文档库 最新最全的文档下载
当前位置:文档库 › 巧借三角形的两条内(外)角平分线夹角的模型解决问题

巧借三角形的两条内(外)角平分线夹角的模型解决问题

巧借三角形的两条内(外)角平分线夹角的模型解决问题
巧借三角形的两条内(外)角平分线夹角的模型解决问题

B

B

E

C

B

A

巧借三角形的两条内(外)角平分线夹角的模型解决问题

新北实验中学 严云霞

【基本模型】

三角形的两个内(外)角平分线所夹的角与第三个角之间的数量关系 模型一:当这两个角为内角时:这个夹角等于90°与第三个角一半的和(如图1); 模型二:当这两个角为外角时:这个夹角等于90°与第三个角一半的差(如图2); 模型三:当这两个角为一内角、一外角时:这个夹角等于第三个角一半(如图3);

【分析】三个结论的证明

例1、 如图1,△ABC 中,BD 、CD 为两个内角平分线,

试说明:∠D=90°+2

1

∠A 。

(方法一)解:∵BD 、CD 为角平分线

∴∠CBD =21∠ABC , ∠BCD =2

1

∠ACB 。

在△BCD 中:∠D =180°-(∠CBD +∠BCD )

=180°-21

(∠ABC +∠ACB )

=180°-21

(180°-∠A )

=180°-21×180°+21

∠A

=90°+2

1

∠A

(方法二)解:连接AD 并延长交BC 于点E 解:∵BD 、CD 为角平分线

∴∠CBD =21∠ABC , ∠BCD =2

1

∠ACB 。

∵∠BDE 是△ABD 的外角 ∴∠BDE =∠BAD+∠ABD

=∠BAD+2

1

∠ABC

同理可得∠CDE =∠CAD+2

1

∠ACB

又∵∠BDC =∠BDE+∠CDE

∴∠BDC =∠BAD+21∠ABC+∠CAD+21

∠ACB

=∠BAC+21

(∠ABC+∠ACB )

=∠BAC+21

(180°-∠BAC )

=90°+2

1

∠BAC

例2、如图,BD、CD为△ABC的两条外角平分线,

试说明:∠D=90°-2

1

∠A 。

解:∵BD 、CD 为角平分线

∴∠CBD=21

∠CBE

∠BCD =2

1

∠BCF

又∵∠CBE 、∠BCD 为△ABC 的外角 ∴∠CBE =∠A +∠ACB ∠BCF =∠A +∠ABC

∴∠CBE +∠BCF =∠A +∠ACB +∠A +∠ABC =∠A +180°

在△BCD 中:∠D =180°-(∠CBD +∠BCD )

=180°-(21∠CBE +21

∠BCF )

=180°-21

(∠CBE +∠BCF )

=180°-21

(∠A +180°)

=90°-2

1

∠A

【小结】通过对模型1、2的分析和证明,我们还能发现三角形两内角平分线的夹角和两外角平分线的夹角互补,即和为180°。

例3:如图,在△ABC 中,BD 为∠ABC 的平分线,CD 为∠ACE的平分线,

试说明:∠D =2

1

∠A ;

解:∵BD 为角平分线,

∴∠CBD =2

1

∠ABC ,

又∵CD 为∠ACE 的平分线

∴∠DCE=2

1

∠ACE ,

C

B

A

而∠DCE 为△BCD 的一个外角 ∴∠DCE=∠D+∠DBC , 即∠D =∠DCE -∠DBC

∴∠D =21∠ACE -21

∠ABC

=21

(∠ACE -∠ABC )

=2

1

∠A 。

【巧借模型解决问题】

一、 运用模型直接求值

例4、如图,在△ABC 中,∠A=400,D 点是∠ABC 和∠ACB 分线的交点,则∠BDC= 0

【思路分析】由条件知,这是图1的模型:三角形两条内角

平分线的夹角,∴∠BDC =90°+2

1

∠A

当∠A=400

时,∠BDC=90°+20°=110° 反之,如果已知∠BDC 的度数,则把度数代入公式:∠BDC =90°+

2

1

∠A ,可以解出∠A 的度数。

二、 运用模型揭秘画图题 例5、小明用下面的方法画出了45°角:作两条互相垂直的直线MN 、PQ ,点A 、B 分别是MN 、PQ 上任意一点,作∠ABP 的平分线BD ,BD 的反向延长线交∠OAB 的平分线于点C ,则∠C 就是所求的45°角.你认为对吗?请给出证明.

【思路分析】通过对两条角平分线的分析,可以发现AC 、BD 分别是△AOB 的内角平分线和外角平分线的夹角。根据图3的结论:这个夹角等于第三个角一半,

可知∠C=2

1

∠AOB 。

解:先模仿图3证明∠C=2

1

∠AOB

又∵∠AOB=90°

∴∠C=2

1

∠AOB=45°

三、 运用模型探究规律,提升拓展 例6、问题引入:

(1)如图①,在△ABC 中,点O 是∠ABC 和∠ACB 平分线的交点,若∠A=α,则∠BOC= (用α表示);

拓展研究:

(2)如图②,∠CBO=13∠ABC ,∠BCO= 1

3

∠ACB ,∠A=α,试求∠BOC 的度数

(用α表示)

归纳猜想:

(3)若BO 、CO 分别是△ABC 的∠ABC 、∠ACB 的n 等分线,它们交于点O ,∠

CBO=1n ∠ABC ,∠BCO=1

n ∠ACB ,∠A=α,则∠BOC=

(用α表示). 类比探索:

(4)特例思考: 如图③,∠CBO= 13∠DBC ,∠BCO=1

3

∠ECB ,∠A=α,求∠

BOC 的度数(用α表示).

