文档库 最新最全的文档下载
当前位置:文档库 › 驱动桥设计说明书介绍.docx

驱动桥设计说明书介绍.docx

驱动桥设计说明书介绍.docx
驱动桥设计说明书介绍.docx

汽车设计课程设计

轻型货车驱动桥设计

姓名 :黄华明

学号 :

专业班级 :机英 123

指导教师 :王淑芬

题目:

1.整车性能参数:

驱动形式 6x2 后轮;

轴距 3800mm;

轮距前 / 后 1750/1586mm;

整备质量 4310kg ;

额定载质量 5000kg ;

空载时前轴分配负荷45%,满载时前轴分配负荷26%;

前悬 / 后悬 1270/1915mm;

最高车速 110km/h ;

最大爬坡度35%;

长、宽、高6985 、 2330、 2350;

发动机型号 YC4E140-20 ;

最大功率 3000rpm ;

最大转矩380N·m/1200~1400rpm;

变速器传动比;

倒挡;

轮胎规格;

离地间隙 >280mm。

2.具体设计任务:

1)查阅相关资料,根据其发动机和变速箱的参数、汽车动力性的要求,确定驱动桥上主减速器的减速形式,对驱动桥总体进行方案设计和结构设计。

2)校核满载时的驱动力,对汽车的动力性进行验算。

3)根据设计参数对主要零部件进行设计与强度计算。

4)绘制所有零件图和装配图。

5)完成 6 千字的设计说明书。

第 1 章驱动桥的总体方案确定

驱动桥的结构和种类和设计要求

1.1.1汽车车桥的种类

汽车的驱动桥与从动桥统称为车桥,车桥通过悬架与车架(或承载式车身)相连,它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。

根据悬架结构的不同,车桥分为整体式和断开式两种。当采用非独立悬架时,车

桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式

结构,与独立悬架配用。在绝大多数的载货汽车和少数轿车上,采用的是整体式非断

开式。断开式驱动桥两侧车轮可独立相对于车厢上下摆动。

根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四

种类型。其中,转向桥和支持桥都属于从动桥,一般货车多以前桥为转向桥,而后桥

或中后两桥为驱动桥。

1.1.2驱动桥的种类

驱动桥位于传动系末端,其基本功用首先是增扭、降速,改变转矩的传递方向,

即增大由传动轴或直接从变速器传来的转矩,并合理的分配给左、右驱动车轮,其次,驱动桥还要承受作用于路面和车架或车厢之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩。

驱动桥分为断开式和非断开式两种。驱动桥的结构型式与驱动车轮的悬挂型式密

切相关。当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,

都是采用非断开式驱动桥,其桥壳是一根支撑在左右驱动车轮上的刚性空心梁,主减

速器、差速器和半轴等所有的传动件都装在其中;当驱动车轮采用独立悬挂时,则配

以断开式驱动桥。

1.1.3驱动桥结构组成

在多数汽车中,驱动桥包括主减速器、差速器、驱动车轮的传动装置(半轴)及

桥壳等部件如图所示。

123456

1-轮毂 2 -半轴3-钢板弹簧座4-主减速器从动锥齿轮5-主减速器主动锥齿轮6-差速器总成

图驱动桥

1.1.4驱动桥设计要求

1、选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。

2、外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。

3、齿轮及其他传动件工作平稳,噪声小。

4、在各种载荷和转速工况下有较高的传动效率。

5、具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和

力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,

提高汽车的平顺性。

6、与悬架导向机构运动协调。

7、结构简单,加工工艺性好,制造容易,维修,调整方便。

设计车型主要参数

表设计车型参数

轮胎

发动机最大功率3000P kW/n

p ( r/min )

emax

发动机最大转矩380/1200~1400T emax N·m/n r( r/min )整备质量4310kg

额定载质量5000kg

最大车速110km/h 轮距(双胎中心线)3800mm

主减速器结构方案的确定

1.3.1 主减速比的计算

主减速比 i 0对主减速器的结构形式、轮廓尺寸、质量大小影响很大。当变速器处

于最高档位时 i 0对汽车的动力性和燃料经济性都有直接影响。i0的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力计算来确定。可利用在不同的下的功率

