文档库 最新最全的文档下载
当前位置:文档库 › 热释电红外传感器型号

热释电红外传感器型号

热释电红外传感器型号、引脚及工作参数

模块图:

用HN911L热释电传感器模块

及NE555制作的人体感应继电器开关电路

热释电红外传感器型号主要有

P228、LHl958、LHI954、RE200B、KDS209、PIS209、LHI878、PD632等。热释电红外传感器通常采用3引脚金属封装,各引脚分别为

电源供电端(内部开关管D极,DRAIN)、

信号输出端(内部开关管S极,SOURCE)、

接地端(GROUND)。

热释电红外传感器的主要工作参数有工作电压

(常用的热释电红外传感器工作电压范围为3~15V)、

工作波长(通常为7.5~14 μm)、

源极电压(通常为0.4~1.1V,R=47kΩ)、

输出信号电压(通常大于2.0V)等

2015/4/15 23:04:34

太阳风暴2015/4/15 23:04:34

应用电路图1

三、《热释电传感器检测电路》电路工作正常

在你已经装好的《热释电传感器检测电路》,应能实现电路工作正常。 1.接上12V电源后,电容器C8两端电压为6V,LED2电源指示灯亮,电源电路工作正常。 2.手靠近远红外传感器PIR时,经一段时间

后,报警发光二极管LED1由微亮转光亮,LS1慢慢变大声。延时及检测电路工作正常。 3.手离开远红外传感器PIR时,发光二极管LED1延时亮1分钟,LS1也延时响1分钟。延时电路工作正常。 4.手离开远红外传感器PIR时再开机或结束停电后来电时不应出现LED1亮和LS1响。

太阳风暴2015/4/15 23:04:49

应用电路图2

热释电人体感应开关电路

(热释电红外探头选用LN074B型)

应用电路图3

人体感应电子自动门及报警两用电路

本装置可自动控制单位大门的开与关,有人进出时门自动打开,进出过后门自动关闭。夜晚大门停用后,本装置可转作报警器,一旦有人走近大门即产生报警,以告知门卫开小门放人进出。

图1是人体感应信号产生及放大电路。其中RS是热释电远红外被动式传感器,A1、A2是两级放大器。传感器检测到人体红外线后产生的感应信号很微弱,电路中设置了诸多旁路电容都是为了抑制干扰,避免误动作。A3、A4是上、下限电压比较器,平时A2的输出电平比A3⑥脚电平低,而比A4③脚电平高,A3、A4输出皆为低电平。只有传感器感应产生的交变信号经放大达到足够电平才能使A3或A4输出为高电平,以控制后续电路工作。

图2、图3是自动门电机控制电路及报警变换电路。由图1的CZ插座②脚来的高电平使BG1导通、J1动作,触点J1-1闭合使C1短路,IC3的③脚输出高电平使J2得电,J2-1闭合接通市电,J2-2动触头转换到“a”位置,电机M正转开门。同时BG2饱和导通,IC4的③脚为低电平。经过一定时间,门位移到终点碰触轨道上的限位开关K1,J2释放,电机停转。当人们进出门结束后,BG1基极无信号而截止,J1释放,再经过一定时间(此时间由R3、C1的值决定),IC3的③脚输出低电平,BG2截止,IC4的③脚受由低到高的脉冲触发,其①脚输出高电平,一方面使BG3导通,J3得电,J3-1使电机接通市电,此时因J2不工作,J2-2动触头已回到“b”位,故电机反转,门开始关。门到达“关”的终点即碰触轨道上的限位开关K2,电机停转。另一方面IC4的①脚上电压通过R8对C3充电,当④脚为高电平时①脚翻转为低电平,BG3截止,J3释放。若在关门过程中又有人要进出门,则BG1又接到信号,J2又工作,J2-2又转换到“a”位置,门便立即由“关”转为“开”。因此,只要有人进出门,无论原来门处于何种状态,总会作开门运行。当夜晚不需要自动门工作时,可将K3由“1”扳至“2”,这时本系统即构成报警器。一旦有人走到门附近,J2-1与J3-1便相继接通市电,使声、光报警器发出警报。在RS传感器上加装菲涅尔透镜可增大作用距离。另外,为了使人进门与出门都能自动开门,须在门的两侧都装有图1所示的人体感应信号产生及放大电路,分别安装于门内门外的上方,将其输出端并联后接在图2电路的输入端即可。实验点评:笔者对图1的人体感应信号产生及放大电路部分作了实验,当人进入红外探头的探测区域时,插座CZ的②脚有预期的高电平输出,说明红外探头信号能对后续控制电路进行控制,进而控制自动门和报警器。

