文档库 最新最全的文档下载
当前位置:文档库 › 相对码和绝对码

相对码和绝对码

相对码和绝对码
相对码和绝对码

6.4 二进制移相键控(2PSK)及二进制差分移相键控

(2DPSK)

本节讨论:

6.4.1、2PSK信号及2DPSK信号的定义

6.4.2、2PSK信号及2DPSK信号的波形

6.4.3、2PSK信号的时域表达式

6.4.4、2PSK信号的功率谱密度

6.4.5、2PSK信号的产生

6.4.6、2PSK信号的解调

6.4.7、2DPSK方式

6.4.8、2PSK及2DPSK系统的抗噪声性能

6.4.1、2PSK、 2DPSK信号的定义:

一、2PSK:

数字信号的“1”都对应于已调信号中的载波0相位;数字信号的“0”都对应于已调信号中载波相位,反之亦然。这种调相方式称为“绝对调相”。又称二相绝对调相(2PSK)。

注意:

1、无论哪一种对应关系,已调信号的相位变化都是相对于一个固定的参考相位

未调载波的相位来取值。

2、在实际应用中,存在相干载波相位模糊问题,即在二相绝对调相接收中可能出现倒

现象。为此,也可采用差分编码,这里通常称为相对(差分)移相,每一个码元中载波相位的变化不是以固定相位作参考,而是以前一码元载波的相位为参考。

二、2DPSK:

当数字信号为“1”时,码元中载波的相位相对于前一个码元的载波相位变化π;当数字信号为“0”时,码元中载波的相位相对于前一码元的载波相位不变化,反之亦然。这种调相方式称为二相相对调相(2DPSK)。

6.4.2、2PSK、 2DPSK信号波形

1

2

从波形中可以看出,数字信号(码)和已调载波的相位关系见下表:

6.4.3、2PSK信号的时域表达式:

2PSK采用的两种载波信号是:

为信息码元,且,在二进制频相键控2PSK中,当传送“1”码时对应于载波的初始相位为0,传送“0”码时对应于载波的初始相位为,即

为使变为双极性不归零脉冲信号,令,当,

;当时,,所以为双极性不归零脉冲信号,其中。

2PSK信号的时域表达式:

其中,。

令,此时为双极性不归零脉冲序列,则

6.4.4、2PSK信号的功率谱密度:

在2PSK信号的时域表达式为

其中为双极性不归零脉冲序列,则2PSK信号的功率谱密度为

因为为双极性不归零脉冲序列,根据式(5.3-9)可得

(6.4-5) 当时,2PSK信号的功率谱密度为

因为的频谱为

将式上式代入(6.4-5),得到

2PSK信号的功率谱密度的特点:

?当双极性基带信号“0”和“1”等概率出现,即P=0.5时,无离散谱,也即“0”,“1”等概率的抑制载频2ASK。但2ASK信号总是存在离散谱,而2PSK信号可能无离散谱(P=0.5时)。

?已调信号的带宽是基带信号的2倍。

6.4.5、2PSK信号的产生:

?第一种方法:键控法

图6-4-1 2PSK信号的的键控法框图

?第二种方法:相乘电路法

图6-4-2 2PSK信号的相乘电路法

6.4.6、2PSK信号的解调:

因2PSK已调信号的包络幅度不变,所以不能采用包络检波法,通常采用相干解调法解出2PSK的已调信号。

图6-4-3 2PSK信号的相干解调框图

抽样判决规则:

2PSK解调中的“倒”现象:

我们研究码元区间的解调过程,此时

图6.2.18中低通滤波器的输入信号为

上式中的信号通过低通滤波器后,滤除高频分量,可以得到低通滤波器的输出信号为

则抽样判决器的判决结果为

当时,,有

当时,,有

从以上的判决结果可知:,相干解调的结果正确,没有差错。

现在假设由于某种原因,使本地载波的相位改变了,即本地载波变成了,则这时低通滤波器的输入信号为:

上式中的信号通过低通滤波器后,滤除高频分量,可以得到低通滤波器的输出信号为

则抽样判决器的判决结果为

当时,,有

当时,,有

从以上的判决结果可知:,相干解调的输出结果正变负,负变正,这种现象,即为2PSK相干解调过程中的“倒”现象。

由于本地相干载波一般是从接收信号中提取形成的,通常它的相位有两个稳定状态0或,在各种干扰作用下,其相位可以由一种状态变到另一种状态,并且是随机的,这使

得解调出的消息可能与原始消息符号相反,由于“倒”现象是随机的,因此使得无法判断的正确与否。

因此,实际中一般不采用2PSK方式,为了克服2PSK的“倒”现象,提出了差分移相键控,即2DPSK。

6.4.7、2DPSK方式:

二进制移相键控2PSK是利用载波相位的绝对数值来传送数字信息,也称为绝对移相。而2DPSK则是利用相邻的码元之间的载波相位差来传送消息,即相对移相。

例如:

假设相位值用相位偏移,

如果,则

如果,则

2DPSK的产生:

?将绝对码变换成相对码

?对相对码进行绝对移相键控(2PSK)

(1) 相对码的产生方法:

根据:

得到

图6-4-4 绝对码变相对码的方框图(2) 2DPSK信号的产生

图6-4-5 2DPSK信号的调制方框图(动画)

图6-4-5中,波形变换器用来完成单极性不归零波形到双极性波形的变换,其变换关系为,因为,所以有。相对移相信号可以看成是把信息码(绝对码)变换成相对码,然后再对相对码进行绝对移相形成的。

结论:

在2DPSK中,数字信息是利用相邻的码元之间的相位差来传送,因此即使本地相干载波的相位“倒”,但并不影响相对关系,虽然解调得到的相对码是,但经差分译码后得到的绝对码不会出现的倒置现象,从而克服了2PSK方式中的“倒”现象。

2DPSK信号的解调

(1)相干解调法(极性比较法)(动画)

图6-4-6 2DPSK信号的相干解调方框图(动画)

2DPSK的解调结果不受本地载波的相位“倒”的影响。

证明:

假设由于某种原因,使本地载波的相位改变了,即本地载波变成了,则

(双极性波形)

(单极性波形)

解调器的输出为:

(2) 差分相干解调法(动画演示)

图6-4-7 2DPSK信号的差分相干解调方框图(动画) 2DPSK的差分相干解调法,不需要专门的本地相干载波,将2DPSK信号延时一个码元间隔后与2DPSK信号本身相乘,相乘的结果反映了前后码元的相对相位关系,经低通滤波器后送到抽样判决器,抽样判决器抽样的结果即为原始数字信息,不需要差分译码。只有2DPSK信号才能采用这种方法解调,因为它是以前一个码元的载波相位作为参考相位,而不是未调载波的相位。

采用差分相干解调法的2DPSK方式,虽然不需要本地相干载波,但需要能够精确地延迟一个码元间隔的延迟电路,延迟电路的精度要求很准,实际实现时,延时线不好作,而且2DPSK的抗噪声性能不如2PSK。。

6.4.8、二进制绝对移相键控(2PSK)系统及相对移相键控(2DPSK)系统的总误码率

从前面的分析可知,单从信号波形上看,无论是绝对移相信号还是相对移相信号,都是一对倒相信号的序列。因此,在讨论移相键控系统的抗噪声性能时,假设发送端发出的信号为

(6.4-5)

其中

这里,当用表示绝对移相信号时,上式中的“1”和“0”就是原始的信息码(绝对码);当用表示相对移相信号时,上式中的“1”和“0”不再是原始的信息码(绝对码),而是由绝对码变换成相对码后的“1”和“0”。

通常采用相干解调法和差分相干解调法对式(6.4-5)中移相信号进行解调,以下我们就详细讨论采用这两种解调方法下系统的抗噪声性能。

2PSK相干解调法的误码率

2DPSK差分相干解调法的误码率

2DPSK相干解调法的误码率

一、2PSK相干解调法的误码率

图6-4-8 2PSK信号的相干解调方框图

2PSK系统的相干解调法如图6-4-8所示,设抽样判决器的判决门限电平为0电平,则在一个码元的持续时间内,低通滤波器的输出信号为

以上的结果可以参照式(6.2-14),因为它们的解调系统是完全相同的。

则2PSK系统总的误码率为

下面求和:

因为和相等,所以只需计算。

因为是均值为,方差为的正态随机变量,所以

式中。

因为和相等,所以2PSK信号采用相干解调法时的系统误码率为

(6.4-6)

在大信噪比情况下,上式可近似表示为

2DPSK差分相干解调法的误码率

图6-4-9 2DPSK信号的差分相干解调方框图

2DPSK信号的差分相干解调法如图6-2-9所示,差分相干解调与相干解调的主要区别在于前者的参考信号不像后者具有固定的载频和相位,因此假定在一个码元间隔内发送是“1”,且令前一个码元也为“1”(也可以令其为“0”),则图6-2-24中乘法器的输入信号为

(6.4-7)

(6.4-8)

其中是无延迟支路的输入信号;

是有延迟支路的输入信号;

是无延迟支路的窄带高斯过程;

是有延迟支路的窄带高斯过程。

将、分别用其正交分量和同相分量表示,即

(6.4-9)

(6.4-10) 将式(6.4-9)、(6.4-10)代入式(6.4-7)、式(6.4-8),得到

乘法器的输出信号为

上式中的信号通过低通滤波器后的输出为

上式中的信号送到抽样判决器,抽样判决规则为

我们用表示发送信息码“0”()的概率,用表示发送信息码

“1”()的概率,用表示发送信息码“0”而比较判决器的输出为“1”的概率;用表示发送信息码“1”而比较判决器的输出为“0”的概率,则2PSK系统总的误码率为

(6.4-11)

上式中,用到关系式

则式(6.4-11)变成

因为、、、是相互独立的高斯随机变量,参见式,其中变量服从广义瑞利分布,而变量服从瑞利分布,其概率密度分别为

将上式应用于式(6.4-11),则可得

参照式(6.3-9)的求法,求出上式的结果为

上式中。

同理求出

则2DPSK差分相干解调法的总误码率

2DPSK相干解调法的误码率

图6-4-10 2DPSK信号的相干解调方框图

在2DPSK的相干解调法中,误码()事件为两个不相容事件、之和:

)

)

不难看出:

所以2DPSK系统总的误码率为:

将式(6.4-6)代入上式,得到2DPSK采用相干解调法的总的误码率为

多圈绝对值编码器工作原理

2010-04-30 08:14 传统的绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 单圈绝对值编码 多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度. 绝对值多圈有电子增量计圈与机械绝对计圈等多种,(还有其他几圈方式,但不多见)。机械绝对计圈,无论是每圈位置是绝对的,而且圈数也是绝对值的,但是,这样的话,圈数就有个范围,例如现在较多的4096圈和65536圈两种。这样,就有人提出来,超过圈数还算不算绝对的在一次加工中不超过圈数,或停电移动不超过1/2圈数,当然是绝对的。 电子增量计圈,通过电池记忆圈数,实际上是单圈绝对,多圈增量,好处是省掉了一组机械齿轮,经济、体积小且没有圈数限制,似乎也不错,但是他毕竟是多圈增量的,不能算真正意义上的绝对值,什么是真正意义上的绝对值就是不依赖于前次历史的直接读数。它在停电后,由于电池低功耗的要求,移动的速度与范围其实是有限制的,另外加上电池的因数,可靠性方面还是要有疑问的。尤其是如果计圈的失误,反而无法找到原来的绝对位置。 事实上,很多人理解用绝对值,都是停电后移动的问题,却不了解德国人在运动控制中用机械真多圈绝对值的真正用意,由于真正的绝对值是不依赖于前次历史