平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹

配的方法来选择 i 0 值,可是汽车获得最佳的动力性和燃料经济性。

对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机

最大功率 P amax 及其转速 n p 的情况下,所选择的 i 0 值应能保证这些汽车有尽可能高的最高车速 v amax 。这时 i 0 值应按下式来确定 [5] :

r r n p

()式中: i 0 =

r r ——

v

a max i

gh

车轮的滚动半径, r r =0.405m

i gh ——变速器最高档传动比(为直接档) 。 n p ——最大功率转速 3200 r/min v a ——最大车速 90km/h

对于与其他汽车来说,为了得到足够的功率而使最高车速稍有下降,一般选得比最小值大 10%~25%,即按下式选择:

i 0 =(~)

r r n p

()

v

a max i

gh

经计算初步确定

i 0 =

按上式求得的 i 0 应与同类汽车的主减速比相比较,并考虑到主、从动主减速齿轮可能的齿数对 i 0 予以校正并最后确定。

1.3.2 主减速器的齿轮类型

本次设计采用螺旋锥齿轮。

1.3.3 主减速器的减速形式

本次设计货车主减速比 i 0 =,所以采用单级主减速器。

1.3.4 主减速器主从动锥齿轮的支承形式及安装方法

1、主减速器主动锥齿轮的支承形式及安装方式的选择

现在汽车主减速器主动锥齿轮的支承形式有如下两种:

(1)悬臂式 ;( 2)骑马式

跟据实际情况,所设计的为轻型货车所以采用悬臂式支撑。

2、主减速器从动锥齿轮的支承形式及安装方式的选择

本次设计主动锥齿轮采用悬臂式支撑 (圆锥滚子轴承),从动锥齿轮采用骑马式支

撑(圆锥滚子轴承)。

差速器结构方案的确定

本次设计选用:普通锥齿轮式差速器,因为它结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。

半轴形式的确定

根据相关车型及设计要求,本设计采用全浮半轴。

桥壳形式的确定

桥壳的结构型式大致分为可分式,组合式整体式三种。

本次设计驱动桥壳就选用整体式桥壳。

第 2 章主减速器设计

概述

主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变

动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩

和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速

器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及

质量减小、操纵省力。

主减速器齿轮参数的选择与强度计算

2.2.1 主减速器齿轮计算载荷的确定

1、按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩T je

T

je T

emax

i

TL

K

0 T

/n()

式中:——发动机最大转矩201 N m ;

i TL——由发动机到所计算的主减速器从动齿轮之间的传动系最低档传动比

i TL=i 0 i1=×=

变速器传动比 i1=;

T——上述传动部分的效率,取T =;

K 0——超载系数,取K 0=;

n——驱动桥数目 1。

T je=201 1 1= N m

2、按驱动轮在良好路面上打滑转矩确定从动锥齿轮的计算转矩T j

G 2r r

()

T j i

LB

LB

式中:G 2——汽车满载时驱动桥给水平地面的最大负荷,N;但后桥来说还应考虑到汽车加速时负腷增大量,可初取:

G2=G满×=4100×=40180N;

——轮胎对地面的附着系数,对于安装一般轮胎的公路用汽车,取=;

对于越野汽车,取=;

r r——车轮滚动半径,0.405m;

LB ,i LB——分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和传动比,分别取和1。

G 2r r

=40180 0.850.405

= N m

T j i

LB0.961

LB

通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时这两种情

况下作用于主减速器从动齿轮上的转矩(T je , T j)的较小者,作为载货汽车计算中用以验算主减速器从动齿轮最大应力的计算载荷。

由式(),式()求得的计算载荷,是最大转矩而不是正常持续转矩,不能用它作

为疲劳损坏依据。汽车的类型很多,行驶工况又非常复杂,轿车一般在高速轻载条件

下工作,而矿用车和越野车在高负荷低车速条件下工作,对于公路车辆来说,使用条

件较非公路用车稳定,其正常持续转矩是根据所谓平均牵引力的值来确定的,即主减

速器的平均计算转矩。

3、按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩T jm

T jm=(G

a G

T ) r r( f R f H f P )()i LB LB n

式中: G a——汽车满载总重N, G a=6000×=58800N;

