文档库 最新最全的文档下载
当前位置:文档库 › !燃气管道泄漏过程模型的研究进展_桑博

!燃气管道泄漏过程模型的研究进展_桑博

文章编号:1000-8241(2011)08-0608-06

燃气管道泄漏过程模型的研究进展

桑博1 兰惠清1 余学立1 何仁洋2 康正凌3 崔钺1

(1.北京交通大学机械与电子控制工程学院,北京 100044;2.中国特种设备检测研究院,北京 100013;

3.海军后勤技术装备研究所,北京 100072)

桑博等.燃气管道泄漏过程模型的研究进展.油气储运,2011,30(8):608-613.

摘要:燃气管道的泄漏过程非常复杂,其发生、发展的一系列过程影响因素众多,存在诸多不确定性,且事故表现形式多样,因此一直都是管道安全技术领域的重要课题。国内外的相关研究非常活跃,针对泄漏过程的不同阶段、燃气种类和扩散介质的不同,相继提出了高斯模型、Sutton模型、BM模型、FEM3模型等经典气体扩散模型。给出了这些模型的适用范围,对比了其优缺点。在此基础上,介绍了AFTOX模型、HEGADAS模型、DEGADIS模型、HGSYSTEM模型、INPUFF模型、SLAB 模型等近年比较流行的气体扩散模型,并介绍了概率密度函数(PDF)输运方程模型、条件矩封闭模型、简化的PDF模型、关联矩模型等爆炸/火焰模型。根据工业生产需求,对燃气管道泄漏过程进行了分析,阐述了研究的分类并指出了该技术领域研究中存在的问题和未来发展的方向。

关键词:燃气;管道;泄漏;扩散;爆炸/火焰;模型;研究进展

中图分类号:TE88 文献标识码:A

近年来,环境与能源问题日益严峻,急需发展新能源产业。在此背景下,燃气公用事业得到了高速发展。随着燃气管道里程的增加、燃气占能源消耗比例的上升,燃气事故风险也与日俱增。城市燃气虽然是优质燃料,但是由于其具有易燃、易爆性,且部分气种含有一氧化碳等有毒气体,同时输配管网建设在人口稠密的城市,一旦因管理疏失或操作不当造成气体泄漏,极易引起爆炸、火灾以及人员中毒等严重事故。经统计分析,管道输送事故占燃气事故总数的70%,而泄漏是管道输送事故的主要表现形式。因此,研究燃气管道泄漏扩散过程,对于明确燃气管道泄漏机理、分析事故原因、制定应急抢险方案、建立管道安全评价体系具有重要意义。

1 燃气管道的泄漏过程

燃气管道的泄漏过程非常复杂,主要体现在两个方面。首先,燃气管道泄漏发生、发展的一系列过程影响因素众多,存在很多不确定性。这些影响因素按照其来源,可以分为管道属性、泄漏属性、介质属性、气源属性、环境属性5大类(图1)。管道属性包括管道压力、壁厚等,泄漏属性包括泄漏方式(孔口/穿孔/断裂)、泄漏点位置等,气源属性包括化学成分、密度、质量、温度等,介质属性包括介质成分(空气/土壤)、密度和温度等,环境属性包括风速、风向、大气稳定度、地形地貌、温度湿度等。

?? ?? ?⑤

?? ?

??

????

图 1 燃气管道泄漏扩散的影响因素

其次,燃气属于易燃、易爆气体,根据泄漏发展的不同时段,遇到明火会出现喷射火焰、燃烧、爆炸等不同的事故形式。针对天然气管道的泄漏过程,根据泄漏点是否存在障碍物影响扩散,是否存在明火立刻点燃,是否在本地延迟点燃,是否在远距离延迟点燃,将形成不同的事件结果,可以绘制事件树(图2)来表示。

由于影响因素众多,且不同的泄漏阶段存在不同的事件,因此直接建立燃气管道泄漏过程模型非常困难。目前国内外均是选取某几个影响因素,分阶段对燃气管道泄漏过程建立不同的模型分别进行研究。

价事故后果的基础。泄漏源模型也称为速率模型,其研究对象是气体管道发生泄漏时气体的泄漏速率,是后续泄漏过程的研究基础。泄漏源模型的研究开展较早,目前已经提出3种典型的模型。3.1.1 一般泄漏速率模型

