

tan cos 5

ααα==- .

(2)∵22

sin cos 1αα+=, ∴222243sin 1cos 1()()55

αα=-=--=,

又∵4

cos 05

α=-<, ∴α在第二或三象限角。

当α在第二象限时,即有sin 0α>,从而3sin 5α=,sin 3

tan cos 4ααα=

=-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3

tan cos 4

ααα=

=. 总结:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。

(3)解法一:∵)2,(,034tan ππαα∈>=

∴)2

3,(ππα∈ αααcos sin tan = ,∴

34cos sin =αα,又∵22sin cos 1αα+=且)23,(π

πα∈ ∴5

3

cos ,54sin -=-=αα

解法二:∵)2,(,03

4

tan ππαα∈>=, ∴α为第三象限角。

∴在α角终边上取点P (-3,-4),则r=5,有三角函数的定义得

5

3cos ,54sin -=-=αα

小结:已知αtan 求ααcos ,sin 时,可以利用基本关系式构造方程求解,也可以直接利用三角函数的定义求解,但需要注意的是角的终边所在的位置,合理选择正负号及点的坐标。

题型二 化简三角函数式

例2 化简(1)21sin 440- . (2)12sin 40cos40-

(3))2

0(2cos 2sin

212

cos

2

sin

21π

ααα

α

α

<<++- 解:(1)原式221sin (36080)1sin 80=-+=-

2cos 80cos80== .

解:(2)原式22sin 40cos 402sin 40cos40=+- 2(sin 40cos 40)|cos 40sin 40|cos 40sin 40=

-=-=-

解:(3)原式=2

cos

2

sin

22

cos 2

sin 2

2

α

α

α

α

-++2

cos

2

sin

22

cos 2

sin

2

2

α

α

α

α

++

=|2

cos

2

sin

α

-+|2

cos

2

sin

α

+

)2,0(πα∈ ,)4,0(2πα∈, 2

cos 2sin α

α<

∴02

cos

2

sin

<-α

α

,02

cos

2

sin

>+α

α

原式=2

cos

小结:1.化简后的简单三角函数式应尽量满足以下几点:

(1)所含三角函数的种类最少;

(2)能求值(指准确值)尽量求值; (3)不含特殊角的三角函数值。

2. 化简带根号的三角函数式,需把根号下的三角函数式化为完全平方式。

题型三 ααααc o s s i n ,c o s s i n

±的关系 例3 已知81cos sin =αα,)2,4(π

πα∈。求(1)ααcos sin +;(2)ααcos sin -;(3)αtan ;(4)αα44cos sin +;(5)αα4

4sin cos -

解:∵)2

,4(

π

πα∈ 0c o s ,0s i n ,c o s s i n >>>αααα

∴(1)25

cos sin 21cos sin =+=+αααα;

(2)2

3

cos sin 21cos sin =-=-αααα

由(1)(2)解得435sin +=α,4

3

5cos -=α

∴(3)154tan +=α

(4)32

31cos sin 2)cos (sin cos sin 2

2

2

2

2

4

4

=

-+=+αααααα (5)αα44sin cos -=αααααα2

22222sin cos )sin )(cos sin (cos -=+-

=4

15)43(25)sin )(cos sin (cos -=-=

+-αααα

例4 已知13

sin cos (0)2

x x x π-+=<<,求sin ,cos x x . 解:由13

sin cos (0)2

x x x π-+=<<等式两边平方:

222

13sin cos 2sin cos ()2x x x x -++=.

∴3sin cos 4x x =-(*),即13sin cos 23

sin cos 4x x x x ?-+=???

?=-??,

sin ,cos x x 可看作方程2133024z z ---=的两个根,解得1213

,22

z z ==-

. 又∵0x π<<,∴sin 0x >.又由(*)式知cos 0x <

因此,13

sin ,cos 22

x x ==-.