一般猜想:若BO 、CO 分别是△ABC 的外角∠DBC 、∠ECB 的n 等分线,它们

交于点O ,∠CBO= 1n ∠DBC ,∠BCO=1

n

∠ECB ,∠A=α,请猜想∠BOC=

(用α表示). 【思路分析】

(1) 此为图1的模型,∠O= 90°+21∠BAC= 90°+2

1

α

(2) 把角平分线换成1

3

,但证明的思路大致相似。

在△BOC 中:∠BOC =180°-(∠OBC +∠OCB )

=180°-1

3(∠ABC +∠ACB )

=180°-1

3(180°-∠A )

=180°-13×180°+1

3∠A

=120°+1

3∠A

=120°+1

3

α

(3)把角平分线换成1

n

,证明的思路类似。

在△BCD中:∠BOC =180°-(∠OBC +∠OCB )

=180°-1

n (∠ABC +∠ACB )

=180°-1

n

(180°-∠A )

=180°-1

n

×180°+

1

n

∠A

1

n

n

-

×180°+

1

n

∠A

1

n

n

-

×180°+

1

n

α

(4)此为图2的模型中,把角平分线换成1

3

,证明如下:

∵∠CBD、∠BCE为△ABC的外角

∴∠CBD=∠A+∠ACB,∠BCE=∠A+∠ABC

∴∠CBD+∠BCE=∠A+∠ACB+∠A+∠ABC=∠A+180°在△BCD中:∠BOC=180°-(∠CBO+∠BCO)

=180°-(1

3

∠CBD+

1

3

∠BCE)

=180°-1

3

(∠CBD+∠BCE)

=180°-1

3

(∠A+1180)

=120°-1

3

∠A

=120°-1 3α

一般猜想:把1

3

再次推广为

1

n

,证明类似:

在△BCD中:∠BOC=180°-(∠CBO+∠BCO)

=180°-(1

n

∠CBD+

1

n

∠BCE)

=180°-1

n

(∠CBD+∠BCE)

=180°-1

n

(∠A+180°)

1

n

n

-

×180°-

1

n

∠A

1

n

n

-

×180°-

1

n

α

【小结】在(2)(3)(4)的结果对比中,我们发现这两个夹角不再互补,但仍然存在中间的运算符号相反的问题,从一般猜想中可以发现这个规律。虽

然在问题设计中引起一连串的变式,从1

2

变成

1

3

,再从

1

3

推广为

1

n

,但问题证明

的思路并未发生质的变化。

四、三种模型合为一体,渗透分类思想

例7、好学的小红在学完三角形的角平分线后,钻研了下列4个问题,请你一起参与,共同进步.

如图,△ABC,点I是∠ABC与∠ACB平分线的交点,点D是∠MBC与∠NCB平分线的交点,点E是∠ABC与∠ACG平分线的交点.

问题(1):若∠BAC=50°,则∠BIC=°,∠BDC=°.

问题(2):.猜想∠BEC与∠BAC的数量关系,并说明理由.

问题(3):若∠BAC=x°(0<x<90),则当∠ACB等于度(用含x的代数式表示)时,CE∥AB.说明理由.

问题(4):若△BDE中存在一个内角等于另一个内角的三倍,试求∠BAC的度数.

【思路分析】

(1)已知点I是两内角∠A BC、∠A CB平分线的交点,故由图1归纳的模型:∠BIC==90+∠BAC,由此可求∠BIC;因为CD、BD分别为△ABC的两外角平分线,故由图2的模型:∠BDC=190﹣∠BAC,由此可求∠BDC;

(2)因为BE、CE分别为△ABC的内角、外角平分线,故由图3的模型:∠BEC= =∠BAC,由此可求∠BEC;

(3)当CE∥AB时,∠BEC=∠ABC,由(3)可知,∠ABC=∠BAC,∠ACB=(180﹣∠BAC).

(4)由题意可证:△BDE是直角三角形,∠DBE=90°,∴∠D+∠E=90°。已知条件中:一个内角等于另一个内角的三倍,则不明确,所以应当分类讨论。

①若∠EBD=3∠D;②若∠EBD=3∠E;③若∠D=3∠E;④若∠E=3∠D.

解:(1)∵点I是两角B、C平分线的交点,

∴∠BIC=180°﹣(∠IBC+∠ICB)

=180°﹣(∠ABC+∠ACB)

=180°﹣(180°﹣∠A)

=90+∠BAC=115°;

类似证明∠BDC=180°﹣∠BIC=90°﹣∠BAC=65°;

或者也可以这样证明:∵BE、BD分别为∠ABC的内角、外角平分线,

∴∠IBC =∠ABC,∠CBD=∠CBM;

∴∠DBI=∠IBC+∠CBD=∠IBC =∠ABC+∠CBM

=(∠ABC+∠CBM)

=180°

∴∠DBI=90°,同理∠DCI=90°,

在四边形CDBI中,∠BDC=180°﹣∠BIC=90°﹣∠BAC=65°;

(2)有图3的模型可证∠BEC=∠BAC.

也可借助上面的小题这样证明:在△BDE中,∠DBI=90°,

∴∠BEC=90°﹣∠BDC

=90°﹣(90°﹣∠BAC)=∠BAC;(3)当∠ACB等于(180﹣2x)°时,CE∥AB.理由如下:

∵CE∥AB,

∴∠ACE=∠A=x°,

∵CE是∠ACG的平分线,

∴∠ACG=2∠ACE=2x°,

∴∠ABC=∠ACG﹣∠BAC=2x°﹣x°=x°,

∴∠ACB=180°﹣∠BAC﹣∠ABC=(180﹣2x)°.

(4)由题意知:△BDE是直角三角形∠D+∠E=90°

若∠EBD=3∠D时∠BAC=120°;若∠EBD=3∠E时∠BAC=60°;

若∠D=3∠E时∠BAC=45°;若∠E=3∠D时∠BAC=135°.

综上所述,∠BAC=120或60°或45°或135°.