气体泄漏时的流动状态不同,泄漏速率的计算公式也不同。一般是根据气体泄漏速率与其流动状态有关这一特性,通过判断泄漏时气体流动属于亚声速流动(次临界流)还是属于声速流动(临界流)来确定泄漏速率模型[1]。

气体流动属于声速流动:

气体流动属于亚音速流动:

式中: p a 为环境压力,MPa ;p 为管道内气体压力,MPa ;

K 为气体的等熵指数。该模型适用于泄漏时管内气体压力恒定的工况,若因管内压力降低而影响泄漏速率时,它不再适用。3.1.2 孔口泄漏模型和管道泄漏模型

天然气管道泄漏一般为孔口泄漏,通常以圆孔口泄漏为基础建立孔口泄漏模型,当孔口不规则时,可采用当量直径[2]作为计算参数。根据孔径的大小,孔口泄漏可分为小孔和大孔两种泄漏。孔径小于20 mm 属于小孔泄漏,孔径为20~80 mm 属于大孔泄漏。管道横截面完全断裂的泄漏模型称作管道泄漏模型。

2研究内容的分类

目前,对于燃气管道的泄漏机理已经形成初步的认识。基于燃气管道泄漏过程的复杂性,该领域的研究内容有3种典型的分类方法。

首先,根据燃气管道泄漏过程的不同阶段,可以将研究内容划分为:泄漏源模型、泄漏扩散模型、爆炸/火焰模型。根据近年的研究发展趋势,越来越多的泄漏扩散模型中包含了初始泄漏速率的计算模拟,因此在未来的研究中,泄漏源模型和泄漏扩散模型将得到有效整合。

其次,由于气源类型不同,其摩尔质量不同,泄漏扩散的形式也不同。根据燃气的种类,可以将研究内容划分为两类:一是以研究天然气泄漏过程为代表的轻质/中性气体扩散模型,二是以研究液化天然气(LNG )泄漏过程为代表的重气扩散模型。

最后,根据泄漏扩散的环境介质不同,亦可以将研究内容分为两类:一是在空气中的泄漏扩散过程,即管道暴露于大气中或埋地管道开挖后暴露于大气中的泄漏过程,泄漏扩散的环境介质为大气;二是在土壤中的泄漏扩散过程,即管道埋设于地下的泄漏过程,泄漏扩散的环境介质为土壤和大气。

3泄漏过程模型

3.1 泄漏源模型

确定泄漏速率是分析管道泄漏扩散规律和预测评

图 2

 燃气管道泄漏事件树

有些学者[2]将孔口泄漏视为绝热过程,采用伯努利方程和绝热方程描述气体泄漏过程。在实际泄漏过程中,气体存在局部摩阻损失,泄漏速度小于理论计算值,需要利用孔口流速系数进行修正。另一些学者[3]则将孔口泄漏气体视为可压缩气体,应用流体力学的动量守恒方程、能量守恒方程、连续性方程描述气体的流动过程,并在理想气体状态方程中引入气体压缩因子来缩小与实际气体的差别。对于小孔泄漏模型,由于孔径较小,假设管内的气体压力不受泄漏影响,忽略摩擦的影响,气体膨胀过程为等熵过程,因此气体泄漏速率恒定,等于起始最大泄漏速率。

当管道发生完全断裂时,采用管道泄漏模型,利用机械能守恒方程和总能量守恒方程来描述管道内气体的绝热流动过程[2]。3.2 泄漏扩散模型

泄漏气体向环境介质扩散的过程是研究燃气管道泄漏的关键内容,该过程直接关系到危险域的确定,事

故危害的评估,以及抢险方案的制定。泄漏扩散模型用于研究泄漏气体向环境介质扩散的过程,确定扩散范围和气体质量分数的分布情况,为评估事故影响、制定抢险方案提供理论依据。

泄漏扩散模型,按照其授权方式可以分为开源免费模型和商业收费模型两大类;按照其本质特征可以分为经验模型、一维积分模型、箱及相似模型、三维流体力学模型以及浅层模型。3.2.1 经典气体扩散模型