G T——所牵引的挂车满载总重,N,仅用于牵引车取 G T=0;

f R——道路滚动阻力系数,初取 f R=;

f H——汽车正常使用时的平均爬坡能力系数。初取 f H=;

f P——汽车性能系数

f P1[160.195(G a G T ) ]()

100T e max

当0.195(G

a

G

T

)

=>16时,取f P=0。

T

e max

(G a G T) r r

( f R f H 588000.405

(0.015 0.050) = N m

T jm=

n f P ) =

0.96 1 1

i

LB LB

2.2.2主减速器齿轮参数的选择

1、主、从动齿数的选择

选择主、从动锥齿轮齿数时应考虑如下因素:为了磨合均匀, z1, z2之间应避免有公约数;为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不

小于 40;为了啮合平稳,噪声小和具有高的疲劳强度对于商用车z1一般不小于6;主

传动比 i 0较大时, z1尽量取得小一些,以便得到满意的离地间隙。对于不同的主传动比, z1和 z2应有适宜的搭配。

主减速器的传动比为,初定主动齿轮齿数z1 =7,从动齿轮齿数 z2=43。

2、从动锥齿轮节圆直径d2及端面模数 m t的选择

根据从动锥齿轮的计算转矩(见式和式并取两式计算结果中较小的一个作为计算依据)按经验公式选出:

d 2 K d

3

T j()式2

中: K d2——直径系数,取 K d2=13~16;

T j——计算转矩,N m,取 T j, T je较小的。取 T je= N m。

计算得, d2=~,初取 d 2=300mm。

d2选定后,可按式 m d 2 / z2算出从动齿轮大端模数,并用下式校核

3

()

m t K m T j

式中: K m——模数系数,取Km =~;

T j——计算转矩,N m ,取T je。

3

3

m t K m T j = (0.3 ~ 0.4)6675.46 =~

由GB/T12368-1990,取m t =7mm,满足校核。

所以有: d1=49mm d2=301mm。

3、螺旋锥齿轮齿面宽的选择

通常推荐圆锥齿轮从动齿轮的齿宽 F 为其节锥距A0的倍。对于汽车工业,主减速器螺旋锥齿轮面宽度推荐采用:

F=d2 =46.66mm,可初取 F2 =50mm。

一般习惯使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出一些,通常小齿轮的齿面加大10%较为合适,在此取F1=55mm 。