绝对值编码器的“绝对”的定义

什么是绝对值编码器的“绝对式”的定义 旋转编码器是工业中重要的机械位置角度、长度、速度反馈并参与控制的传感器,旋转编码器分增量 值编码器、绝对值编码器、绝对值多圈编码器。 从外部接收的设备上讲(如伺服控制器、PLC),增量值是指一种相对的位置信息的变化,从A点变 化到B点的信号的增加与减少的计算,也称为“相对值”,它需要后续设备的不间断的计数,由于每次的数据并不是独立的,而是依赖于前面的读数,对于前面数据受停电与干扰所产生的误差无法判断,从而造 成误差累计;而“绝对式工作模式”是指在设备初始化后,确定一个原点,以后所有的位置信息是与这个“原点”的绝对位置,它无需后续设备的不间断的计数,而是直接读取当前位置值,对于停电与干扰所可 能产生的误差,由于每次读数都是独立不受前面的影响,从而不会造成误差累计,这种称为接收设备的 “绝对式”工作模式。 而对于绝对值编码器的内部的“绝对值”的定义,是指编码器内部的所有位置值,在编码器生产出厂后,其量程内所有的位置已经“绝对”地确定在编码器内,在初始化原点后,每一个位置独立并具有唯一性,它的内部及外部每一次数据刷新读取,都不依赖于前次的数据读取,无论是编码器内部还是编码器外部,都不应存在“计数”与前次读数的累加计算,因为这样的数据就不是“独立”“唯一”“量程内所有 位置已经预先绝对确立”了,也就不符合“绝对”这个词的含义了。 所以,真正的绝对编码器的定义,是指量程内所有位置的预先与原点位置的绝对对应,其不依赖于 内部及外部的计数累加而独立、唯一的绝对编码。 关于“绝对式”编码器的概念的“故意混淆”与认识的误区 关于绝对值编码器,很多人的认识还是停留在“停电”的位置保存这个概念,这个是片面而有局限性的,“绝对值”编码器不仅仅是停电的问题,对于接收设备,真正的“绝对值”的意义在于其数据刷新与 读取无论在编码器内部还是外部,每一个位置的独立性、唯一性、不依赖于前次读数的“绝对编码”,对 于这个“绝对”的定义市场上还是模糊不清的,为此有些商家就会对于此概念的“故意混淆”: 混淆一:将接收设备的“绝对式工作模式”与绝对值编码器的“绝对式”的混淆。接收设备的“绝对式” 是指接收设备的无需不间断计数累加,所有位置对于设备原点的“绝对”工作模式,事实上这种 模式通过增量编码器+自身的计数累加装置+电池记忆,一样可以提供给设备“绝对式”的位置信 息,它与绝对值编码器的“绝对编码”完全不是一个概念,它存在计数的误差及累加误差的可能 性、计数装置供电故障可能性、高速时计数无法响应等可能性。 混淆二:将绝对值单圈编码器+内部及外部的计数累加装置与真正意义的绝对值真多圈编码器的混淆。绝对值单圈+计圈计数装置,它在360度以内是绝对值的,但是超过360度以后,它的位置就不是 “独立”“唯一”了,它是依靠内部或外部的计数来判断多少圈内的单圈绝对位置信息的,这种 内部或外部的“计数装置”,与增量编码器+计数装置+电池记忆的性质是一样的,任何计数上的 误差,或者计数装置工作时电源的瞬间故障,都会造成误差而累计而无法判断,造成欺骗性假绝 对化信息。而真正的绝对值多圈编码器,除了360度内的位置都是绝对唯一的以外,在超过360 度后继续有齿轮机械带动的绝对值码盘,仍然提供“独立”“唯一”、不依赖于前次数据刷新读 取累加的绝对编码。实际上从“绝对”这个定义上讲,前面的那种单圈绝对+计数累加装置的 “假多圈绝对值编码器”,它就不能再叫“绝对值多圈编码器”了,尽管在360度以内是绝对的,但是超过360度的工作量程,就不再是“绝对值编码”了。

地图-定位编码与反编码

地图-定位编码与反编码 前言学习地图,我们必须要接触两个框架:Core Location,主要包含定位、地理编码、反编码功能MapKit,利用他可以对地图进行精准的控制,如需了解请移步iOS开发之地图-地图显示/大头针本文我们主要介绍的是使用Core Location来实现定位、地理编码(包括反编码)功能。定位定位是一个很常用的功能,打开地图软件后如果用户允许软件定位的话,软件便会自动锁定到手机所在位置,并且地图上的位置会随着手机的移动而移动。定位使用到的类是Core Location框架中的CLLocationManager类。CLLocationManager中常用的方法*******类方法********** //当前系统是否打开定位服务,在设置->隐私里控制。这是能够控制手机上所有App的定位授权 +(BOOL)locationServicesEnabled; /* 定位服务授权状态,返回枚举类型,下面是类型解释 * kCLAuthorizationStatusNotDetermined:用户尚未做出决定是否启用定位服务 * kCLAuthorizationStatusRestricted:没有获得用户授权