巩固练习:

1、如图:BO、CO分别平分∠ABC和∠ACB,

(1)若∠A=40°,求∠BOC的度数;

(2)若∠A=60°,∠BOC= ;若∠A=100°,∠BOC= ;(3)由(1)、(2)的结果,试直接写出∠BOC与∠A之间的数量关系;(4)利用你得出的结论,求当∠BOC=150°时,求∠A的度数.

2、已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE 和射线AF交于点G.

(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,则∠OGA= ;

(2)若∠GOA= 1

3

∠BOA,∠GAD=

1

3

∠BAD,∠OBA=30°,则∠OGA= ;

(3)将(2)中“∠OBA=30°”改为“∠OBA=α”,其余条件不变,则∠OGA= (用含α的代数式表示);

(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度数(用含α的代数式表示)。

几何证明角平分线模型(高级)

几何证明——角平分线模型(高级) 【经典例题】 例1、已知如图,ABC ?中,BC AC =,AD 平分CAB ∠,若ο 100=∠C ,求证:CD AD AB +=。 例2、如图,已知在ABC ?中,ο 60=∠B ,ABC ?的角平分线CE AD ,相交于点O ,求证:AC CD AE =+。 E O B 例3、如图,BD 平分ABC ∠,?=∠45ADB ,BC AE ⊥,求AED ∠. A B C D 例4、已知,如图ABC ?中,AD 为ABC ?的角平分线,求证:BD AC DC AB ?=?.

例5、如图,已知P 为锐角△ABC 内一点,过P 分别作AB AC BC ,,的垂线,垂足分别为F E D ,,,BM 为ABC ∠的平分线,MP 的延长线交AB 于点N ;如果PF PE PD +=,求证:CN 是ACB ∠的平分线。 A B C N M P D E F 例6、如图,在梯形ABCD 中,BC AD //,DC AB =,?=∠80ABC ,E 是腰CD 上一点,连接BE 、AC 、 AE ,若?=∠60ACB ,?=∠50EBC ,求EAC ∠的度数. B C E 例7、已知:ABC ?中,BC AB <,AC 的中点为M ,AC MN ⊥交ABC ∠的角平分线于N . (1)如图1,若?=∠60ABC ,求证:BN BC BA 3= +;

(2)如图2,若?=∠120ABC ,则BA 、BC 、BN 之间满足什么关系式,并对你得出的结论给予证明. A C 【提升训练】 1、在ABC ?中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-. B 2、如图,在ABC ?中,A ∠等于ο 60,BE 平分CD ABC ,∠平分ACB ∠,求证:EH DH =。 3、如图所示,在ABC ?中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证:2AB AC AM +=。

角平分线四大辅助线模型 总结+习题+解析

角平分线四大辅助线模型 角平分线的性质为证明线段或角相等开辟了新的途径,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.涉及到角平分线的考点主要是性质、判定以及四大辅助线模型,在初二上期中、期末考试中都是经常考察的方向。 角平分线性质:角平分线上的点到角两边的距离相等. 角平分线判定:到角的两边距离相等的点在角的角平分线上. 四大模型 1、角平分线+平行线,等腰三角形必出现 已知:OC平分∠AOB,CD∥OB交OA于D. 则△ODC为等腰三角形,OD=CD. 2、角平分线+两垂线,线等全等必出现 已知:OC平分∠AOB. 辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.

3、角平分线+一垂线,中点全等必出现 已知:OC平分∠AOB,DC垂直OC于点C. 辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、角平分线+截长补短线,对称全等必出现 已知:OC平分∠AOB,截取OE=OD,连接CD、CE. 则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.

【核心考点一】角平分线的性质与判定 1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一个动点,若3PA =,则PQ 的最小值为( ) A B .2 C .3 D .【分析】 首先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据角平分线的性质,即可求得PB 的值,又由垂线段最短,可求得PQ 的最小值. 2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的角平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= ) A .3:4 B .4:3 C .16:9 D .9:16 【分析】 利用角平分线的性质,可得出ABD ?的边AB 上的高与ACD ?的AC 上的高相等,估计三角 形的面积公式,即可得出ABD ?与ACD ?的面积之比等于对应边之比. 3.(2017春?崇仁县校级月考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )

角平分线常用模型

每日一题:三角形中角平分线的基本模型 武穴市百汇学校徐国纲 在初中阶段,角平分线问题涉及角度的计算和证明。经过总结归纳,有相当部分可以转化为基本模型,掌握这些模型,可以为我们迅速找到解题思路,形成良好的数学思维习惯奠定基础。下面举例说明。 【模型一】角平分线+垂直一边 若PA⊥OM于点A,如图a,可以过P点作PB⊥ON于点B,则PB=PA。可记为“图中有角平分线,可向两边作垂线”,显然这个基本图形中可以利用角平分线的性质定理,也可以得到一组全等三角形; 【模型二】角平分线+斜线 若点A是射线OM上任意一点,如图b,可以在ON上截取OB=OA,连接PB,构造△OPB≌△OPA。可记为“图中有角平分线,可以将图形对折看,对称以后关系现”。 【模型三】角平分线+垂线 若AP⊥OP于点P,如图c,可延长AP交ON于点B,构造△AOB是等腰三角形,P是底边AB 的中点,可记为“角平分线加垂线,三线合一试试看”,实际上这是“两线合一”的一种情形,这个图形中隐含着全等和等腰三角形; 【模型四】角平分线+平行线 若过P点作PQ∥ON交OM于点Q,如图d,可以构造△POQ是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现”,这个基本图形使用频率那是相当的高,切记。 【模型五】角平分线+对角互补 若∠A+∠C=180°,BD是∠ABC的平分线,则AD=CD. 【模型六】夹角模型 ①BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=90°+1 2 ∠A. ②BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=1 2 ∠A.

BP、CP分别是∠CBD、∠BCD的角平分线,则:∠D=90°-1 2 ∠B.