关于燃气管道泄漏扩散过程的模拟和实验研究,国外从20世纪七八十年代业已开始,直至今天该领域的研究依然很活跃。国外学者提出了很多气体扩散模型,并开展了大量的风洞试验和全尺寸试验。其中,高斯模型(Gaussian Plume/Puff Model )、Sutton 模型、BM 模型(Britter and McQuaid Model )、

FEM3模型(3-D Finite Element Model )是相对经典的5种气体扩散模型(表1)。

表 1 国外5种典型气体扩散模型的比较

高斯模型是最早开发的管道泄漏扩散过程的数学模型,基于统计方法,考察扩散质的质量分数分布[4-5],适用于点源的扩散。高斯模型分为高斯烟团模型(Puff Model )和高斯烟羽模型(Plume Model ),前者适用于短时间泄漏的扩散,即泄放时间相对于扩散时间比较短,如突发性泄放,后者适用于连续源的泄放扩散。由于两种模型均未考虑重力影响,因此只适用于轻气体或与空气密度相差不大的气体的扩散。虽然高斯模型存在诸多弊端,但因其开发时间早,技术较成熟,模型计算简便,仍被广泛应用于污染物扩散领域。

BM 模型也称为唯象模型,该模型由一系列重气

体连续泄放和瞬时泄放的实验数据绘制成的计算图表组成,属于经验模型,外延性较差。Hanna 等[6]对其进行了无因次处理并拟合成解析公式,发现该模型与实验曲线吻合较好。该模型主要适用于中性或重气体的扩散研究,且更侧重于大规模泄漏扩散的情况,其计算简便,结果表现直观。

Sutton 模型与高斯模型一样,适用于两种气体压力相同且相对速度较低条件下的扩散过程[7],它采用湍流扩散统计理论处理湍流扩散问题,但用于可燃气体泄放扩散过程时误差较大。

FEM3模型的原型于1979年提出,是一种三维有

限元计算模型。该模型采用的有限元解法由伽辽金(Galerkin)法改进而来,可解不定常的连续性方程、热量方程、扩散方程及理想气体状态方程、动量方程,并使用K理论(梯度输运理论)来处理湍流问题[8]。该模型适用于处理连续源的泄放和有限时间内的泄放,其计算量大,且只适用于重气体的扩散。

3.2.2气体扩散模型的完善

随着计算机技术的发展,国外学者对于气体扩散模型的研究更加深入,在经典气体扩散模型的基础上进行改良和创新,发展了一系列新的模型体系,并经过若干次改进,已经逐步走向成熟。

AFTOX模型是美国空军开发的危险气体扩散模型,目前可以获取的版本是4.0。它是一种多烟团叠加模型,适用于模拟点源与区域的气体扩散过程,不适用于模拟重气的扩散[9]。

HEGADAS模型利用SPILLS模型计算扩散速率,适用于模拟重气连续源泄漏,特别适用于模拟液化天然气管道的泄漏扩散。该模型本质上属于箱及相似模型[10]。

DEGADIS模型是基于HEGADAS模型开发的,适用于模拟中性和重气点源与区域的气体扩散过程,气体泄漏速率需要另行计算。该模型目前可获取的版本是2.1,另外还有DEGADIS-Ooms烟雨模型和DEGADIS区域泄漏源算法两种改进版本。该模型本质上亦属于箱及相似模型[11-12]。

HGSYSTEM是一个模型体系,它本质上是对HEGADAS模型的改进和扩展,考虑了初始射流过程,并且可模拟HF烟羽中的化学反应和热传递过程[13-14]。

INPUFF模型是由美国环保局开发的高斯烟羽模型的改进版本,目前可以获取的版本是2.3。该模型只适用于中性气体扩散,且不能进行泄漏源计算[15]。

SLAB模型是Ermak等由Zerman的潜层模型发展而来的。该模型是以下风距离为独立变量的一维积分模型[16]。

3.3爆炸/火焰模型

发生天然气泄漏后,在适宜的气象条件下,泄漏区周围将产生大面积由可燃蒸气与空气混合形成的云团。若环境空间未达到爆炸极限,遇到点火源,将造成局部爆燃着火引起火灾。若达到爆炸极限,天然气和空气混合物被意外点燃,通过气云传播使燃烧速度加快,引发气云爆炸,产生爆炸冲击波,造成人员伤亡和财产损失。因此,研究天然气泄漏后可燃气团的爆炸极限,分析爆炸影响因素,建立爆炸火焰模型,进行数值模拟,对预测发生天然气爆炸的可能性、爆炸可能导致的结果及有效防止天然气爆炸,都具有实际意义。