小结:由平方关系22

sin cos 1αα+=延伸出来的另一组关系式ααααcos sin 21)cos (sin 2±=±的应用,知一求其二,可列方程(组)求解。

题型四 齐次化切

例5已知3tan =α,(1)求

α

αα

αcos sin cos sin -+ (2)1cos sin 3sin 2+-ααα

解:(1)原式=

1

tan 1

tan -+αα=2

(2)原式=1

1

cos sin 3sin 2+-ααα

αααααα22222cos sin cos sin cos sin 3sin +++-

=1

tan 1tan 3tan 222++-ααα=1

若三角函数式是关于ααcos ,sin 的齐次式(例如n 次式)时,分子、分母同除以一个

不为零的αn

cos ,得到一个只含tan α的较简单的三角函数式。

题型五 挖掘题目中的隐含条件

例6 已知53sin +-=

m m θ,5

24cos +-=m m

θ,求θtan 解:∵22

sin cos 1αα+= ∴2)53(

+-m m +2)5

24(+-m m =1解得0=m 或8=m θtan =43-或12

5

-

例7 已知角)2,0(πθ∈,关于x 的方程0)13(22=+--m x x 的两根为θθcos ,sin 。

(1)求m 的值;(2)求方程的两根及此时θ的值

解:由已知得???

???

?=-=

+2

cos sin 21

3cos sin m θθθθ ∴1)213(

cos sin 2)cos (sin 22

=--=-+m θθθθ ∴2

3

-

=m 由(1)得???????-==21cos 23sin θθ或???

???

?=-=23cos 21sin θθ

又∵πθ20<< ∴32πθ=或6

11π

θ=

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

1.2.2同角的三角函数的基本关系 教案

1. 2.2同角的三角函数的基本关系 一、教学目标: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 二、教学重、难点 重点:公式1cos sin 2 2=+αα及 αα α tan cos sin =的推导及运用: (1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具 利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 2 2 =+αα及 αα α tan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从 圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由2 2 1MP OM +=, 因此2 2 1x y +=,即22 sin cos 1αα+=. 根据三角函数的定义,当()2a k k Z π π≠+ ∈时,有 sin tan cos α αα =. 这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切. 【例题讲评】 例1化简: 440sin 12- 解:原式 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简

同角三角函数关系

1.2.2同角三角函数关系 教学目标: 1、掌握同角三角函数关系式; 2、能利用同角三角函数的基本关系进行简单的求值、化简和证明。 教学重点: 公式αα αααtan cos sin ,1cos sin 22==+的推导及其应用 教学难点: 由一个三角函数值求其它三角函数;选择适当的推理途径证明恒等式 教学过程: 活动一 ①由特殊角引入平方关系、商数关系; ②同角三角函数的基本关系: ▼平方关系:1cos sin 22=+αα ▼商数关系:)2 (,cos sin tan ππαααα+≠=k ③用定义证明上述二个公式。 活动二:能利用同角三角函数的基本关系进行简单的求值、化简和证明。 问题一:利用同角三角函数的关系求某个角的三角函数值。 例1:已知54sin = α,且α是第二象限角,求ααtan ,cos 的值。 例2:已知,5 12tan = α求ααcos ,sin 的值。

例3:已知,2tan =α求(1) ααααcos 9sin 4cos 3sin 2-- (2)αα22cos 3sin 2- 例4:已知2cos sin =+αα, 求(1)ααcos sin ,(2)αα22cos sin -。 问题二:利用同角三角函数的关系进行简单的化简。 例5、化简(1),1sin 1tan 2-α α其中α是第二象限角。 (2),cos 1cos 1cos 1cos 1α ααα-+++-其中α是第四象限角。 注:化简实际上也是一种恒等变形,通常要求化简的结果中,涉及的三角函数名称较少, 表达形式比较简单,特殊角的三角函数应求出它们的值 问题三:利用同角三角函数的关系进行简单的证明。 例6:求证: α αααsin cos 1cos 1sin -=+

同角三角函数与诱导公式

同角三角函数基本关系 1,平方关系:sin 2α+cos 2α=1; 2,商数关系:tan α=α αcos sin 3,同角三角函数的关系式的基本用途: 根据一个角的某一个三角函数值,求出该角的其他三角函数值;化简同角三角函数式;证明同角的三角恒等式. 题型一,同角间的计算 利用基本关系计算,开方时注意正负 1,若sin α=45 ,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2,化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3,若cos α=-817 ,则sin α=________,tan α=________ 4,若α是第四象限的角,tan α=-512 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 5,若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 6,计算1-2sin40°·cos40°sin40°-1-sin 240° =________。 7,已知8 1cos sin =?αα,则ααsin cos -的值等于( ) A .±34 B .±23 C .23 D .-2 3