角平分线模型的构造

支付宝首页搜索“ 933314”领红包,每 天都能领。付款前记得用红包 第二讲角平分线模型的构造 3月 角平分线 (l)定义:如图2-1,如果∠AOB =∠BOC ,那么∠AOC=2∠AOB=2∠BOC ,像OB 这样,从一个角的顶点出发,把这个角分成相等的两个角的射线,叫作这个角的角平分线. (2)角平分线的性质定理 ①如果一条射线是一个角的平分线,那么它把这个角分成两个相等的角, ②在角的平分线上的点到这个角的两边的距离相等. (3)角平分线的判定定理 ①在角的内部,如果一条射线的端点与角的顶点重合,且把一个角分成两个等角,那么这条射线是这个角的平分线, ②在角的内部,到一个角两边距离相等的点在这个角的平分线上, 与角平分线有关的常用辅助线作法,即角平分线的四大基本模型, 已知P 是∠MON 平分线上一点, (l)若PA ⊥OM 于点A ,如图2-2(a),可以过P 点作PB ⊥ON 于点B ,则PB=PA.可记为“图中有角平分线,可向两边作垂线”. (a) O (b) (2)若点A 是射线OM 上任意一点,如图2-2(b),可以在ON 上截取OB=OA ,连接PB ,构造△OPB ∽△OPA.可记为“图中有角平分线,可以将图对 折看,对称以后关系现”. (3)若AP ⊥OP 于点P ,如图2-2(c),可以延长AP 交ON 于点B ,构造△AOB 是等腰三角形,P 是底边AB 的中点,可记为“角平分线加垂线,三线合一试试看”. (c) O (d) O (4)若过P 点作PQ ∥ON 交OM 于点Q ,如图2-2(d),可以构造△POQ 是等腰三角形,可记为“角平分线十平行线,等腰三角形必呈现”. 例1 (1)如图2-3(a),在△ABC 中,∠C=90。,AD 平分∠CAB ,BC=6cm ,BD=4cm ,那么点D 到直线AB 的距离是( )cm. 图2-3 (a ) (2)如图2-3(b),已知:∠1=∠2,∠3=∠4, 求证:AP 平分∠BAC . 图2-3(b )

相似三角形典型模型及例题

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 1:相似三角形模型 一:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) (平行)(不平行) (二)8字型、反8字型 B C B C(蝴蝶型) (平行)(不平行) (三)母子型 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角 形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示: (五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: 二:相似三角形判定的变化模型 一线三等角的变形

. 一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。求证:(1)△AME ∽△NMD; (2)ND 2 =NC·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB·DF=AE·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. (2)双垂型 A C D E B D E

角平分线四大模型(完整版)

角平分线四大模型 模型一: 这个模型的基本思想是过角平分线上一点P 作角两边的垂线。如图中PA ⊥OA ,PB ⊥OB 。容易通过全等得到PA=PB (角平分线性质)。 注意:题目一般只有一条垂线,需要自行补出另一条垂线。甚至只给你一条角平分线,自行添加两条垂线。 例题1:AF 是△ABC 的角平分线。P 是AF 上任意一点。过点P 作AB 平行线交BC 于点D ,作AC 的平行线交BC 与点E 。证明:点F 到DP 的距离与点F 到EP 的距离相等。 拓展,如果点P 在AF 延长线上,结论是否依然成立? 例题2:如图正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值是__2√2__ E

模型二: 这个模型的基础是,在角平分线上任意找一点P ,过点P 作角平分线的垂线交角的两条边与A 、B 。这样就构造出了一个等腰三角形AOB ,即OA=OB 。这个模型还可以得到P 是AB 中点。 注意:这个模型与一之间的区别在于垂直 的位置。并且辅助线的添加方法一般是延长一段与角平分线垂直的线段。如图中的PB 。 例题1:如图,∠BAD=∠CAD ,AB>AC ,CD 垂直AD 于点D ,H 是BC 的中点。 求证:DH=1/2(AB-AC ) 提示:要使用到三角形中位线的性质,即三角形中位线是对应边的一半。 模型三: 这个模型的基础是在角的两边分别截取OA=OB ,然后在对角线上取任意一点P ,连接AP ,BP 。容易证得△APO ≌△BPO 。 注意:一般这样的模型最容易被孩子忽略,因为这个模型里没有的角度,因而对于孩子而言添出PB 这条辅助线是有难度的。添加这条辅助线的基本思想是在ON 上截 取OB ,使得AP=BP 。从而构造出一个轴对称。这样的模型一般会出现在截长补短里。 B B N

角平分线模型的构造

第二讲角平分线模型的构造3月 角平分线 (I)定义:如图2-1,如果/ AOB = / BOC,那么/ A0C=2 / AOB=2 / BOC,像OB 这样,从一个角的 顶点出发,把这个角分成相等的两个角的射线,叫 作这个角的角平分线. ⑷若过P点作PQ// ON交OM于点Q,如图2-2(d), 可以构造厶POQ是等腰三角形,可记为“角平分线 十平行线,等腰三角形必呈现” ? 例1 (1)如图2-3(a),在厶ABC 中,/ C=90。,AD 平分 / CAB,BC=6cm,BD=4cm,那么点D 到直线AB的距离是( )cm. (2)角平分线的性质定理 ①如果一条射线是一个角的平分线,那么它把这个 角分成两个相等的角, ②在角的平分线上的点到这个角的两边的距离相 等. (3)角平分线的判定定理 ①在角的内部,如果一条射线的端点与角的顶点重 合,且把一个角分成两个等角,那么这条射线是这 个角的平分线, ②在角的内部,到一个角两边距离相等的点在这个 角的平分线上, 与角平分线有关的常用辅助线作法,即角平分线的 四大基本模型, 已知P是/ MON平分线上一点, (I)若PA丄OM于点A,如图2-2(a),可以过P点作 PB丄ON于点B,贝U PB=PA.可记为“图中有角平 分线,可向两边作垂线” 图2-3 (a) ⑵如图2-3(b),已知:/仁/2,Z 3=Z4, 求 证:AP平分/ BAC . ⑵若点A是射线OM上任意一点,如图2-2(b),可以在ON上截取OB=OA,连接PB,构造△ OPB OPA.可记为“图中有角平分线,可以将图对折看,对称以后关系现”. ⑶若AP丄OP于点P,如图2-2(c),可以延长AP 交ON于点B,构造△ AOB是等腰三角形,P是底边AB的中点,可记为“角平分线加垂线,三线合 、亠、亠K ” (b)