天然气在空气中的扩散可以认为是湍流过程,目前湍流燃烧的模拟方法有:随机涡模拟、直接数值模拟(DNS)、关联矩模型、雷诺平均模型、概率密度函数输运方程模型、条件矩封闭模型(Conditional Moment Closure)、大涡模拟(LES)、简化概率密度函数模型、基于简单物理概念的唯象模型(如ESCIMO模型、EBU 模型及拉切滑模型)等。

3.3.1概率密度函数(PDF)输运方程模型

该模型用于模拟有限反应速率的燃烧过程和考察详细反应动力学的问题具有较大优势,它的关键步骤是根据统计理论和概率建立湍流燃烧系统中变量的联合概率密度函数及其输运方程,并通过Monte-Carlo 方法进行求解。该方法的缺点主要表现在联合概率密度函数求解的复杂性和巨大的计算量,因而难以广泛应用于工程实际[17-18]。

3.3.2条件矩封闭模型

该模型的关键在于引入一个守恒标量作为条件变量,使平均值和脉动矩成为了该守恒标量的条件矩。它的最大优点在于可以有效地将反应动力学和流动的非均匀性解耦,同时保持了标量耗散即微尺度混合的影响,能够模拟相当复杂的反应动力学,在扩散燃烧中一般取混合分数为条件变量,在预混燃烧中取反应速度为条件变量。该方法的缺点是数值积分过程的计算量大,误差亦较大[19-22]。

3.3.3简化的PDF模型

该模型是利用一两个标量来描述燃烧系统的热力学参数,建立其输运方程以及假定它们脉动的概率密度函数,通过概率积分确定湍流燃烧过程中所有标量的时间平均特性,其典型代表是层流小火焰模型和湍流预混燃烧的BML模型[23-24]。

3.3.4关联矩模型

该模型类似于湍流流动的封闭模型,特点是对反应速率表达式中的非线性指数项进行级数展开,可以

简化计算,但是会引入误差,同时计算量仍很大。它一般需要引入6个二阶标量的关联矩微分方程,因此也被称为关联矩的输运方程模型。基于此,有学者提出忽略二阶标量脉动关联矩输运方程的对流项和扩散项,以简化计算,但是仅适用于等温和近似等温的湍流燃烧问题。近年来又有学者提出将二阶矩处理和概率密度封闭相结合的新模型[25-27]。

4问题与发展趋势

国内外关于燃气管道泄漏模型的研究取得了一定成果,但仍存在一些问题,主要集中在5个方面:(1)各种模型通常都是基于大量的理论假设建立的,并且只考虑众多影响因素中的某一些因素,无法完整描述所有影响因素和区分各影响因素的优先级。

(2)目前尚无模型能够描述燃气泄漏的全部过程,已有一些扩散模型包含了初始泄漏速率的计算,将泄漏过程和扩散过程进行有机结合,但是扩散过程和爆炸燃烧过程,没有一个模型可以将二者统一起来。

(3)目前的扩散模型均是以管道暴露在空气中的情况为研究条件,即便是研究埋地管道的泄漏,多数研究仍以开挖后管道暴露在空气中的情况为研究条件。没有一个模型能够很好地描述埋地管道在地下发生泄漏、燃气在地下扩散以及从地表向空气中扩散的过程。

(4)国内对于燃气管道泄漏模型的研究仍落后于国外:国外的AFTOX模型已经发展到4.3版本,每一次改进都形成新的版本;HGSYSTEM模型由HEGADAS等模型发展改进而来,已形成模型体系,但国内的相关研究没有形成体系,更没能形成模型系列,这是制约该课题在我国进一步发展的关键。同时,受限于研究条件,往往难以进行全尺寸试验,因而导致模型的验证工作不完善。