8,已知 2cos sin cos sin =-+θθθθ,求θθcos sin ?的值。 9,已知sin α·cos α= 81,且24παπ<<,则cos α-sin α的值是多少? 10,已知sin θ +cos θ=51,θ∈(0,π),求值: (1)tan θ; (2)sin θ-cos θ;(3)sin 3θ+cos 3θ。 11,求证: ()x x x x x x x x cos sin 1sin cos 2cos 1sin sin 1cos ++-=+-+。

三角函数的定义与同角三角函数关系

三角函数的定义与同角三角函数关系 一.知识内容: 1.在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. 2.三角函数定义: 在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于 点P (x ,y ),那么: (1)y 叫做α的正弦,记作sin_α,即sin α=y ;(2)x 叫做α的余弦,记作cos_α,即cos α=x ; (3)y x 叫做α的正切,记作tan_α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三 角函数. 思考:使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合, 在终边上任取一点P ,PM ⊥x 轴于M ,设P (x ,y ),|OP |=r .问角α的正弦、余弦、正切分别等于什么? 4.(1)三角函数的定义域,值域分别是: (2)正弦、余弦、正切函数值在各象限的符号: 5.由定义观察同角三角函数之间的关系: 二.知识应用: 例1.利用定义求下列角的三角函数值:(1) 32π (2)67π (3)3 10π- 练:(1)若750°角的终边上有一点(4,a ),则a =________. (2)求下列各式的值.①cos 25π3+tan(-15π4 );②sin 810°+tan 765°-cos 360°.

例2.已知θ终边上一点P(x,3)(x≠0),且cos θ= 10 10x,求sin θ,tan θ. 练1已知角α的终边在直线y=-3x上,求10sin α+ 3 cos α的值. 例3.(1)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5. (2)若α是第二象限角,则点P(sin α,cos α)在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 练2(1)点P(tan α,cos α)在第三象限,则α是第________象限角. (2)若三角形的两内角A,B,满足sin A cos B<0,则此三角形必为() A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上三种情况都有可能 例3.(1)已知cos α=-8 17,求sin α,tan α的值.(2).已知tan α=4 3且α为第三象限角, 求sin α,cos α的值. 练3(1)若sinα=-4 5,且α是第三象限角,求cosα,tanα的值;(2)若cosα= 3 3,求 sinα,tanα的值; (3)若tanα=- 2 2,求sinα,cosα的值.

同角三角函数公式的转化

同角三角函数公式的转化 同角三角函数的基本关系式十分重要,主要运用于三角函数的求值和恒等变形中各函数间的相互转化.在解答时,若能根据函数式的结构特点,适时灵活地选用公式,往往能获得简捷、迅速的解答. 一、“1”的代换 例1 证明:66441sin cos 31sin cos 2 x x x x --=--. 证明:∵22sin cos 1x x +=, ∴2231(sin cos )x x =+,2221(sin cos )x x =+, ∴662236644222441sin cos (sin cos )sin cos 1sin cos (sin cos )sin cos x x x x x x x x x x x x --+--=--+-- 424222223sin cos 3cos sin 3(sin cos )32sin cos 22 x x x x x x x x ++===··. 评注:本题在证明过程中,充分利用了三角函数的平方关系,对“1”进行了巧妙的代换,使问题迎刃而解.同学们要注意掌握和灵活运用“1”的代换. 二、化切为弦 例2 化简:tan (cos sin )sin (tan cot )θ θθθθθ-++··. 解:原式sin sin cos (cos sin )sin cos cos sin θθθθθθθθθ??=-++ ??? ·· 22sin sin sin cos sin cos cos cos θθθθθθθθ =-++=+ 例3 求证:2212sin 2cos21tan 2cos 2sin 21tan 2x x x x x x --=-+. 证明:右边sin 211tan 2cos 2sin 2cos 2sin 21tan 2cos 2sin 2cos 2x x x x x x x x x x - --===++ 2 (cos 2sin 2)(cos 2sin 2)(cos 2sin 2) x x x x x x -=+- 2222cos 2sin 22cos sin cos 2sin 2x x x x x x +-=- 2212sin cos2cos 2sin 2x x x x -==-左边.故原式成立. 评注:三角中的化简及三角恒等式的证明问题常常采用“化切为弦”,即利用商数关系把切函数化为弦函数,以达到统一名称之目的. 三、化弦为切 例3 已知tan 2α=,求下列各式的值: (1)sin 3cos sin cos αααα -+; (2)222sin sin cos cos αααα-+. 解:由已知tan 2α=.