三角形的角及倒角模型

三角形的角及倒角模 型 Revised on November 25, 2020

第二讲三角形的角及倒角模型 1、如图1,求证:AB+AE>BC+CD+DE 1 2、如图2,AC、BD是四边形ABCD的对角线,且AC、BD相交于点O,求证:AC+BD> 2(AB+BC+CD+AD)。 3、如图3,⊿ADE和⊿ABC中,∠EAD=∠AED=∠BAC=∠BCA=45°又有∠BAD=∠BCF, (1)求∠ECF+∠DAC+∠ECA的度数; (2)判断ED与FC的位置关系,并对你的结论加以证明。 4、求∠a的度数。 5、如图5,∠A=30°,求∠B+∠C+∠D+∠E的度数。 6、将图6-1中线段AD上一点E(点A、D除外)向下拖动,依次可得图6-2、图6-3、图6-4,分别探究图6-2、图6-3、图6-4中∠A、∠B、∠C、∠D、∠E(∠AED)之间有什么关系 7、如图7,在⊿ABC中D是BC上任意一点,E是AD上任意一点,试说明:AB+AC>BE+EC。 8、如图8,已知DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,则∠C =。 9、如图9所示,点E和点D分别在⊿ABC的边BA和CA的延长线上,CF、EF分别平分∠ACB和∠AED,试探索∠F与∠B,∠D的关系:。

10、如图10,⊿ABC的一条外角平分线是CE,F是CA延长线上一点,FG∥EC交AB于点G,已知∠DCE=50°,∠ABC=40°,求∠FGA的度数。 11、如图11,在⊿ABC中,∠B=∠C,FD⊥BC,ED⊥AB,∠AFD=158°,则∠EDF =。 12、如图12-1,BP、CP是任意⊿ABC的∠B、∠C的角平分线。 (1)探求∠BPC与∠A的数量关系。 (2)∠BPC能等于90度吗说明理由。 (3)当∠A为多少度时,∠BPC=2∠A (4)把图12-1中的⊿ABC变成图12-2中的四边形ABCD,BP、CP仍然是∠B、∠C的角平分线,猜想∠BPC与∠A,∠D有何数量关系(只写出猜想结果,不写说理过程)。 13、如图13,在⊿ABC中,∠ABC的两个外角平分线交于点F,探索∠F和∠A的关系。 14、如图14,在⊿ABC中,∠ABC的平分线与∠ABC的外角平分线交于点A 1 ,若∠A= 40°,则∠A 1为度;同样的方法作出∠A 2 ,则∠A 2 的度数是度;依次下 去,当作出∠A n 时,它的度数是度。 15、如图15,由图15-1的⊿ABC沿DE折叠得到图15-2;图3;图4。(1)如图2,猜想∠BDA+CEA与∠A的关系,并说明理由; (2)如图3,猜想∠BDA+CEA与∠A的关系,并说明理由; (3)如图4,猜想∠BDA+CEA与∠A的关系,并说明理由;

几何证明——角平分线模型中级

B B B D A B C 几何证明——角平分线模型(中级) 【知识要点】 1、角平分线: (1)角平分线性质定理:角平分线上的点到这个角的两边的距离相等(作用:证明两条线段相等); (2)逆定理:在角的内部,到角的两边距离相等的点在这个角的角平分线上。(作用:证明两角相等或一 条射线是一个角的角平分线)。 2、角平分线常见用法(或辅助线作法): ①垂两边:如图1,已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =。 ②截两边:如图2,已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ?≌CBP ?。 ③角平分线+平行线→等腰三角形: 如图3,已知BP 平分ABC ∠,//PA AC ,则AB AP =; 如图4,已知BP 平分ABC ∠,//EF PB ,则BE BF =。 (1) (2) (3) (4) ④三线合一(利用角平分线+垂线→等腰三角形): 如图5,已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =。 (5) 3、角平分线比例定理 如图6,AD 为ABC ?的角平分线,则 AB BD AC CD =或AB AC BD CD = 。 (6) 【经典例题】 例1、已知如图,ABC ?中,BC AC =,AD 平分CAB ∠,若ο 90=∠C ,求证:CD AC AB +=; C

例2、如图,在ABC Rt ?中,ο 90=∠ACB ,AB CD ⊥于D ,AF 平分CAB ∠交CD 于E ,交CB 于F , 且AB EG //交CB 于G 。试求:CF 与GB 的大小关系如何? E C A B D F G 例3、已知如图,ABC ?中,BC AC =,AD 平分CAB ∠,若ο 108=∠C ,求证:BD AC AB +=; 例4、如图:已知I 是ABC ?的内心,//DI AB 交BC 于点D ,//EI AC 交BC 于E 。求证:DIE ?的周长等于BC 。 A B C I D E 例5、如图:已知在ABC ?中,ABC ∠的平分线与ACB ∠的外角平分线交于点D ,DE ∥BC ,交AB 于点E ,交AC 于点F ,求证:FC BE EF -=。

第二节 与三角形有关的角-学而思培优

第二节与三角形有关的角一、课标导航 二、核心纲要 1.三角形内角和定理及其应用 180 (1)三角形内角和定理:三角形三个内角的和是. (2)三角形内角和定理的应用 ①在三角形中已知两角可求第三角,或已知各角之间关系,求各角; ②证明角之间的关系. 2.三角形的外角 (1)定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角. (2)性质:三角形的一个外角等于与它不相邻的两个内角之和, 三角形的一个外角大于与它不相邻的任何一个内角. 360 (3)三角形外角和定理:三角形外角和是. (4)三角形外角的性质的应用 ①已知外角和与它不相邻两个内角中的一个可求“另一个”; ②可证一个角等于另两个角的和; ③利用它作为中间关系式证明两个角相等; ④利用它证明角的不等关系. 3.几何模型