使用定位服务,可能用户没有自己禁止访问授权 * kCLAuthorizationStatusDenied :用户已经明确禁止应用使用定位服务或者当前系统定位服务处于关闭状态 * kCLAuthorizationStatusAuthorizedAlways:应用获得授权可以一直使用定位服务,即使应用不在使用状态 * kCLAuthorizationStatusAuthorizedWhenInUse:使用此应用过程中允许访问定位服务 */ +(CLAuthorizationStatus)authorizationStatus; *******对象方法********** //开始定位追踪,开始定位后将按照用户设置的更新频率执行-(void)locationManager:(CLLocationManager *)manager didUpdateLocations:(NSArray *)locations;方法反馈定位信息 startUpdatingLocation //停止定位追踪 stopUpdatingLocation

绝对值编码器工作原理

从增量值编码器到绝对值编码器 旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计 数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一 组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编 码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

绝对位置检测系统参考点回归

1. 发那克系统绝对位置检测系统: 1)、工作原理: 绝对位置检测系统参考点回归比较简单,只要在参考点方式下,按任意方向键,控制轴以参考点间隙初始设置方向运行,寻 找到第一个栅格点后,就把这个点设置为参考点。 2)、相关参数: 参数内容系统0i/16i/18i/21i0 所有轴返回参考点的方式:0. 挡块、1. 无挡块1002.10076 各轴返回参考点的方式:0. 挡块、1. 无挡块1005.10391 各轴的参考计数器容量18210570~0575 7570 7571 每轴的栅格偏移量18500508~0511 0640 0642 7508 7509 是否使用绝对脉冲编码器作为位置检测器:0. 不是、1. 是1815.50021 7021 绝对脉冲编码器原点位置的设定:0. 没有建立、1. 建立1815.40022 7022 位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037 快速进给加减速时间常数16200522 快速进给速度14200518~0521 FL速度14250534 手动快速进给速度14240559~0562 伺服回路增益18250517 返回参考点间隙初始方向0. 正 1. 负10060003 7003 0066 3)发那克系统回零设置方法: a、设定参数: 所有轴返回参考点的方式=0; 各轴返回参考点的方式=0; 各轴的参考计数器容量,根据电机每转的回馈脉冲数作为参考计数器容量设定; 是否使用绝对脉冲编码器作为位置检测器=0 ; 绝对脉冲编码器原点位置的设定=0; 位置检测使用类型=0; 快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定; b、机床重启,手动回到参考点附近; c、是否使用绝对脉冲编码器作为位置检测器=1 ; 绝对脉冲编码器原点位置的设定=1; e、机床重启; f、由于机床参考点与设定前不同,重新调整每轴的栅格偏移量。

CTL与TC码的区别

一、前言 CTL码和TC码是目前应用得最为广泛的两种时间计数编码。电子编辑和播出控制中节目入点和出点的确定,节目长度的统计、节目编排、磁带管理等都是利用这两种编码方式进行的。本文将对这两种编码方式做一个简单的介绍和对比分析,并结合目前常用设备的情况提出一个推广TC码的参考方案供大家探讨,由于笔者的水平有限,有不当的地方,请各位同行指正。 二、CTL码和TC码 CTL是英文ConTroL(控制)的缩写,是由专用的CTL磁头在录像带控制磁迹上记录的控制信号,是频率为25Hz(PAL制的帧频)的方波脉冲。计数方式按XX小时XX分钟XX秒XX 帧的形式表示磁带的位置,每25个脉冲计算为1秒。 CTL码是一种相对码,某一个画面对应的编码是相对的,这种方式的好处在于可以通过在基准点计数器清零的办法方便地计算出节目的长度,但是,因为没有固定的编码,在播出节目带上,我们不得不注明切入点的画面和切出点的画面,而显然这种方法是不精确的。由于采用的是累加的方式计数,高速走带和磁带磁粉脱落时可能发生丢失脉冲,影响了编辑精度,造成播出误差。 TC是英文TIME CODE(时间码)的缩写,采用专门的电路对应每一帧图象在磁带上记录一个时间地址。计数方式和CTL码一样按照XX小时XX分钟XX秒XX帧的形式。目前,国际上通用的时间码有两种:LTC和VITC。 LTC(Longitudinal Time Code,纵向时间码)和CTL码类似,由固定磁头记录在一条专用磁迹上。记录频率为25Hz,精确到1帧,但是,它记录的内容和CTL码不同,LTC码是二进制码,包含了包括时间码在内的许多信息。VITC(Vertical Interval Time Code,场逆程时间码),由视频磁头在场消隐期间记录在视频磁迹上,它的记录频率为50Hz,精确到1场,即1/2帧。 这两种时间码都是绝对码,每一帧画面都有一个固定的编码,因此,它们都是非线性的编码。两者各有优缺点,LTC由于使用专用磁迹,所以可以在录制视频信号之前或之后单独将时间记录到磁带上去,但是在超慢速搜索和静帧时,时码信号相对较弱,易发生误差;VITC码克服了CTL和LTC的缺点,具有3个方面的优点:1、不受磁带速度的影响;2、编辑精度精确到1场;3、1场内反复记录3次,并进行纠错,大大减少了由于磁粉脱落造成的误差。由于使用的是视频磁鼓,VITC局限于录制视频信号的同时录制时间码,而在此之前或之后不能单独将VITC记录到磁带上去。 经过以上几个方面的介绍,我们不难看出TC码较CTL码而言具有明显的优越性。实际上,在广播级的系统中,TC码由于精确度高,已经成为行业的主流标准,随着非线性编辑系统和自动播出系统的普及,作为一种非线性码,使用TC码必要性就更加突出了。CTL码由于成本较低,只在精确度要求不高的场合,如家用录像机的设备中依然有广泛的应用。