4、螺旋锥齿轮螺旋方向

主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受

的轴向力的方向。当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向。这

样可使主、从动齿轮有分离的趋势,防止轮齿因卡死而损坏。

所以主动锥齿轮选择为左旋,从锥顶看为逆时针运动,这样从动锥齿轮为右旋,

从锥顶看为顺时针,驱动汽车前进。

5、旋角的选择

螺旋角是在节锥表面的展开图上定义的,齿面宽中点处为该齿轮的名义螺旋角。

螺旋角应足够大以使 m F。因 m F越大传动就越干稳,噪声就越低。在一般机械制造用的标准制中,螺旋角推荐用 35°。

6、法向压力角 a 的选择

压力角可以提高齿轮的强度,减少齿轮不产生根切的最小齿数,但对于尺寸小的

齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,一般

对于“格里森”制主减速器螺旋锥齿轮来说,载货汽车可选用20°压力角。

7、主从动锥齿轮几何计算

计算结果如表

表主减速器齿轮的几何尺寸计算用表

序号项目1主动齿轮齿数2从动齿轮齿数3模数

4齿面宽

5工作齿高6全齿高

7法向压力角8轴交角

9节圆直径10节锥角

11节锥距12周节

13齿顶高14齿根高

计算公式

z1

z2

m

F

h g H 1m

h H 2m

d =m z

z1

1arctan

z2

2 =90°-1

A0 ==

d 2

2 sin2

t=m

h a1h g h a 2

h a2k a m

h f=h h a

计算结果

7

43

7

F1=55mm

F2=50mm

h g10.92mm

h=12.131mm

=20°

=90°

d149mm

d 2=301mm

1=°

2=°

A 0 =152.486mm

t=21.99mm

h a1=9.03mm

h a 2=1.89mm

h f 1=3.101mm

序号项目计算公式计算结果

h f 2=10.241mm 15径向间隙c= h h g

16齿根角

h f arctan

A0

17面锥角a11 2 ; a 2 18根锥角

f 1 =11

f 2 = 22

a1

d12h a1cos 19外圆直径d

d a 2=d12h a2 cos

d 2

c=1.211mm

1 =°

2 =°

a1 =°

21

a2 =°

f 1 =°

f 2 =°

1

d a1=68.825mm 2

d a 2=301.607mm

01h a1 sin 20节锥顶点止齿轮外缘距离2

d1

02h a2 sin

21

2

01 =149.049mm

02 =22.634mm

21理论弧齿厚s1t s2 s2S k m

22齿侧间隙B=~ 23螺旋角s1=16.27mm s2=5.72mm 0.2mm

=35°

2.2.3 螺旋锥齿轮的强度计算

1、损坏形式及寿命

在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的

强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式

及其影响因素。

齿轮的损坏形式常见的有轮齿折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。

它们的主要特点及影响因素分述如下:

汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳

折断和由表面点蚀引起的剥落。在要求使用寿命为20 万千米或以上时,其循环次数均

2

以超过材料的耐久疲劳次数。因此,驱动桥齿轮的许用弯曲应力不超过/ mm 。

实践表明,主减速器齿轮的疲劳寿命主要与最大持续载荷(即平均计算转矩)有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩和

最大附着转矩并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不能

作为疲劳损坏的依据。

1、主减速器螺旋锥齿轮的强度计算

(1)单位齿长上的圆周力

在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即

p P

()F

式中: p ——单位齿长上的圆周力,N/mm;

P——作用在齿轮上的圆周力, N,按发动机最大转矩T e max和最大附着力矩G2r r 两种载荷工况进行计算。

按发动机最大转矩计算时:

T i

g 103

e max()

p

d1F

2

式中: T e max——发动机输出的最大转矩,在此取201 N m ;

i g——变速器的传动比;

d 1——主动齿轮节圆直径,在此取49mm;.

按上式计算一档时:

201 6.01103

p986.13 N/mm 4950

2

2011103

直接档时: p164.08 N/m。

4950

2

按最大附着力矩计算时:

G2r r 103

p()

d 2

2

F

式中: G2——汽车满载时一个驱动桥给水平地面的最大负荷,对于后驱动桥还应考虑汽车最大加速时的负荷增加量,在此取 40180N;

——轮胎与地面的附着系数,在此取;

r r——轮胎的滚动半径,在此取0.405m;

按上式 p40180 0.850.405 103= N/mm。

150.0550

虽然附着力矩产生的 p 很大,但由于发动机最大转矩的限制p 最大只有 N/mm可知,校核成功。

(2)轮齿的弯曲强度计算

汽车主减速器螺旋锥齿轮轮齿的计算弯曲应力w ( N / mm2 ) 为

2 10

3 T j K 0 K S K m

()

w

K v F z m2 J

式中: T j——齿轮计算转矩N m ,对从动齿轮,取T j,T je较小的者即T je =N m 和T jm= N m来计算;对主动齿轮应分别除以传动效率和传动比得T je1= N m,

T jm1= N m;

K 0——超载系数,;

4m =;

K s——尺寸系数 K s=

25.4

K m——载荷分配系数取K m=1;

K v——质量系数,对于汽车驱动桥齿轮,档齿轮接触良好、节及径向跳动精度高时,取 1;