(精心整理)同角三角函数基本关系式练习题

任意角的三角函数 1.已知sin α=45 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.若θ是第三象限角,且02 cos <θ,则2 θ是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限 3.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=3 1,π<θ<32 π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5 若α 是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A) 钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 6.已知α的终边经过P (ππ6 5cos ,6 5sin ),则α可能是 ( ) A .π6 5 B . 6 π C .3 π- D .3 π 7.如果).cos(|cos |π+-=x x 则x 的取值范围是 ( ) A .)(] 22 ,22 [Z k k k ∈++-ππππ B .)() 22 3,22 (Z k k k ∈++ππππ C .)(] 22 3,22 [Z k k k ∈++ππππ D .)()2,2(Z k k k ∈++-ππππ 8.1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9. 扇形的周期是16,圆心角是2弧度,则扇形面积是______________

同角三角函数基本关系式与诱导公式

第2节同角三角函数基本关系式与诱导公式 最新考纲 1.理解同角三角函数的基本关系式:sin2α+cos2α=1,sin α cos α =tan α;2.能利用单位圆中的三角函数线推导出π 2± α,π±α的正弦、余弦、正 切的诱导公式. 知识梳理1.同角三角函数的基本关系 (1)平方关系:sin2α+cos2α=1. (2)sin α cos α =tan__α. 2.三角函数的诱导公式 [常用结论与微点提醒] 1.诱导公式的记忆口诀:奇变偶不变,符号看象限. 2.同角三角函数基本关系式的常用变形: (sin α±cos α)2=1±2sin αcos α. 3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 诊断自测 1.思考辨析(在括号内打“√”或“×”)

(1)sin(π+α)=-sin α成立的条件是α为锐角.( ) (2)六组诱导公式中的角α可以是任意角.( ) (3)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π 2的奇数倍和偶数倍,变与不变指函数名称的变化.( ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=1 3.( ) 解析 (1)对于α∈R ,sin(π+α)=-sin α都成立. (4)当k 为奇数时,sin α=1 3, 当k 为偶数时,sin α=-1 3. 答案 (1)× (2)√ (3)√ (4)× 2.(2018·成都诊断)已知α为锐角,且sin α=4 5,则cos (π+α)=( ) A.-35 B.35 C.-45 D.45 解析 因为α为锐角,所以cos α=1-sin 2α=3 5,所以cos(π+α)=-cos α =-3 5,故选A. 答案 A 3.已知sin ? ????5π2+α =1 5,那么cos α=( ) A.-25 B.-15 C.15 D.25 解析 ∵sin ? ????5π2+α=sin ? ???? π2+α=cos α,∴cos α=15.故选C. 答案 C 4.(必修4P22B3改编)已知tan α=2,则 sin α+cos α sin α-cos α 的值为________. 解析 原式=tan α+1tan α-1=2+1 2-1 =3. 答案 3 5.已知sin θ+cos θ=43,θ∈? ? ???0,π4,则sin θ-cos θ的值为________. 解析 ∵sin θ+cos θ=43,∴sin θcos θ=7 18.