(5)国内外对于燃气管道泄漏模型的研究,输送介质仅仅局限于天然气,甚少对人工煤气、液化石油气等介质进行研究。

未来燃气管道泄漏模型的研究发展方向主要包括3个方面:

(1)对于管道暴露空气中的情况,侧重引入更多的影响因素,并区分各个影响因素的优先级;对于埋地管道,侧重建立不同土壤属性对于泄漏影响的机理,并建立燃气在土壤中的扩散模型。

(2)侧重研究液化天然气和液化石油气的泄漏扩散过程,二者的泄漏扩散过程中会产生相变,较气体泄漏更加复杂,也更具有研究价值。

(3)逐步使泄漏模型系列化,进一步考虑引入泄漏扩散过程中的其他影响因素,同时逐步整合爆炸燃烧模型,最终形成模型体系,从而完整地模拟燃气管道泄漏事故的3个阶段。

蒋军成.事故调查与分析技术[M].北京:化学工业出版社,2003: 219-238.

霍春勇,董玉华,余大涛,等.长输管线气体泄漏率的计算方法研究[J].石油学报,2004,25(1):10l-105.

Arnaldos J,Casal J,Montiel H,et al.Design of a computer tool for the evaluation of the consequences of accidental natural gas releases in distribution pipes[J].Journal of Loss Prevention in the Process Industries,1998,11(2):135-148.

Arystanbekova N K.Application of Gaussian plume models for air pollution simulation at instantaneous emissions[J].Mathematics and Computers in Simulation,2004,67(4-5): 451-458.

Spijkerboer H P,Beniers J E,Jaspers D,et al.Ability of the Gaussian plume model to predict and describe spore dispersal over

a potato crop[J].Ecological Modeling,2002,15(1):1-18.

Britter R E,McQuaid J.Workbook on the dispersed near the gases [R].Shef? eld: UK HSE Contract Research Report,1988.

Elkinton J S,Carde R T,Mason C J.Evaluation of time-average dispersion models for estimating pheromone concentration in a deciduous forest[J].Journal of Chemical Ecology,1984,10(7):

1 081-1 108.

Ermak D L,Chan S T.Recent developments on the FEM3 and SLAB atmospheric dispersion models,UCRL-94071[R].

Livermore, CA, USA: Lawrence Livermore National Lab, 1986.

Bruce A Kunkel.AFTOX 4.0 The air force toxic chemical dispersion model-a user's guide, PL-TR-91-2119 Environmental Research Papers,No.1083[R].Massachusetts:Phillips Laboratory,Hanscom Air Force Base,1991.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

参考文献:

[10]Witlox H W M.The HEGADAS model for ground-level heavy-

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]gas dispersion I&II[J].Atmospheric Environment,1994,28(18):

2 917-2 946.

Tom Spicer,Jerry https://www.wendangku.net/doc/41763902.html,er’s guide for the DEGADIS 2.1

dense gas dispersion, EPA-450/4-89-019[R].Research Triangle

Park,North Carolina,USA:Of? ce of Air Quality Planning and

Standards,U S EPA,1989.

Havens J A.A dispersion model for elevated dense gas jet

chemical releases V olume https://www.wendangku.net/doc/41763902.html,er’s guide[R].Research Triangle

Park,North Carolina,USA:Of? ce of Air Quality Planning and

Standards,US EPA,1988.

Doug N B,Richard W C,Howard J F,et al.HGSYSTEM

3.0 technical reference manual Part I&II,API/PETRO PUBL

4636-ENGL[R].Chester,UK:Shell Research Limited,Thornton

Research Center,1994.

Witlox H W M,McFarlane K,Rees F J,et al.Development

and validation of atmospheric dispersion models for ideal gases

and hydrogen fluoride,TNER 90 016[R].Chester,UK:Shell

Research Limited,Thornton Research Center,1990.

William B Petersen,Lavdas L G.INPUFF 2.0 A multiple source

Gaussian puff dispersion algorithm[R].Research Triangle

Park,North Carolina,USA:Atmospheric Sciences Research

Laboratory,US EPA,1986.

Ermak D https://www.wendangku.net/doc/41763902.html,er’s manual for SLAB:an atmospheric dispersion

model for denser-than-air releases[R].Livermore,CA,USA:

Technical Information Department,Lawrence Livermore

National Laboratory,1989.