绝对型旋转编码工作原理

绝对型旋转编码工作原理

————————————————————————————————作者:————————————————————————————————日期:

绝对型旋转编码器工作原理 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16 线……编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,

无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。

绝对值旋转编码器程序

绝对值旋转编码器程序 #include // 寄存器头文件包含 #include // 寄存器头文件包含 #include // 空操作函数,移位函数头文件包含 #define uchar unsigned char #define uint unsigned int /* sbit SH_CP = P1^1; //移位时钟脉冲端口 sbit DS = P1^2; // 串行数据输入端口 sbit ST_CP = P3^7; //锁存端口 */ int inc_data=0; //每刷新一次的增量值 int jms=0; //累计增量 int m_iPrvSSI = 0; int m_bIsSPI = 0; uchar uPrvState = 0; sbit AA = P3^3;// sbit BB = P3^4;//这个是时钟 sbit ZZ = P3^5;//这个是数据 sbit BEEP=P1^5; //正反判断 bit t_bFang = 1; int a; int iSSI = 0;

int temp,num,j; uchar led_buf[12]; /*定义LED显示缓冲区*/ uchar code table[]="0123456789"; void delay (int t) { int i,j; for(i=1;i for (j=1;j } void GetSSI(void) { uchar ix = 0; // uchar uState = 0; //状态位数据 int iSSI = 0;//当前的角度数据(0-1023) bit bCrc = 0; // 奇数或偶数标志位 int ire = 0; //增量数据,表示上次正确读的数据,和这次正确读的位置差 AA = 0; //CSN _nop_();_nop_(); BB = 0;//CLK _nop_();_nop_(); BB = 1;//CLK _nop_();_nop_(); for(ix = 0; ix { BB = 0;//CLK

通信原理实验四

实验四数字解调与眼图 一、实验目的 1. 掌握2DPSK 相干解调原理。 2. 掌握2FSK 过零检测解调原理。 二、实验内容 1. 用示波器观察2DPSK 相干解调器各点波形。 2. 用示波器观察2FSK 过零检测解调器各点波形。 三、实验步骤 本实验使用数字信源单元、数字调制单元、载波同步单元、2DPSK 解调单元及2FSK 解调单元,它们之间的信号连结方式如图3-5 所示,其中实线是指已在电路板上布好的,虚线是实验中要连接的。实际通信系统中,解调器需要的位同步信号来自位同步提取单元。本实验中尚未用位同步提取单元,所以位同步信号直接来自数字信源。在做2DPSK 解调实验时,位同步信号送给2DPSK 解调单元,做2FSK 解调实验时则送到2FSK 解调单元。 1. 复习前面实验的内容并熟悉2DPSK 解调单元及2FSK 解调单元的工作原理,接通实验箱电源。 2. 检查数字信源模块、数字调制模块及载波同步模块是否工作正常,使载波同步模块提取的相干载波CAR-OUT 与2DPSK 信号的载波CAR 同相(或反相)。 3. 2DPSK 解调实验 (1)将数字信源单元的BS-OUT 连接到2DPSK 解调单元的BS-IN 点,以信源单元的FS 信号作为示波器外同步信号,将示波器的CH1 接数字调制单元的BK,CH2(请用衰减X10 探头)接2DPSK 解调单元的MU。MU 与BK 同相或反相,其波形应接近图4-3 所示的理论波形。 图4-5 2DPSK解调信号理论波形 (2)示波器的CH2 接2DPSK 解调单元的LPF,可看到LPF 与MU 同相。当一帧内BK 中“1”码“0”码个数相同时,LPF 的正、负极性信号电平与0 电平对称,否则不对称。

绝对值编码器简介

绝对值编码器概述 工作原理 绝对值编码器与增量编码器工作原理非常相似。它是一个带有若干个透明和不透明窗口的转动圆盘,用光接收器来收集间断的光束,光脉冲转换成电脉冲后, 由电子输出电路进行 处理,并将电脉冲发送出去。 绝对值代码 绝对值编码器和增量编码器之间主要的差别在于位置是怎么样来确定的:增量编码器的位置是从零位标记开始计算的脉冲数量来确定的,而绝对值编码器的位置是由输出代码的读数来确定的,在一转内每个位置的读数是唯一的。因此,

当电源断开或码盘移位时,绝对值编码器不会丢失实际位 置。 然而,当绝对值编码器的电源一旦重启位置值就会立即替代旧值,而一个增量编码器则需要设置零位标记。 输出代码用于指定绝对位置。很明显首选会是二进制码,因为它可以很容易被外部设备所处理,但是,二进制码是直接从旋转码盘上取得的,由于同时改变的编码状态位数超过一位,所以要求同步输出代码很难。 例如,两个连续的二进制码编码7(0111)变到8(1000),可以注意到所有位的状态都发生了变化。因此,如果你试着读在特定时刻的编码,要保证读数的正确性是很困难的,因为在数据改变的一瞬间同时就有超过一位的状态变化。因此,格雷码在二个连续编码之间(甚至于从最后一个到第一个)只有一位二进码状态变化。 格雷码通过一个简单的组合电路就可以很容易被转换为二进制码。(见如下表单)