太阳风暴2015/4/15 23:05:57

热释电人体红外线传感器的原理和应用热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。现在,已得到越来越广泛的应用。目前,一些书刊只简要介绍了被动式热释电人体红外线传感器的基本应用。本文就主动式和被动式两方面的基本应用原理作一大致介绍。

一、热释电人体红外线传感器的基本结构和原理

目前,市场上出现的热释电人体红外线传感器主要有上海产的SD02、PH5324,德国产的LH1954、LH1958,美国HAMAMATSU公司产P2288,日本NIPPON CERAMIC 公司的SCA02-1、RS02D等。虽然它们的型号不一样,但其结构、外型和电参数大致相同,大部分可以彼此互换使用。

热释电人体红外线传感器(以下简称:传感器)由敏感单元、阻抗变换器和滤光窗等三大部分组成。图1为P2288、SD02、SCA02-1的外形图。图1a为它们的顶视图,其中较大的矩形部分为滤光窗,两个虚线框矩形为敏感单元,面积约

2x1mm2 ,间距1mm。图1b为侧视图;图1c为底视图;它们的监视、探测角度如图1a、d,其中参数为SCA02-1的数据,其它两种的参数大致相同。

1.敏感单元

其内部结构见图1a及图2。对不同的传感器来说,敏感单元的制造材料有所不同。如,SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。这些材料再做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容,如图2中的P1、P2。因为这两个小电容是做在同一硅晶片上的,而它们形成的等效小电容能自身产生极化,极化的结果是,在电容的两端产生极性相反的正、负电荷。但这两个电容的极性是相反串联的。这正是传感器的独特设计之处,因而使得它具有独特的抗干扰性。

当传感器没有检测到人体辐射出的红外线信号时,由于P1、P2自身产生极化,在电容的两端产生极性相反、电量相等的正、负电荷,而这两个电容的极性是相反串联的,所以,正、负电荷相互抵消,回路中无电流,传感器无输出。

当人体静止在传感器的检测区域内时,照射到P1、P2上的红外线光能能量相等,且达到平衡,极性相反、能量相等的光电流在回路中相互抵消。传感器仍然没有信号输出。同理,在灯光或阳光下,因阳光移动的速度非常缓慢,P1、P2上的红外线光能能量仍然可以看作是相等的,且在回路中相互抵消;再加上传感器的响应频率很低(一般为0.1~10Hz),即传感器对红外光的波长的敏感范围很窄(一般为5~15um),因此,传感器对它们不敏感。

当环境温度变化而引起传感器本身的温度发生变化时,因P1、P2做在同一硅晶片上的,它所产生的极性相反、能量相等的光电流在回路中仍然相互抵消,传感器无输出。

从原理上讲,任何发热体都会产生红外线,热释电人体红外线传感器对红外线的敏感程度主要表现在传感器敏感单元的温度所发生的变化,而温度的变化导致电信号的产生。环境与自身的温度变化由其内部结构决定了它不向外输出信号;而传感器的低频响应(一般为0.1~10Hz)和对特定波长红外线(一般为5~15um)的响应决定了传感器只对外界的红外线的辐射而引起传感器的温度的变化而敏