Pope S https://www.wendangku.net/doc/41763902.html,putations of turbulent combustion:progress and

challenges[J].Symposium on Combustion,1991,23(1):591-

612.

Dopazo C.Recent developments in PDF methods[C]//Libby P

A,Williams F A.Turbulent Reacting Flows. London:Academic

Press,1994:375-474.

Klimenko A Y.Multicomponent diffusion of various admixtures

in turbulent ? ow[J].Fluid Dynamics,1990,25(3):327-343.

科技攻关项目:国家质量监督检验检疫总局公益性行业科研

专项课题“埋地管道泄漏事故分析与事故应急关键技术研究”,

201010025-04。

作者简介:桑博,在读硕士生,1984年生,2006年7月毕业于北京

交通大学机电学院机械工程及自动化专业,现主要从事油气管道安

全方向的研究工作。

电话:010-********;Email:sangtest@https://www.wendangku.net/doc/41763902.html,

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Bilger R W.Conditional moment closure for turbulent reacting

? ow[J].Physics of Fluids,1993,5(2):436-444.

Klimenko A Y,Bilger R W.Conditional Moment Closure for

Turbulent Combustion[J].Progress in Energy and Combustion

Science,1999,25(6):595-687.

Kronenburg A,Bilger R W,Kent J H.Second-order conditional

moment closure for turbulent jet diffusion ? ames[J].Symposium

on Combustion,1998,27(1):1 097-1 104.

Bray K N C,Libby P A.Recent developments in the BML model

of premixed turbulent combustion [C]//Libby P A,Williams F

A.Turbulent Reacting Flows.London:Academic Press,1994:

51-115.

Peters https://www.wendangku.net/doc/41763902.html,minar diffusion flamelet models in non-premixed

turbulent combustion[J].Progress in Energy and Combustion

Science,1984,10(3):319-339.

Pratt D T.Mixing and chemical reaction in continuous

combustion(hydrogen burning in engine combustors)[J].

Progress in Energy and Combustion Science,1976,1(2-3):

73-86.

周力行.湍流燃烧的新二阶矩模型[J].工程热物理学报,

1996,17(3):383-356.

周力行.湍流两相流动与燃烧数值模拟[M].北京:清华大学

出版社,1991:203-211.

(收稿日期:2011-01-23)

OVERVIEW/CONSTRUCTION TECHNIQUE

Prospect prediction of domestic natural gas pipeline industry Pan Jiahua OGST Vol. 30 No. 8,pp. 601–602,8/25/2011. ISSN 1000-8241;In Chinese

The paper gives a brief introduction of the relationship between the energy structure and the environmental pollution ,presents the idea to improve air quality from two aspects :energy ef ? ciency and changing energy structure ,where the latter will come out to be the focus. The bottom line of energy efficiency is to wash out the outdated production capability and pursue the Green GDP .Domestic and worldwide energy structures are described. At present in China ,coal is main resource due to the lack of petroleum. The amount of discovered natural gas is also small. The energy structure is lagged behind compared to the international average level ,which is inappropriate for the economic development of China. The amount of discovered shale gas in China is at the top ranks of the world. Considering the successful exploration and utilization of shale gas in US ,China has established the Shale Gas Research Base ,which is anticipated to be helpful for changing Chinese energy structure. In order to reduce pipeline construction costs ,international researchers have utilized the TMPC technique (Thermo Mechanical Process Control )to optimally select the metallurgical structure of pipe material ,thus high-grade steel pipe materials X100,X120 have been successfully developed. In China ,researchers have even successfully developed the LSAW X100 and X120 pipe steels. The author predicts that China will be the pioneer constructing oil & gas pipeline with X100 or X120 pipes in the world.Key words :natural gas ,energy structure ,shale gas ,TMPC technique ,high-grade pipe material Pan Jiahua :PetroChina Pipeline Company,Langfang ,Hebei ,065000. Tel :0316-*******;Email :gdlilin@https://www.wendangku.net/doc/41763902.html, Application prospect of The Internet of Things technology for oil and gas pipelines Cui Hongsheng and Wei Zheng OGST Vol. 30 No. 8,pp. 603–607,8/25/2011. ISSN 1000-8241;In Chinese