同角三角函数的基本关系教案

同角三角函数的基本关系 东宁县绥阳中学 教学目的: 知识目标:1.能根据三角函数的定义导出同角三角函数的基本关 系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函 数值的方法。 能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用 于解题,提高学生分析、解决三角的思维能力; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为 (0)r r ==>,那么:sin y r α=,cos x r α=,tan y x α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果5 3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课: (一)同角三角函数的基本关系式:

(板书课题:同角的三角函数的基本关系) 1. 由三角函数的定义,我们可以得到以下关系: (1)商数关系:α ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明: ①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如 tan cot 1(,)2 k k Z πααα?=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、 变形用),如: cos α= 22sin 1cos αα=-, sin cos tan ααα =等。 2.例题分析: 一、求值问题 例1.(1)已知12sin 13α= ,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4 cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313 αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13 α=- ,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==- (2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。 当α在第二象限时,即有sin 0α>,从而3sin 5 α=,sin 3tan cos 4 ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。 2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。 例2.已知tan α为非零实数,用tan α表示sin ,cos αα.

角函数的概念同角三角函数的基本关系式诱导公式重难点分析与出题角度归纳

Xx 学校学科教师辅导讲义 一)一、定义:角可以看作成平面内一条射线绕着端点从一个位置到另一个位置所称的图形。旋转开始时的射线、终止时 的射线分别叫作_______、_______,射线的端点O 叫做_________.按逆时针方向旋转形成的角叫做_______,顺时针方向旋转形成的角叫做_______,若一条射线没有作任何旋转,称它形成了一个_______。 二、在直角坐标系内讨论角: (1)角的顶点在原点,始边与x 轴的非负半轴重合,角的终边(除端点外)在第几项先,就说这个角是第几象限角(或 者说这个角属于第几象限); 例如:30°、390°、-330°等都是第一象限角;120°、480°、-240°等都是第二象限角;240°、600°、-120°等 都是第三象限角;-30°、-390°、330°等都是第四象限角。 注意:锐角_____第一象限角,但第一象限角_______锐角;钝角______第二象限角,但第二象限角________钝角。(填 “都是”或者“不都是”) (2)若角的终边在坐标轴上,就说这个角不属于任一象限。 例如:直角、周角、平角都不属于任一象限。 三、终边相同的角(重点) 所有与角α终边相同的角,连同角α在内,可构成一个集合S={Z k k ∈?+=?,360/αββ },即任一与角α终 边相同的角都可以表示为角α与整个周角的和。 四、1弧度角的定义:我们把等于半径长的圆弧所对的圆心角叫做1弧度的角。单位符号是 rad,读作弧度。2、弧度 数:在单位圆中,当圆心角为周角时,它所对的弧长为2π,所以周角的弧度数为2π,周角是2πrad 的角. 任意一个0°~360°的角的弧度数必然适合不等式 0≤x<2π. 任一正角的弧度数都是一个正实数;,任一负角的弧度数都是一个负实数; 零角的弧度数是0. 五、弧度制与角度制的换算 360°=2πrad ;180°=πrad ;1°= 180πrad ≈;1rad=π 180 ≈°≈57°18′。

同角三角函数的基本关系式

同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式

同角三角函数的基本关系式_练习题

同角三角函数的基本关系式 练习题 1.若sin α=4 5,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3.若tan α=2,则2sin α-cos α sin α+2cos α的值为( ) A .0 B.34 C .1 D.5 4 4.若cos α=-8 17 ,则sin α=________,tan α=________. 5.若α是第四象限的角,tan α=-5 12 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 6.若α为第三象限角,则cos α1-sin 2α+2sin α 1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 7、已知A 是三角形的一个内角,sin A +cos A = 2 3 ,则这个三角形是 ( ) A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形 8、已知sin αcos α = 1 8 ,则cos α-sin α的值等于 ( ) A .±3 4 B .±23 C .23 D .-2 3 9、已知θ是第三象限角,且9 5 cos sin 4 4 = +θθ,则=θθcos sin ( ) A . 32 B . 32- C . 3 1 D . 31- 10、如果角θ满足2cos sin =+θθ,那么θθcot tan +的值是 ( ) A .1- B .2- C .1 D .2 11、若 2cos sin 2cos sin =-+α αα α,则=αtan ( ) A .1 B .- 1 C .43 D .3 4- 12.A 为三角形ABC 的一个内角,若sin A +cos A =12 25 ,则这个三角形的形状为( ) A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .等腰三角形 13.已知tan θ=2,则sin 2 θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C.-34 D.45 14.(tan x +cot x )cos 2x =( )