J——计算弯曲应力用的综合系数,见图,J1=, J 2=。

按 T je计算:主动锥齿轮弯曲应力

22 w1 = N/ mm <700 N/mm

从动锥齿轮弯曲应力

22 w2 = N/mm <700 N/mm

按 T jm计算:主动锥齿轮弯曲应力

22 w1 = N/mm < N/ mm

从动锥齿轮弯曲应力

22 w2 = N/mm </mm

综上所述,计算的齿轮满足弯曲强度的要求。(3)轮齿的接触强度计算

螺旋锥齿轮齿面的计算接触应力

2

)为:j(N/mm

C p 2 T jz K 0 K s K m K f103

()

j

K v F J

d1

式中: T jz——主动齿轮计算转矩分别为T je1= N m, T jm 1= N m ;

1

C p——材料的弹性系数,对于钢制齿轮副取N 2/ mm;

d1——主动齿轮节圆直径,49mm;

K 0, K v, K m同;

K s——尺寸系数,K s=1;

K f——表面质量系数,对于制造精确的齿轮可取1;F——齿面宽,取齿轮副中较小值即从动齿轮齿宽50mm;J——计算应力的综合系数, J = 。

按 T je计算,

2 j =

<2800 N/mm

按 T jm计算,

2 j =<1750 N/mm

轮齿齿面接触强度满足校核。

(4)主动齿轮轴的弯矩

危险截面上的合成弯曲应力为:

M M 2T 2

W W

()

式中: W ——弯曲截面系数 , W D 3

, D=35mm;32

T ——主动齿轮计算转矩为N m

M——危险截面弯矩,主动齿轮径向力为。

经计算,=< =230MPa

所以主动齿轮轴满足要求。

2.2.4 主减速器的轴承计算

轴承的计算主要是计算轴承的寿命。设计时,通常是先根据主减速器的结构尺寸初步确定轴承的型号,然后验算轴承寿命。影响轴承寿命的主要外因是它的工作载荷及工作条件,因此在验算轴承寿命之前,应先求出作用在齿轮上的轴向力、径向力、圆周力,然后再求出轴承反力,以确定轴承载荷。

1、作用在主减速器主动齿轮上的力

锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切向方向的圆周力、沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。

作用在主减速器主 上的当量 矩可按下式 算:

1

1

3

3

f T 3

3

3

3

f T1

f i 2 f T 2

f i3 i

g 3

f iR

f TR

T d T e max

f i1 i g1

i g 2

100i gR

100 100

100

100

式中: T e max —— 机最大 矩,在此取

201N ·m ;

f i1 , f i 2 ? f iR —— 速器在各 的使用率, 取%, 2%, 5%, 15%,%;

i g1 , i g 2 ? i gR —— 速器各 的 比, ,,,1;

f T1 , f T 2 ? f TR —— 速器在各 的 机的利用率,

取 50%,60%,70%,

70%, 60%。

算 T d = N ·m

面 中点的 周力 P :

2T

()

P

=

d m

式中: T ——作用在 上的 矩。主 的当量 矩

T

1d ;

d m —— 面 中点的分度 直径。 于螺旋

d 2m d 2 F 2 sin

2

d 1m

d 2m z 1

z 2

所以: d 1m =40.96mm

d 2m =;

2

——从 的 角°。 算螺旋 的

向力与径向力如下:

(1)主 的螺旋方向 左;旋 方向 :

P

A 1 (tan sin cos P

R 1 (tan cos cos

1

1

sin

cos 1 ) = N ()

sin

sin 1 ) = N

()

(2)从 的螺旋方向 右:旋 方向 逆 :

A 2

P (tan

sin

cos

2

R 2

P (tan

cos

cos

2

式中: —— 廓表面的法向 力角 20 ;

sincos

2

) ( ) ()

= N

sinsin

2

) ( ) ()