Informatization construction of oil and gas pipelines consists of three layers ,

that is ,implementation layer ,management layer and strategic decision layer. Each layer is composed of different information systems. With the development of information technology ,the advent of The Internet of Things technology will bring a new growth to the three layers of informatization construction. Through analyzing the obvious contradictions produced in the course of development of oil and gas pipeline companies ,the architecture of The Internet of Things for pipelines is proposed ,which includes perception layer ,transport layer and application layer. And its application architecture is consisted of data integration application layer and intelligent network layer of pipeline. The Internet of Things for pipelines connects with assets and devices through sensors to establish data integration system to realize comprehensive data analysis and utilization ,and thus the optimal management over each link of pipeline operation based on the intelligent application platform developed for business demands will be realized.Key words :pipeline ,The Internet of Things ,informatization ,intelligent pipeline network ,data integration ,standard of data Cui Hongsheng :PetroChina Natural Gas & Pipeline Company ,Beijing ,100007.Tel :010-********;Email :hscui@https://www.wendangku.net/doc/41763902.html, The research progress of gas pipeline leak model Sang Bo ,Lan Huiqing ,Yu Xueli ,et al OGST Vol. 30 No. 8,pp. 608–613,8/25/2011. ISSN 1000-8241;In Chinese

The gas pipeline leak process is subject to many uncertain factors during its occurrence and progress with a variety of accident forms ,therefore ,the research of gas pipeline leak process is always an important issue in the technical ? eld of pipeline safety. And the research is very active at home and abroad. Several classic gas diffusion models have been proposed ,such as Gaussian model ,Sutton model ,BM model ,FEM3 model etc.,which are distinguished by the different stages of leak process and diffusion medium types. The application scope of these models has been given respectively ,and their advantages and disadvantages have been compared ,too. On this basis ,some other popular gas diffusion models which have been proposed in

recent years are introduced ,such as AFTOX model ,

HEGADAS model ,DEGADIS model ,HGSYSTEM model ,INPUFF model ,SLAB model ,etc.. Furthermore ,some explosion/? ame models are also described ,such as the probability density function (PDF )transport equation model ,conditional moment closure model ,the simpli ? ed PDF model ,association moment model. According to the requirements of industrial production ,the leakage process of gas pipeline has been analyzed ,and the classi ? cation of study has been explained. The problems in the current study and the future developments of the technical ? eld of pipeline safety have also been pointed out.

OIL & GAS STORAGE AND TRANSPORTATION

(MONTHLY)

Vol. 30 No. 8 (Total 272) Aug. 25, 2011

ABSTRACTS

Key words:gas leakage,pipeline,diffusion model,explosion/? ame,research progress

Sang Bo:School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing,100044.

Tel:010-********;Email:sangtest@https://www.wendangku.net/doc/41763902.html,

Displacement commissioning of the A-line modi? ed section of China-Uzbekistan Gas Pipeline

Jiang Jintian and Gao Bin

OGST Vol. 30 No. 8,pp. 614–618,8/25/2011. ISSN 1000-8241;In Chinese

The gas in the temporary section of China-Uzbekistan Gas Pipeline will be furthest imported to the A-line modi? ed section in the process of displacement commissioning. Through the process calculation and data simulation of displacement and pressure balancing,several parameters have been determined,for example,the initial pressure of commissioning is 0.2 MPa,and gas ? ow rate of displacement is at 5 m/s,gas temperature in the pipeline before throttling is approximately at 12℃. And so,the temperature should drop to -31 ℃ after throttling. Based on the actual calculations result of displacement rate and the pressure changes of valve back,and the vibration situation of pipeline and equipment,the flowrate has been controlled by adjusting the total revolutions number of hand wheel. The feasibility of importing gas from the temporary section to the modi? ed section has been demonstrated by analyzing various constraints and limitations,maximum allowable shutdown time for upstream and downstream pipeline,the optimum timing of pressure balancing etc.. Problems in displacement rate control and throttling for high-pressure gas pipeline have been solved by comparing the scheme of displacement commissioning. And the displacement commissioning process of importing gas and pressure balancing from the temporary section to the modi? ed section have been achieved under the condition of temporary shutdown.