格雷余码 当定义位置的个数不是2的幂次方时,从最后一个位置变到最前一个位置,即使是格雷码,同时改变的编码状态也会超过一位。 例如,假设一个每转12个位置的绝对型编码器,其格雷码如右侧所示,显而易见在位置11和0之间变化时,3位二进制码位同时改变状态,可能会引起读数出错,这是不允许的。试用格雷余码,3位二进制就可以维护编码仅仅只有一位状态变化,使得位置0与N值一一对应,这就得到格雷余码。其中,N是这样一个数,从转换成二进制码的格雷余码中减去N,就得到正确的位置值。 超差值N的计算: N=(2n-IMP)/2 式中:IMP IMP是每转的位置数(只能是 偶数)

通讯原理课后习题答案

附表 二进制码 1 1 1 0 0 1 0 NRZ(AK) 2ASK 2FSK 2PSK NRZ(BK) 2DPSK CMI MANCHESTER 差分编码 MILLER

实验报告部分答案及图形: 实验一:数字信号源实验 1、(为《实验指导书》中“基本原理”的内容) 2、 实验二: 1.设绝对码全为”1”,全为”0”或”10011010”,求相对码? 00000000 10011010 绝对码 11111111 开始为0 10101010 00000000 11101100 相对码 开始为1 01010101 11111111 00010011 2.设相对码全为”1”,全为”0”或”10011010”,求绝对码? 00000000 10011010 相对码 11111111 x1010111 x0000000 绝对码 x0000000 3.设信息代码为10011010,载波分别为码元速率的1倍和1.5倍,画出 2DPSK及2PSK信号波形. 答:(1)当载波为码元速率的1倍时,设BK已0开始 信息代码: 1 0 0 1 1 0 1 0 AK BK 2PSK 2DPSK (2)当载波为码元速率的1.5倍时. 2PSK

4. 总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由相对码至绝对码的变换电路。 答:设定:A k 绝对码;B k 相对码;B k-1相对码的前一个码元 真值表如下: A k —> B k B k —> A k A k B k-1 B k B k B k-1 A k 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 “1变 不变” “不变为0,变化为1” 所谓“变”与“不变”是指“B k-1”到“B k ”的状态。 因此他们的关系是:A k = B k 异或B k-1 ; B k =A k 异或B k-1 绝对码到相对电路设计如右图: 用D 触发器和位同步信号一起产生B k-1信号。 用异或门电路实现异或运算。 5. 总结2DPSK 信号的相位变化与绝对码的关系以及2DPSK 信号的相位变化与相对码的关系(即2PSK 的相位变化与信息代码之间的关

绝对值编码器说明

绝对值型的特点 对应旋转角度以格雷码形式并行输出绝对位置值,而且无需计数器。在通电状态下常时输出旋转角度,因为不用计数,可以在有电气噪声、振动的环境下使用。 而且在掉电和上电时都能正确读出旋转角度,不必回归原点,提高系统的速度。 格雷二进制码是为了弥补二进制码的缺陷而产生的代码。 在二进制码中当从某一个数到下一个数变化时,可能同时有2个以上的数据位发生变化,由于对各位读取的时序上的差异,可能造成读出错误。 为了解决此问题,设计一种代码,使其在从任一数到下一数变化时,只有一个数据位变化,以避免读取错误,这样的代码即格雷二进制码。输出码的转换 使用格雷码时,按以下方式进行二进制,BCD码转换。

输出脉冲数/转 旋转编码器的轴转一圈所输出的脉冲数。对于光学式旋转编码器,通常与旋转编码器内部的光栅的槽相同。(也可在电气上使用输出脉冲数增加到槽数的2倍、4倍。) 增量型 在转动时,可连续输出与旋转角度对应的脉冲数。静止状态不输出。因此,只要对脉部进行计数,就可知旋转的位置。 增量型旋转编码器可任选基准位置。根据在一圈内只输出一次的Z 相信号,可调整基准位置。 绝对值型 与旋转的有无没有关系,可并行输出与旋转角度对应的角度信号,可确认绝对位置。 分辩率 分辩率表示旋转编码器的主轴旋转一周,读出位置数据的最大等分数,绝对值型不以脉冲形式输出,而以代码形式表示当前主轴位置(角度),与增量型不同,相当于增量型的“输出脉冲/转”。 光栅 光学式旋转编码器,其光栅有金属和玻璃两种。如是金属制的开有通光孔(槽)。如是玻璃制的,是在玻璃表面涂了一层遮光膜,在此上面没有透明线条(槽)。槽数少的场合,可在金属圆盘上用冲压加工或腐蚀法开槽,在耐冲击型编码器上使用了金属的光栅。

设计报告--010---绝对码—相对码互换器的FPGA设计与实现

绝对码—相对码互换器设计 一.相对码绝对码转换器设计方法的一般步骤: 1)绝对码—相对码转换器过程:QuartusⅡ文本输入设计方法的一般步骤 2)相对码—绝对码转换器过程:QuartusⅡ文本输入设计方法的一般步骤 3) 绝对码—相对码互换器过程: QuartusⅡ原理图设计方法的一般步骤(一起实现) 二.绝对码—相对码转换器设计 1)绝对码—相对码转换器过程的设计步骤:运用QuartusⅡ文本输入设计方法的一般步骤 (a)创建设计工程 (b)设计输入 (c)项目编译 (d)项目防真验证 绝对码—相对码转换器方法简单,VHDL源程序具体如下: LIBRARY IEEE; /*库说明语句*/ USE IEEE.STD_LOGIC_1164.ALL; /*程序包说明语句,声明 USE IEEE.STD_LOGIC_ARITH.ALL; 要引用IEEE库中的 USE IEEE.STD_LOGIC_UNSIGNED.ALL; 这三个程序包中的所有项目*/ ENTITY akld1 IS /*定义一个实体akld1,clk ,clr,a为输入PORT(clk,clr,a:IN STD_LOGIC; 引脚, 为STD_LOGIC型, b为输出引 b:OUT STD_LOGIC); 脚, 为STD_LOGIC型*/ END akld1; ARCHITECTURE divcnt OF akld1 IS /*根据akld1定义一个结构体名为divcnt*/ SIGNAL temp:STD_LOGIC; /*定义一个中间变temp*/ BEGIN PROCESS(clk,clr) /*当clk, clr改变时,执行下面的进程*/ BEGIN IF(clk'EVENT AND clk='1')THEN /*当为上升沿的时候*/ IF(clr='1')THEN /*如果clr='1'*/ temp<='0'; /* temp清0*/