同角三角函数的基本关系式练习

同角三角函数的基本关系式练习 一、选择题 1、),0(,5 4 cos παα∈=,则αcot 的值等于 ( ) A . 3 4 B .43 C .3 4 ± D . 4 3 ± 2、已知A 是三角形的一个内角,sin A +cos A = 2 3 ,则这个三角形是 ( ) A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形 3、已知sin αcos α = 1 8 ,则cos α-sin α的值等于 ( ) A .±34 B .±23 C .23 D .-23 4、已知θ是第三象限角,且9 5 cos sin 44 =+θθ,则=θθcos sin ( ) A . 32 B . 32- C . 3 1 D . 31- 5、如果角θ满足2cos sin =+θθ,那么θθcot tan +的值是 ( ) A .1- B .2- C .1 D .2 6、若 2cos sin 2cos sin =-+α αα α,则=αtan ( ) A .1 B . - 1 C . 4 3 D .3 4- 7、已知 21cos sin 1-=+x x ,则 1sin cos -x x 的值是 A . 21 B . 2 1 - C .2 D .-2 8、若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为 A .51+ B .51- C .51± D .51-- 二、填空题 1、若15tan =α,则=αcos ;=αsin .

2、若3tan =α,则α αα α3 333cos 2sin cos 2sin -+的值为________________. 3、已知 2cos sin cos sin =-+α αα α,则ααcos sin 的值为 . 4、已知5 24cos ,53sin +-= +-=m m m m θθ,则m=_________;=αtan . 三、解答题 1、:已知5 1 sin =α,求ααtan ,cos 的值. 2、已知22cos sin =+αα,求α α22cos 1sin 1+的值. 3、已知5 1 cos sin = +ββ,且πβ<<0. (1)求ββcos sin 、ββcos sin -的值;

同角三角函数基本关系及诱导公式(经典)

§4.2 同角三角函数基本关系及诱导公式 1. 同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α =tan α. 2. 下列各角的终边与角α的终边的关系 3.

1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)sin(π+α)=-sin α成立的条件是α为锐角. ( × ) (2)六组诱导公式中的角α可以是任意角. ( × ) (3)若cos(n π-θ)=13(n ∈Z ),则cos θ=1 3 . ( × ) (4)已知sin θ=m -3m +5,cos θ=4-2m m +5,其中θ∈[π 2,π],则m <-5或m ≥3. ( × ) (5)已知θ∈(0,π),sin θ+cos θ=3-12,则tan θ的值为-3或-3 3 . ( × ) (6)已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α 的值是-1 3. ( √ ) 2. 已知sin(π-α)=log 814,且α∈(-π 2,0),则tan(2π-α)的值为 ( ) A .-25 5 B.255 C .±25 5 D. 52 答案 B 解析 sin(π-α)=sin α=log 814=-2 3, 又α∈(-π 2,0), 得cos α=1-sin 2α= 53, tan(2π-α)=tan(-α)=-tan α=-sin αcos α=25 5. 3. 若tan α=2,则2sin α-cos α sin α+2cos α 的值为________. 答案 34

同角三角函数的基本关系式_基础

同角三角函数基本关系 【要点梳理】 要点一:同角三角函数的基本关系式 (1)平方关系:22 sin cos 1αα+= (2)商数关系: sin tan cos ααα = (3)倒数关系:tan cot 1?=αα,sin csc 1αα?=,cos sec 1αα?= 要点诠释: (1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立; (2)2sin α是2 (sin )α的简写; (3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取。 要点二:同角三角函数基本关系式的变形 1.平方关系式的变形: 2222sin 1cos cos 1sin αααα=-=-,,212sin cos (sin cos )αααα±?=± 2.商数关系式的变形 sin sin cos tan cos tan αααααα =?= ,。 【典型例题】 类型一:已知某个三角函数值求其余的三角函数值 例1.若4sin 5 α=-,且α是第三象限角,求cos α,tan α的值。 【总结升华】解答此类题目的关键在于充分借助已知角的三角函数值,缩小角的范围。在解答过程中如果角α所在象限已知,则另两个三角函数值结果唯一;若角α所在象限不确定,则应分类讨论,有两种结果,需特别注意:若已知三角函数值以字母a 给出,应就α所在象限讨论。 举一反三: 【变式1】已知3sin 5 α=- ,求cos α,tan α的值。 类型二:利用同角关系求值