Key words:China-Uzbekistan Gas Pipeline,modified section,displacement commissioning,differences of high pressure,throttling,pressure balance

Jiang Jintian:PetroChina Pipeline Company,Langfang,Hebei,065000.

Tel:138********;Email:jjt_zy@https://www.wendangku.net/doc/41763902.html,

Application of backtow ? otage balance technology in horizontal directional drilling engineering

Zhang Jie,Zhou Zhaoxia,Ye Wenjian,et al

OGST Vol. 30 No. 8,pp. 619–620,633,8/25/2011. ISSN 1000-8241;In Chinese

In the backtow process of horizontal directional drilling engineering for big-diameter oil/gas pipelines,mud ? otage impacts on the backtow with the increases of pipe diameter. In order to reduce the friction between pipe and formed hole caused by mud ? otage and reduce the risk of backtow process,the effect of mud ? otage is calculated and analyzed. A counterweight technology with PE pipe water injection and mud density adjustment are used to balance the mud ? otage in backtow process. With this technology,the friction area between pipe and the soil is reduced,and so the friction is lowered to 80%. Meanwhile,the risk of hole-wall collapse caused by the extrusion of pipe ? otage is also decreased. The ? otage balance technology is successfully adopted in horizontal directional drilling engineering of the main canal of South-North Water Transport Project in the Second West-to-East Gas Pipeline with remarkable economic and social bene? ts.

Key words:large-diameter pipeline,horizontal directional drilling,PE pipe,water injection,backtow

ZHANG Jie:Sichuan Petroleum Construction Engineering Ltd. Co.,Chengdu,Sichuan,610215.

Tel:028-********;Email:zhangjieokok@https://www.wendangku.net/doc/41763902.html,

INTEGRITY / CORROSION CONTROL & INSULATION / ENERGY SAVING & ENVIRONMENTAL PROTECTION

Geological disaster risk analysis and management solutions for Mohe-Daqing Oil Pipeline in permafrost regions

Chen Pengchao,Yang Baoling,Wang Min

OGST Vol. 30 No. 8,pp. 621–623,8/25/2011. ISSN 1000-8241;In Chinese

Mohe-Daqing Oil Pipeline,with the highest latitude in China,is the ? rst complete pipeline of China in distance and diameter constructed in permafrost regions,where the lowest temperature in winter is at -52.3 ℃. There are about 440 km-long pipeline (Mohe-Dayangshu section of Jiagedaqi)traversing over the Greater Higgnan Mountains’ permafrost regions,which are consisted of the continuous permafrost and discontinuous permafrost including segregated frozen ground. The terrain which the pipeline is located at is higher in the North and lower in the South; great ups and downs are in the Northern area; the mountains,hills and river-valley landforms spread over the pipeline. The Southern area,the Songnen Plain,is ? at and open with complicated geographic environment,and the geological disasters such as frost thawing,avalanche,melting landslide,water damage erosion(bank collapse)and so on are easy to happen. All the above risks possible in Mohe-Daqing Oil Pipeline are discussed in the paper. Hazard management and risk mitigation measures are presented.

Key words:Mohe-Daqing Oil Pipeline,permafrost,geological disaster,risk,mitigation measures

Chen Pengchao:PetroChina Pipeline Company,LangFang,065000.

Tel:0457-*******;Email:pcchen@https://www.wendangku.net/doc/41763902.html,

Rain-? ow counting analysis of the ? uctuation pressure for oil & gas pipelines

Jiao Zhongliang,Li Zhiwen,Li Zhiyong,et al

OGST Vol. 30 No. 8,pp. 624–628,8/25/2011. ISSN 1000-8241;In Chinese

Operation safety of pipelines will be seriously threatened by pressure fluctuation. Therefore,the cyclic statistics about the ? uctuation course of operation pressure for 5 inland oil & gas pipelines have been done by using the rain-? ow counting method. The cycle number and amplitude of pressure fluctuations are analyzed. And the characteristics and causes of pressure ? uctuations for the different type of pipes are also discussed. The authors present speci? c solutions and operational measures in the paper. Results show that the in? uences of transport medium,service life and external operating conditions are different for

相关文档