增量型与绝对值旋转编码器

一、增量型旋转编码器 轴的每转动一周,增量型编码器提供一定数量的脉冲。 周期性的测量或者单位时间内的脉冲计数可以用来测量移动的速度。 如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。双通道编码器输出脉冲A、B之间相差为90度,能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制;另外,三通道增量型旋转编码器每一圈产生一个称之为零位信号的脉冲(Z)。 二、绝对值旋转编码器 绝对值编码器为每一个轴的位置提供一个独一无二的编码数字值。特别是在定位控制应用中,绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵的输入装置;而且,当机器合上电源或电源故障后再接通电源,不需要回到位置参考点,就可利用当前的位置值。 单圈绝对值编码器把轴细分成规定数量的测量步,最大的分辩率为16位(进口可做到24位,每圈16777216分割度),这就意味着最大可区分65536个位置+多圈绝对值编码器不仅能在一圈内测量角位移,而且能够用多步齿轮测量圈数。多圈的圈数为12位,也就是说最大4096圈可以被识别。总的分辩率可达到25或28位。 并行绝对值旋转编码器传输位置值到估算电子装置通过几根电缆并行传送。 串行绝对值编码器,输出数据可以用标准的接口和标准化的协议传送,同时在过去点对点的连接实现了串行数据传送。 编码器是把角位移或直线位移转换成电信号的一种装置。 前者称为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道

绝对值编码器(终审稿)

绝对值编码器 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器 (旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口

应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。 增量式编码器的问题: 增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。 增量型编码器的一般应用: 测速,测转动方向,测移动角度、距离(相对)。 绝对型编码器(旋转型) 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16 线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的

通信原理实验二

实验二 数字调制 一、 实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。 3、掌握相对码波形与2PSK 信号波形之间的关系、绝对码波形与2DPSK 信号波形之间的关系。 4、了解2ASK 、2FSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK 、2FSK 、2PSK 、2DPSK 信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK 、2FSK 、2DPSK 信号的频谱。 三、实验步骤 本实验使用数字信源单元及数字调制单元。 1、熟悉数字调制单元的工作原理。接好电源线,打开实验箱电源开关。 2、用数字信源单元的FS 信号作为示波器的外同步信号,示波器CH1 接信源单元的(NRZ-OUT)AK ,CH2 接数字调制单元的BK ,信源单元的K1、K2、K3 置于任意状态(非全0),观察AK 、BK 波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。 图 2-1 AK 和BK 信号 结论:从图中结果,总结AK 信号和BK 信号的关系为:-1b =n n n a b ⊕,反过来,-1=b n n n a b ⊕。由于异或1相当于取反,异或0相当于保持。所以当-1=0n b 时,b =n n a ,而当-1=1n b 时,b =n n a 。最终的BK 波形由b n 的首个参考相位决定。

3、示波器CH1 接2DPSK,CH2 分别接AK 及BK,观察并总结2DPSK 信号相位变化与绝对码的关系以及2DPSK 信号相位变化与相对码的关系。 图 2-2 AK和2DPSK信号 结论:2DPSK信号在AK码元为“1”时反相。 图 2-3 BK和2DPSK信号 结论:2DPSK信号在BK信号的前后码元不一致时反相。 4、示波器CH1 接AK、CH2 依次接2FSK 和2ASK;观察这两个信号与AK 的关系。 图 2-4 AK信号和2FSK信号 结论: 2FSK信号中,在AK信号码元为“1”是,对应已调波有载波振幅,码元为“0”时,无已调载波波振幅。

通信原理实验习题解答

实验一 1. 根据实验观察和纪录回答: (1)不归零码和归零码的特点是什么? (2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同? 答: 1)不归零码特点:脉冲宽度τ等于码元宽度Ts 归零码特点:τ<Ts 2)与信源代码中的“1”码对应的AMI码及HDB3码不一定相同。因信源代码中的“1”码对应的AMI码“1”、“-1”相间出现,而HDB3码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。举例: 信源代码 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 AMI 1 0 0 0 0 -1 1 0 0 0 0 -1 0 0 0 0 0 1 HDB3 1 0 0 0 1 -1 1 -1 0 0 -1 1 0 0 0 1 0 -1 2. 设代码为全1,全0及0111 0010 0000 1100 0010 0000,给出AMI及HDB3码的代码和波形。 答: 信息代码 1 1 1 1 1 1 1 AMI 1 -1 1 -1 1-1 1 HDB3 1 -1 1 -1 1 -1 1 信息代码0 0 0 0 0 0 0 0 0 0 0 0 0 AMI0 0 0 0 0 0 0 0 0 0 0 0 0 HDB3 0 0 0 1-10 0 1-1 0 0 1 -1 信息代码0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 AMI0 1 -1 1 0 0 -1 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0 0 HDB30 1 -1 1 0 0 -1 0 0 0-1 0 1 -1 1 0 0 1 -1 0 0 0 –1 0 3. 总结从HDB3码中提取位同步信号的原理。 答: HDB3中不含有离散谱f S(f S在数值上等于码速率)成分。整流后变为一个占空比等于0.5的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱f S成分,故可通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。