4.思想方法 (1)分类讨论. (2)方程思想, 本节重点讲解:一个性质(外角的性质),两大定理(三角形内、外角和定理),两个思想,四个模型(“小旗”模型,“飞镖”模型,“8”字模型和角平分线相关模型). 三、全能突破 基 础 演 练 1.-副三角板,按图11-2—1所示方式叠放在一起,则图中α∠的度数是( ). 75.A o B 60. 65.C o D 55. 2.如图11-2 -2所示,在△ABC 中,,,ABD A BDC C ABC ∠=∠∠=∠=∠则A ∠的度数为( ). 36.A 72.B 108.C 144.D 3.我们知道:等腰三角形的两个底角相等,已知等腰三角形的一个内角为,40 则这个等腰三角形的顶角 为( ). 40.A 100.B o C 10040.或 005070.或D

角平分线的四大模型(Word版)

角平分线四大模型 模型一:角平分线上的点向两边作垂线 如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点 B,则PB=PA. 模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。 例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm (2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC. 练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC. 求证:∠BAD+∠C=180° 练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()

模型二:截取构造对称全等 如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上 截取OB=OA,连接PB,则△OPB△OPA. 模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。 例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由. (2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由. 练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。 练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD. 练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.

七年级数学下册:教材P114T3拓展——与三角形角平分线相关的解题模型

11.微专题:教材P114T3拓展——与三角形角 平分线相关的解题模型 ◆类型一 同一顶点处的角平分线、高线夹角模型 【方法点拨】三角形同一顶点的高线与角平分线的夹角度数等于另外两角度数之差的一 半.如图,AE ,AD 分别为△ABC 的角平分线和高线,则∠EAD =12 (∠B -∠C ). 1.如图①,在△ABC 中,AD 平分∠BAC ,AE ⊥BC 于E ,∠B =40°,∠C =70°. (1)求∠DAE 的度数; (2)如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE ⊥BC 于E ”,其他条件不变,求∠DFE 的度数. ◆类型二 与三角形内外角平分线相关的夹角模型 【方法点拨】①两内角平分线的夹角的度数:三角形的两个内角平分线交于一点,所形 成的夹角的度数等于90°加上第三角的度数的一半.如图①,∠BOC =90°+12 ∠A . ②一内角平分线与一外角平分线夹角的度数:三角形的一个内角平分线与一个外角平分线交于一点,所形成的夹角度数等于第三角的度数的一半.如图②,BA 1,CA 1分别为△ABC

的一条内、外角平分线,BA 2,CA 2分别为△A 1BC 的一条内、外角平分线,则∠A 1=12 ∠A ,∠A 2=12 ∠A 1,…… ③两外角角平分线夹角的度数:三角形的两个外角平分线交于一点,所形成的夹角度数等于90°减去第三角的度数的一半.如图③,BO ,CO 分别为△ABC 的两条外角平分线,则 ∠O =90°-12 ∠A . 2.认真阅读下面关于三角形内外角平分线所夹角的探究,完成所提出的问题. (1)如图①,O 是△ABC 内一点,BO ,CO 分别平分∠ABO ,∠ACO .若∠A =46°,则∠BOC =________;若∠A =n °,则∠BOC =________________; (2)如图②,O 是△ABC 外一点,BO ,CO 分别平分△ABC 的外角∠CBE ,∠BCF .若∠A =n °,求∠BOC 的度数; (3)如图③,O 是△ABC 外一点,BO ,CO 分别平分∠ABC ,∠ACD .若∠A =n °,求∠BOC 的度数. 参考答案与解析

三角形的角及倒角模型

第二讲 三角形的角及倒角模型 1、 如图1,求证:AB +AE >BC +CD +DE 2、 如图2,AC 、BD 是四边形ABCD 的对角线,且AC 、BD 相交于点O ,求证:AC +BD >2 1(AB +BC +CD +AD )。 3、 如图3,⊿ADE 和⊿ABC 中,∠EAD =∠AED =∠BAC =∠BCA =45°又有∠BAD =∠BCF , (1) 求∠ECF +∠DAC +∠ECA 的度数; (2) 判断ED 与FC 的位置关系,并对你的结论加以证明。 4、 求∠a 的度数。 5、如图5,∠A =30°,求∠B +∠C +∠D +∠E 的度数。 6、将图6-1中线段AD 上一点E (点A 、D 除外)向下拖动,依次可得图6-2、图6-3、图6-4,分别探究图6-2、图6-3、图6-4中∠A 、∠B 、∠C 、∠D 、∠E (∠AED )之间有什么关系? 7、如图7,在⊿ABC 中D 是BC 上任意一点,E 是AD 上任意一点,试说明:AB +AC >BE +EC 。 8、如图8,已知DM 平分∠ADC ,BM 平分∠ABC ,且∠A =27°,∠M =33°,则∠C = 。 9、如图9所示,点E 和点D 分别在⊿ABC 的边BA 和CA 的延长线上,CF 、EF 分别平分∠ACB 和∠AED ,试探索∠F 与∠B ,∠D 的关系: 。 10、如图10,⊿ABC 的一条外角平分线是CE ,F 是CA 延长线上一点,FG ∥EC 交AB 于点G ,已知∠DCE =50°,∠ABC =40°,求∠FGA 的度数。 11、如图11,在⊿ABC 中,∠B =∠C ,FD ⊥BC ,ED ⊥AB ,∠AFD =158°,则∠EDF