感,而这种变化对人体而言就是移动。所以,传感器对人体的移动或运动敏感,对静止或移动很缓慢的人体不敏感;它可以抗可见光和大部分红外线的干扰。2.滤光窗

它是由一块薄玻璃片镀上多层滤光层薄膜而成的,如图2中的M,滤光窗能有效地滤除7.0~14um波长以外的红外线。例如,SCA02-1对7.5~14um波长的红外线的穿透量为70%,在6.5um处时下降为65%,而在5.0um处时陡降为0.1%;P2288的响应波长为6~14um,中心波长为10um。

物体发射出的红外线辐射能,最强波长和温度的关系满足λm*T=2989(um.k)(其中λm为最大波长,T为绝对温度)。人体的正常体温为36~37.5。C ,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)

=9.67~9.64um,中心波长为9.65um。因此,人体辐射的最强的红外线的波长正好落在滤光窗的响应波长(7~14um)的中心。所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰。

综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。

菲涅尔透镜不使用菲涅尔透镜时传感器的探测半径不足2米,只有配合菲涅尔透镜使用才能发挥最大作用。配上菲涅尔透镜时传感器的探测半径可达到10米。例如,一些传感器对远在20米处快速行驶的汽车里的人体也能可靠地检测到。菲涅尔透镜采用塑料片制作而成。图3为它的平面图。从图中可以看出,透镜在水平方向上分寸成3个部分,每一部分在竖直方向上又等分成若干不同的区域。最上面部分的每一等份为一个透镜单元,它们由一个个同心圆构成,同心圆圆心在透镜单元内。中间和下半部分的每一等份也为分别一个透镜单元,同样由同心圆构成,但同心圆圆心不在透镜单元内。当光线通过这些透镜单元后,就会形成明暗相间的可见区和盲区。由于每一个透镜单元只有一个很小的视角,视角内为可见区,视角外为盲区。任何两个相邻透镜单元之间均以一个盲区和可见区相间隔,它们断续而不重叠和交叉,如图3b。这样,当把透镜放在传感器正前方的适当位置时,运动的人体一旦出现在透镜的前方,人体辐射出的红外线通过透镜后在传感器上形成不断交替变化的阴影区(盲区)和明亮区(可见区),使传感器表面的温度不断发生变化,从而输出电信号。也可以这样理解,人体在检测区内活动时,一离开一个透镜单元的视场,又会立即进入另一个透镜单元的视场,(因为相邻透镜单元之间相隔很近),传感器上就出现随人体移动的盲区和可见区,导致传感器的温度变化,而输出电信号。

菲涅尔透镜不仅可以形成可见区和盲区,还有聚焦作用,其焦点一般为5厘米左右,实际应用时,应根据实际情况或资料提供的说明调整菲涅尔透镜与传感器之间的距离,一般把透镜固定在传感器正前方1~5厘米的地方。

菲涅尔透镜一般采用聚乙烯塑料片制成,颜色为乳白色或黑色,呈半透明状,但对波长为10um左右的红外线来说却是透明的。

表1为热释电人体红外线传感器SCA02-1的主要电参数。

``

二、热释电人体红外线传感器的基本应用

图4是由P2288或SCA02-1构成的热释电人体红外线传感器检测与放大电路。表1

项目参数条件

电源电压 2.2~10.0V

源极电压0.3~2.0V 25.C

源极阻抗47KΩId=6~43uA

电平衡10%Max)

频率响应0.3~30Hz 12db(Max)

响应波长7.5~14um 平均大于70%

工作温度-10~+50。C

图4

PY1为传感器P2288或SCA02-1,IC1为低噪声高速运算放大器LM358等。PY1检测到人体红外线信号后,从2脚输出极微弱的电信号直接输入同相放大器IC1a 放大约2500倍,再从1脚输出一定幅度的信号,再经电容C8耦合到反相放大器IC1b进一步放大。IC2构成窗口式电压比较器,当IC1b的7脚电压幅度在Ua 和Ub的幅值之间时,IC2的1、7脚无输出;当IC1b的7脚电压幅度大于Ub的幅值时,IC2的7脚输出高电平;当IC1b的7脚电压幅度低于Ua的幅值时,IC2的1脚输出高电平;经D1、D2相互隔离和“或”的作用,从P点输出高电平控制信号。R11用于设置窗口的阀值电平,调节R11可以调整检测器的灵敏度。P 点输出高电平控制信号可以用于以下各种实用电路中。