例2.已知:tan cot 2,θθ+=求: (1)sin cos ?θθ的值;(2)sin cos θθ+的值; (3)sin cos θθ-的值;(4)sin θ及cos θ的值 【变式1】已知sin cos αα-= (1)tan α+cot α;(2)sin 3α-cos 3α。 例3.已知:1tan 2θ=- ,求: (1)sin cos sin 3cos θθθθ +-; (2)2212sin cos sin cos θθθθ +-; (3)222sin 3sin cos 5cos θθθθ--。 【总结升华】已知tan α的值,求关于sin α、cos α的齐次式的值问题①如(1)、(2)题,∵cos α≠0,所以可用cos n α(n ∈N*)除之,将被求式转化为关于tan α的表示式,可整体代入tan α=m 的值,从而完成被求式的求值;②在(3)题中,求形如a sin 2α+b sin αcos α+c cos 2α的值,注意将分母的1化为1=sin 2α+cos 2α代入,转化为关于tan α的表达式后再求值。 举一反三: 【变式1】已知 tan 1tan 1 A A =--,求下列各式的值. (1)sin 3cos ;sin 9cos A A A A -+ (2)2 sin sin cos 2A A A ++

同角的三角函数的基本关系

同角的三角函数的基本关系 2.2同角的三角函数的基本关系 一、教学目标: ⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义; 2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性; 3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力. 二、教学重、难点 重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式. 难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式. 三、学法与教学用具 利用三角函数线的定义, 推导同角三角函数的基本关系式: 及 ,并灵活应用求三角函数值,化减三角函数式,

证明三角恒等式等. 教学用具:圆规、三角板、投影 四、教学过程 【创设情境】 与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化. 【探究新知】 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗? 如图:以正弦线 ,余弦线和半径三者的长构成直角三角形,而且 .由勾股定理由 ,因此 ,即 . 根据三角函数的定义,当时,有 . 这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切. 【例题讲评】 例1化简: 解:原式 例2 已知 解: (注意象限、符号)

同角三角函数的基本关系式

同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα= secα/cscα cosα/sinα=cotα= cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα 3tanα-tan3αtan3α=—————— 1-3tan2α 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)

同角三角函数的基本关系式练习题

同角三角函数的基本关系式练习题 1.若sin α=45 ,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3.若tan α=2,则2sin α-cos αsin α+2cos α 的值为( ) A .0 B.34 C .1 D.54 4.若cos α=-817 ,则sin α=________,tan α=________. 5.若α是第四象限的角,tan α=-512 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 6.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 7、已知A 是三角形的一个内角,sin A +cos A = 23 ,则这个三角形是 ( ) A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形

8、已知sin αcos α = 18 ,则cos α-sin α的值等于 ( ) A .±34 B .±23 C .23 D .-2 3 9、已知θ是第三象限角,且9 5cos sin 44=+θθ,则=θθcos sin ( ) A . 32 B . 32- C . 3 1 D . 31- 10、如果角θ满足2cos sin = +θθ,那么1tan tan θθ+的值是 ( ) A .1- B .2- C .1 D .2 11、若2cos sin 2cos sin =-+αααα,则=αtan ( ) A .1 B .- 1 C .43 D .3 4- 12.A 为三角形ABC 的一个内角,若sin A +cos A =1225 ,则这个三角形的形状为( ) A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .等腰三角形 13.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C.-34 D.45 14.(1tan tan x x +)cos 2x =( ) A .tan x B .sin x C .cos x D .1tan x

同角三角函数的基本关系式

同角三角函数的基本关系式 诱导公式 sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα cot(-α)=-cotα两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα 3tanα-tan3αtan3α=—————— 1-3tan2α 三角函数的和差化积公式三角函数的积化和差公式 α+βα-βsinα+sinβ=2sin—--·cos—-— 2 2 α+βα-βsinα-sinβ=2cos—--·sin—-—sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

相关文档
相关文档 最新文档