角平分线+平行应用模型的构造

角平分线+平行应用模型的构造 一、近几年中考题往往由平行线,角平分线来推证同一三角形两个角相等,从而推证两边相等。或者由其中两个条件推证另一个条件 已知:如图7-9,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角(∠ACD)的平分线于G,探究线段EF与FG的数量关系并证明你的结论. 1、如图,AC和BD相交于O,且AB∥DC,OA=OB, 求证:OC=OD. O D C B A 2.如图,△ABC中,AM,CM分别是角平分线,过M作DE∥AC 求证:AD+CE=DE 3.如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于D,CE∥AO交OB于E CE=20cm,求CD的长。 4.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC, 5.则图中等腰三角形的个数() (A)1个(B)3个(C)4个(D)5个 A E B C D 第16题

E F C B A D 5如右图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF 等于( ) A.5 B.4 C . 3 D .2 6、如图,四边形ABCD 中,AD∥BC ,∠ABD =30o ,AB=AD ,DC ⊥BC 于点C ,若BD =2,求CD 的长。 二 由平行线想到全等三角形和等腰三角形。 例. 如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。并证明这个命题(只写出一种情况)①AB=AC ②DE=DF ③BE=CF 已知:EG ∥AF,_______,_________. 求证:___________. 证明: G F E D C B A 1、已知:如图,△ABC 中,AB=AC ,D 点在AB 上,E 点在AC 的延长线上,且BD=CE ,连接DE ,交BC 于F.求证:DF=EF. C 第6题 F E C D B A

初中数学常见模型之角平分线四大模型

角平分线四大模型 模型1 角平分线上的点向两边作垂线 如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。 结论:PB=PA 。 模型分析 利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。 模型实例 (1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D 到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。 求证:AP 平分∠BAC 。 热搜精练 1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。 求证:∠BAD+∠BCD=180°。 2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。 N M O A B P 2图4321A C P B D A B C 图1A B D C

模型2 截取构造对称全等 如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。 结论:△OPB ≌△OPA 。 模型分析 利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。 模型实例 (1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点 A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由; (2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。 热搜精练 1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。 求线段BC 的长。 A B D C P P O N M B A 图2D P A B C D C 1图P B A A B C D

三角形的四大模型

三角形的四大模型 令狐采学 一、三角形的重要概念和性质 1、三角形的内角和定理:三角形的内角和等于180° 2、三角形的外角和定理:三角形的一个外角等于和它不相邻的两个内角的和 3、三角形角平分线(角分线)中线(分面积等)高(直角三角形两锐角互余) 二、八字模型: 证明结论:∠A+∠B=∠C+∠D 三、飞镖模型: 证明结论:1.∠BOC=∠A+∠B+∠C 四、角分线模型: 如图,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D, 试探索∠A与∠D之间的数量关系,并证明你的结论. 如图,△ABC两个外角(∠CAD、∠ACE)的平分线相交于点P. 探索∠P与∠B有怎样的数量关系,并证明你的结论. 题型一、三角形性质等应用

1.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是() A.120 B.150 C.240 D.360 2.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF. 如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2. 3.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点, 且S△ABC=4cm2,则S阴影=cm2. 4.A、B、C是线段A1B,B1C,C1A的中点,S△ABC的面积是1,则S△A1B1C1的面积. 5.一个四边形截去一个角后,剩下的部分可能是什么图形?画出所有可能的图形,并分别说出内角和和外角和变化情况.6.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角) (1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;

角平分线的几种辅助线作法与三种模型精编版

1 一、角平分线的三种“模型” 模型一:角平分线+平行线→等腰三角形 如图1,过∠AOB 平分线OC 上的一点P ,作PE ∥OB ,交OA 于点E ,则EO=EP. A A A E P C E C D F E P O B B C O F B 图1 图2 图3 例1 如图2,∠ABC ,∠ACB 的平分线相交于点F ,过F 作DE ∥BC ,交AB 于点D ,交AC 于点E.求证:BD+EC=DE. 模型二:角平分线+垂线→等腰三角形 如图3,过∠AOB 平分线OC 上的一点P ,作EF ⊥OC ,交OA 于点E ,交OB 于点F ,则OE=OF ,PE=PF. 例2 如图4,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,求证:∠BAD=∠DAC+∠C. 模型三:角平分线+翻折→全等三角形 在△ABC 中,AD 是∠BAC 的平分线,沿角平分线AD 将△ABD 往右边折叠就得到如图5的图形.此时有:△ABD ≌△AB /D.此翻折 相当于在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题. D A E A P / B C D B / B C 图5 图6 例3 如图6,点P 是△ABC 的外角∠CAD 的平分线上的一点.求证: PB+PC>AB+AC. 二、角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 1、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。 求证:1 ()2 BE AC AB =- 2、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .求证:∠ACE=∠B+∠ECD . 2 1F E D C B A A B D C E F 图

角平分线四大模型

角平分线四大模型 模型1 角平分线的点向两边作垂线 如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA 模型分析 利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口 模型实例 (1)如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直线AB的距离是 解答:如图,过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE. ∵CB=6,BD=4,∴DE=CD=2,即点D到直线AB的距离是2. (2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC 证明:如图,过点P作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F, ∵∠1=∠2,∴PD=PE,∵∠3=∠4, ∴PE=PF,∴PD=PF 又∵PD⊥AB,PF⊥AC,∴AP平分∠BAC(角平分线的判定) 练习 1、如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC , 求证:∠BAD+∠BCD=180°

证明:作DE⊥BC于E,作DF⊥BA的延长线于F,∴∠F=∠DEC=90°, ∵BD平分∠ABC,∴DF=DE,又∵AD=DC,∴△DFA≌DEC,∴∠FAD=∠C ∵∠FAD+∠BAD=180°,∴∠BAD+∠BCD=180° 2.如图,△ABC的外角∠ACD∠的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP = . 解答:如图所示,作PN⊥BD于N,作PF⊥BA,交BA延长线于F,作PM⊥AC于M ∵BP、CP分别是∠CBA和∠DCA的角平分线,∴∠ABP=∠CBP,∠DCP=∠ACP, PF=PN=PM,∵∠BAC=∠ACD-∠ABC,∠BPC=∠PCD-∠PBC(外角性质) ∴∠BAC=2∠PCD-2∠PBC=2(∠PCD-∠PBC)=2∠BPC=80° ∴∠CAF=180°-∠BAC=100°,∵PF=PM ∴AP是∠FAC的角平分线,∴∠CAP=∠PAF=50° 模型2 截取构造对称全等 如图,P是∠MON的平分线上的一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB ≌△OPA