相对码和绝对码

6.4 二进制移相键控(2PSK)及二进制差分移相键控 (2DPSK) 本节讨论: 6.4.1、2PSK信号及2DPSK信号的定义 6.4.2、2PSK信号及2DPSK信号的波形 6.4.3、2PSK信号的时域表达式 6.4.4、2PSK信号的功率谱密度 6.4.5、2PSK信号的产生 6.4.6、2PSK信号的解调 6.4.7、2DPSK方式 6.4.8、2PSK及2DPSK系统的抗噪声性能 6.4.1、2PSK、 2DPSK信号的定义: 一、2PSK: 数字信号的“1”都对应于已调信号中的载波0相位;数字信号的“0”都对应于已调信号中载波相位,反之亦然。这种调相方式称为“绝对调相”。又称二相绝对调相(2PSK)。 注意: 1、无论哪一种对应关系,已调信号的相位变化都是相对于一个固定的参考相位 未调载波的相位来取值。

2、在实际应用中,存在相干载波相位模糊问题,即在二相绝对调相接收中可能出现倒 现象。为此,也可采用差分编码,这里通常称为相对(差分)移相,每一个码元中载波相位的变化不是以固定相位作参考,而是以前一码元载波的相位为参考。 二、2DPSK: 当数字信号为“1”时,码元中载波的相位相对于前一个码元的载波相位变化π;当数字信号为“0”时,码元中载波的相位相对于前一码元的载波相位不变化,反之亦然。这种调相方式称为二相相对调相(2DPSK)。 6.4.2、2PSK、 2DPSK信号波形 1 2 从波形中可以看出,数字信号(码)和已调载波的相位关系见下表:

6.4.3、2PSK信号的时域表达式: 2PSK采用的两种载波信号是: 为信息码元,且,在二进制频相键控2PSK中,当传送“1”码时对应于载波的初始相位为0,传送“0”码时对应于载波的初始相位为,即 为使变为双极性不归零脉冲信号,令,当, ;当时,,所以为双极性不归零脉冲信号,其中。 2PSK信号的时域表达式: 其中,。 令,此时为双极性不归零脉冲序列,则

绝对值编码器.

增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器, 绝对型编码器。 增量型编码器(旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A B两相上,可增强稳定信号;另每转输出一个Z 相脉冲以代表零位参考位。 由于A B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL ,集电极开路(PNR NPN , 推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z- ),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接一编码器的脉冲信号一般连接计数器、PLC计算机,PLC和计算机 连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B 两相联接,用于正反向计数、判断正反向和测速。 A B Z三相联接,用于带参考位修正的位置测量。 A A-,B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献 的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

通信原理数字调制规律技巧

第一部分 二进制数字调制的规律及技巧 除2FSK 外,抽样判决器之前的部分与模拟线性调制有相同的规律和技巧。下面重点强调一下2PSK 和2DPSK ①关于矢量图的思考: 结论:在绝对调相中所有的参考相位都是未调载波cos c t ω的初相或末相。这个初相/末相可以是0相,也可以是π相,看是如何规定的。绝对调相的相位差是指每个绝对码的已调波初相/末相与该码元所对应未调载波的初相/末相之差。相对调相是指每个绝对码的已调波初相/末相与其相邻前一码元已调波初相/末相之差。(a ) “1”“0” (b ) “1” “0” 2DPSK 信号的矢量图 参考:前一 码元相位A 方式 B 2PSK 信号的矢量图 ( a ) “1” “0” (b ) “1” “0”码元所对应未调载波的初相/末相之差A 方式 0"0""1" ?π??=? ?--表示代码--表示代码/2"0"/2"1"π?π??=?-?--表示--表示0"0""1"?π--?=?--?表示代码表示代码/2"0"/2"1"π?π--?=?---?表示代码表示代码 绝对码与相对码之间的转换,一般绝对码用n a 表示,相对码用 n b 表示。

0 1 1 0 1 1 1 0 0 1 {}n a {} n b 1 0 1 1 0 0 1 0 1 {}n b {} n a 1 n n n b a b -=⊕1 n n n a b b -=⊕

) 绝对码 )1 0101相对调相 “1”“0” “1”“0” ) 绝对码 )1 0101相 对调相 “1”“0”“1” “0” 未调载波的初相为0未调载波的初相为 ,矢量图反转即可 参考相位: 指前一码元已调波初相/末相,说明“0”码已调波初相/末相与前一码元已调波初相/末相一致;“1”码已调波初相/末相与前一码元已调波初相/末相相反 指各码元所对应未调载波的初相/末相,说明“0”码已调波初相/末相与其所对应未调载波的初相/末相一致;“1”码已调波初相/末相与其所对应未调载波的初相/末相相反。 总结:无论什么样的参考相位,只需记一在绝对调相中,只要“0与其所对应未调载波的初相/末相一致,就对应正电平;在相对调相中,只要“0”码已调波初相/末相与前一码元已调波初相/末相一致,在差分相干解调中,就对应正电平。相应的“1”码就对应负电平。 ②几种解调方法 2DPSK 相干解调<极性比较法)加码反变换法

相关文档
相关文档 最新文档