= N

1 ——主动齿轮的节锥角

; 2 ——从动齿轮的节锥角

2、主减速器轴承载荷的计算

对于采用悬臂式的主动锥齿轮和跨置式的从动锥齿轮的轴承径向载荷,

轴承 A , B 的径向载荷分别为

R A =

1

P b

a

1 P c

R B

a

2

R 1 b 0.5A 1

d

1m

2 ()

2

R 1 c 0.5 A 1

d

1m 2

()

式中:已知 P =, R 1 =, A 1 = , d 1m = , a=43mm ,b=26mm ,c=69mm 。

所以,轴承 A 的径向力 R A = N

轴承 B 的径向力 R B = N

轴承的寿命为

L

f Cr

106 s

()

t

f p Q

式中: f t ——为温度系数,在此取;

f p ——为载荷系数,在此取;

Cr ——额定动载荷, N :其值根据轴承型号确定。

此外对于无轮边减速器的驱动桥来说,主减速器的从动锥齿轮轴承的计算转速

n 2

2.66v am

()

n 2

r/min

r r

式中: r r ——轮胎的滚动半径, ;

v am ——汽车的平均行驶速度, km/h; 对于载货汽车和公共汽车可取 30~35

km/h ,在此取 32.5 km/h 。

所以有上式可得 n 2 =

2.66 32.5

= r/min

0.405

主动锥齿轮的计算转速 n 1 =×= r/min 。 所以轴承能工作的额定轴承寿命:

L h

L ()

h

60n

式中 : n 轴承的计算转速, min 。

若大修里程 S 定为 100000 公里,可计算出预期寿命即

L'h = S

h()v am

100000

所以L' h == h

对于轴承 A 和 B,在此并不是单独一个轴承,而是一对轴承,根据尺寸,在此选用30207 型轴承, d=35mm,D=72mm,Cr=, e=

对于轴承 A,在此径向力 R A =,轴向力 A=,所以A

=>e R

X=, Y=

当量动载荷Q=f d XR B YA()式中: f d——冲击载荷系数在此取;

所以, Q=(× +×) =。

由于采用的是成对轴承C r=2Cr,所以轴承的使用寿命为:

L h= 106

10

Cr=16666.754200 2 3= h> h= L'h

60n Q1310.5816679 .4

所以轴承 A 符合使用要求。

对于轴承 B,径向力,轴向力A=>e

R B=A=,所以

R

X=,Y=

当量动载荷Q=f d X R B YA()式中: f d——冲击载荷系数在此取;

所以, Q=(× +×) =

L h= 106

10

Cr=16666.754200 2 3= h> h= L'h

60n Q1310.5819715 .7所以轴承 B 符合使用要求。

对于从动齿轮的轴承C,D 的径向力

c1

R =P b

a

R D 1

P c

a

2

R2b0.5 A2

d

2m

2

()2

R2c0.5A2

d

2m

2

()