奥数几何 三角形五大模型带解析

三角形五大模型 【专题知识点概述】 本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。 重点模型重温 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线 平行于CD . ④等底等高的两个平行四边形面积相等( 长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”) D C B A b a s 2 s 1

如图,三角形AED 占三角形ABC 面积的23×14=1 6 三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) 梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质 如何判断相似 (1)相似的基本概念: 两个三角形对应边城比例,对应角相等。 (2)判断相似的方法: ①两个三角形若有两个角对应相等则这两个三角形相似; ②两个三角形若有两条边对应成比例, 且这两组对应边所夹的角相等则两个 S 4 S 3 s 2 s 1O D C B A S 4 S 3s 2 s 1 b a

巧借三角形的两条内(外)角平分线夹角的模型解决问题

B B E C B A 巧借三角形的两条内(外)角平分线夹角的模型解决问题 新北实验中学 严云霞 【基本模型】 三角形的两个内(外)角平分线所夹的角与第三个角之间的数量关系 模型一:当这两个角为内角时:这个夹角等于90°与第三个角一半的和(如图1); 模型二:当这两个角为外角时:这个夹角等于90°与第三个角一半的差(如图2); 模型三:当这两个角为一内角、一外角时:这个夹角等于第三个角一半(如图3); 【分析】三个结论的证明 例1、 如图1,△ABC 中,BD 、CD 为两个内角平分线, 试说明:∠D=90°+2 1 ∠A 。 (方法一)解:∵BD 、CD 为角平分线 ∴∠CBD =21∠ABC , ∠BCD =2 1 ∠ACB 。 在△BCD 中:∠D =180°-(∠CBD +∠BCD ) =180°-21 (∠ABC +∠ACB ) =180°-21 (180°-∠A ) =180°-21×180°+21 ∠A =90°+2 1 ∠A (方法二)解:连接AD 并延长交BC 于点E 解:∵BD 、CD 为角平分线 ∴∠CBD =21∠ABC , ∠BCD =2 1 ∠ACB 。 ∵∠BDE 是△ABD 的外角 ∴∠BDE =∠BAD+∠ABD =∠BAD+2 1 ∠ABC

同理可得∠CDE =∠CAD+2 1 ∠ACB 又∵∠BDC =∠BDE+∠CDE ∴∠BDC =∠BAD+21∠ABC+∠CAD+21 ∠ACB =∠BAC+21 (∠ABC+∠ACB ) =∠BAC+21 (180°-∠BAC ) =90°+2 1 ∠BAC 例2、如图,BD、CD为△ABC的两条外角平分线, 试说明:∠D=90°-2 1 ∠A 。 解:∵BD 、CD 为角平分线 ∴∠CBD=21 ∠CBE ∠BCD =2 1 ∠BCF 又∵∠CBE 、∠BCD 为△ABC 的外角 ∴∠CBE =∠A +∠ACB ∠BCF =∠A +∠ABC ∴∠CBE +∠BCF =∠A +∠ACB +∠A +∠ABC =∠A +180° 在△BCD 中:∠D =180°-(∠CBD +∠BCD ) =180°-(21∠CBE +21 ∠BCF ) =180°-21 (∠CBE +∠BCF ) =180°-21 (∠A +180°) =90°-2 1 ∠A 【小结】通过对模型1、2的分析和证明,我们还能发现三角形两内角平分线的夹角和两外角平分线的夹角互补,即和为180°。 例3:如图,在△ABC 中,BD 为∠ABC 的平分线,CD 为∠ACE的平分线, 试说明:∠D =2 1 ∠A ; 解:∵BD 为角平分线, ∴∠CBD =2 1 ∠ABC , 又∵CD 为∠ACE 的平分线 ∴∠DCE=2 1 ∠ACE ,

角平分线的几种辅助线作法与三种模型

角平分线的几种辅助线 作法与三种模型 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、角平分线的三种“模型” 模型一:角平分线+平行线→等腰三角形 如图1,过∠AOB平分线OC上的一点P,作PE∥OB,交OA于点E,则EO=EP. AAA EPCEC DFEP OBBCOFB 图1图2图3 例1如图2,∠ABC,∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.求证:BD+EC=DE. 模型二:角平分线+垂线→等腰三角形 如图3,过∠AOB平分线OC上的一点P,作 EF⊥OC,交OA于点E,交OB于点F,则OE=OF, PE=PF. 例2如图4,BD是∠ABC的平分线,AD⊥BD, 垂足为D,求证:∠BAD=∠DAC+∠C. 模型三:角平分线+翻折→全等三角形 在△ABC中,AD是∠BAC的平分线,沿角平分线AD将△ABD往右边折叠就得到如图5的图形.此时有:△ABD≌△AB/D.此翻折相当于在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段.用此方法可解决一些不相等的线段和差类问题. D AE AP /BC DB/BC

图5图6 例3 如图6,点P 是△ABC 的外角∠CAD 的平分线上的一点.求证:PB+PC>AB+AC. 二、角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 1、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。 求证:1 ()2 BE AC AB =- 2、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E .求证:∠ACE=∠B+∠ ECD . 二、已知一个点到角的一边的距离,过这个点作另一边的垂线段 1、如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC 于D ,AB +BC=2BD 。 求证:∠BAP +∠BCP=180°。 三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段 1、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠2 2、2、如图2,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD . 2 1F E D C B A N P E D C B A 2 1 P F E C B A A G C H D E F 图2 A B D C E F 图

相关文档
相关文档 最新文档