已知: P=,A2 =,R2 =, a=240mm,b==116mm

所以,轴承 C 的径向力: R c =;轴承 D的径向力: R D =

根据尺寸,轴承 C,D 均采用 32103,其额定动载荷 Cr 为,D=100mm, d=65mm T=23mm,e=

对于轴承 C,轴向力 A=,径向力 R c =,并且A

=>e, X=,Y= R

所以 Q=f d XA YR =×+×=

L h =16666.7 Cr=16666.78280010=>L' h

3

n Q213.4521760.03

所以轴承 C 满足使用要求。

对于轴承 D,轴向力 A=0N,径向力 R=,X=1,Y=0。

所以 Q=

L h=16666.7Cr=16666.78280010= h > L' h

3

n Q213.459939.38

所以轴承 D满足使用要求。

主减速器齿轮材料及热处理

汽车主减速器用的螺旋锥齿轮以及差速器用的直齿锥齿轮,目前都是用渗碳合金

钢制造。在此,齿轮所采用的钢为20CrMnTi

用渗碳合金钢制造的齿轮,经过渗碳、淬火、回火后,轮齿表面硬度应达到58~64HRC,而心部硬度较低,当端面模数m 〉8时为29~45HRC。

对于渗碳深度有如下的规定:当端面模数 m≤ 5 时,为~

当端面模数 m>5~8 时,为~

主减速器的润滑

主加速器及差速器的齿轮、轴承以及其他摩擦表面均需润滑,其中尤其应注意主减速器主动锥齿轮的前轴承的润滑,因为其润滑不能靠润滑油的飞溅来实现。

为了防止因温度升高而使主减速器壳和桥壳内部压力增高所引起的漏油,应在主

减速器壳上或桥壳上装置通气塞,后者应避开油溅所及之处。

加油孔应设置在加油方便之处,油孔位置也决定了油面位置。放油孔应设在桥壳

最低处,但也应考虑到汽车在通过障碍时放油塞不易被撞掉。

第 3 章 差速器设计

概述

汽车在行使过程中,左右车轮在同一时间内所滚过的路程往往是不相等的,左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行使或直线行使,均

会引起车轮在路面上的滑移或滑转, 一方面会加剧轮胎磨损, 另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左右车轮间都装有轮间差速器。

差速器是个差速传动机构,用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。差速器可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。

对称式圆锥行星齿轮差速器原理

对称式锥齿轮差速器是一种行星齿轮机构

当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在同一半径

r 上

的 A 、 B 、 C 三点的圆周速度都相等,其值为 0 r 。于是 1

=

2 = 0

, 即差速器不起作

用,而半轴角速度等于差速器壳 3 的角速度。

当行星齿轮

4 除公转外,还绕本身的轴

5 以角速度

4 自转时,啮合点 A 的圆周速

度为 1 r = 0 r +

4 r ,啮合点 B 的圆周速度为 2 r =

0 r - 4 r

。于是

1 r +

2 r =( 0 r + 4 r )+(

0 r -

4 r

)

即 1 +

2 =2 0

() 若角速度以每分钟转数 n 表示,则

n 1 n 2 2n 0

()

对称式圆锥行星齿轮差速器的结构

汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优

点,应用广泛。它可分为普通锥齿轮式差速器、 摩擦片式差速器和强制锁止式差速器。

本设计即使用普通锥齿轮差速器。

对称式圆锥行星齿轮差速器的设计

3.4.1 差速器齿轮的基本参数选择

1、行星齿轮数目的选择

载货汽车多用 4 个行星齿轮。

2、行星齿轮球面半径R B(mm)的确定

圆锥行星齿轮差速器的尺寸通常决定于行星齿轮背面的球面半径R B,它就是行星齿轮的安装尺寸,实际上代表了差速器圆锥齿轮的节锥距,在一定程度上表征了差速

器的强度。

球面半径可根据经验公式来确定:

3

R B K B T j( mm)()式中:K B——行星齿轮球面半径系数,~;

T j——,取T j, T je较小的者即T je=N m 。

经计算R B=~,取R B=55mm

差速器行星齿轮球面半径R B确定后,即根据下式预选其节锥距:

A0=(~)R B=~54.45mm取 54mm()

3、行星齿轮与半轴齿轮齿数的选择

为了得到较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少,但一般不应少于 10。半轴齿轮的齿数采用 14~25。半轴齿轮与行星齿轮的齿数比多在~

2范围内。

在任何圆锥行星齿轮式差速器中,左、右两半轴齿轮的齿数 z2 L , z2R之和,必须能被行星齿轮的数目 n 所整除,否则将不能安装,即应满足:

z2 L z2 r= I()

n

式中:z2L、 z2 r——左,右半轴齿数,z2 L= z2 r;

n——行星齿轮数, n=4;

I——任意整数。

取行星齿轮齿数 z1=10,半轴齿轮齿数z2=18,满足条件。

4、差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定

首先初步求出行星齿轮和半轴齿轮的节锥角1 , 2 :

1arctan

z

129.05 ; 1arctan

z

260.95 ;()z2z1

式中: z1 , z2——行星齿轮和半轴齿轮齿数。

再根据下式初步求出圆锥齿轮的大端模数:

m 2 A

0 sin 1

2 A

0 sin 2=()z1z2

相关文档