1.“有电,危险”安全警示电路用于有电的场合,当有人进入这些场合时,通过发出语音和声光提醒人们注意安全。

2.自动门主要用于银行、宾馆。当有人来到时,大门自动打开,;人离开后又自动关闭。

3.红外线防盗报警器用于银行、办公楼、家庭等场合的防盗报警。

4.高速公路车辆车流计数器

5.自动开、关的照明灯,人体接近自动开关等。

2015/4/15 23:06:12

太阳风暴2015/4/15 23:06:12

基于热释电红外传感器的报警系统

1概述

随着时代的不断进步,人们对自己所处环境的安全性提出了更高的要求,尤其是在家居安全方面,不得不时刻留意那些不速之客。现在很多小区都安装了智能报警系统,因而大大提高了小区的安全程度,有效保证了居民的人身财产安全。由于红外线是不可见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用。此外,在电子防盗、人体探测等领域中,被动式热释电红外探测器也以其价格低廉、技术性能稳定等特点而受到广大用户和专业人士的欢迎。

目前国内使用的各类防盗、保安报警器基本都是以超声波、主动式红外发射/接收以及微波等技术为基础。而这里所设计的被动式红外报警器则采用了美国的传感元件——热释电红外传感器。这种热释电红外传感器能以非接触形式检测出人

体辐射的红外线,并将其转变为电压信号,同时,它还能鉴别出运动的生物与其它非生物。热释电红外传感器既可用于防盗报警装置,也可以用于自动控制、接近开关、遥测等领域。用它制作的防盗报警器与目前市场上销售的许多防盗报警器材相比,具有如下特点:

●不需要用红外线或电磁波等发射源。

●灵敏度高、控制范围大。

●隐蔽性好,可流动安装。

2热释电红外传感器的原理特性

热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器。不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化。为了抑制因自身温度变化而产生的干扰该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化并将其转换为电信号输出。热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。由于热电元输出的是电荷信号,并不能直接使用因而需要用电阻将其转换为电压形式该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式即源极跟随器来完成阻抗变换。热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。由于加电极化的电压是有极性的,因此极化后的探测元也是有正、负极性的。

图1是一个双探测元热释电红外传感器的结构示意图。使用时D端接电源正极,G端接电源负极,S端为信号输出。该传感器将两个极性相反、特性一致的探测元串接在一起,目的是消除因环境和自身变化引起的干扰。它利用两个极性相反、大小相等的干扰信号在内部相互抵消的原理来使传感器得到补偿。对于辐射至传感器的红外辐射,热释电传感器通过安装在传感器前面的菲涅尔透镜将其聚焦后加至两个探测元上,从而使传感器输出电压信号。

制造热释电红外探测元的高热电材料是一种广谱材料,它的探测波长范围为0.2~20μm。为了对某一波长范围的红外辐射有较高的敏感度,该传感器在窗口上加装了一块干涉滤波片。这种滤波片除了允许某些波长范围的红外辐射通过外,还能将灯光、阳光和其它红外辐射拒之门外。

3被动式红外报警器的结构原理

3.1结构

被动式红外报警器主要由光学系统、热释电红外传感器、信号滤波和放大、信号

处理和报警电路等几部分组成。其结构框图如图2所示。图中,菲涅尔透镜可以将人体辐射的红外线聚焦到热释电红外探测元上,同时也产生交替变化的红外辐射高灵敏区和盲区,以适应热释电探测元要求信号不断变化的特性;热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。图3所示的是将待测目标、菲涅尔透镜、热释电红外传感器相结合使用时的工作原理示意图。

3.2工作原理

在该探测技术中,所谓“被动”是指探测器本身不发出任何形式的能量,只是靠接收自然界能量或能量变化来完成探测目的。被动红外报警器的特点是能够响应入侵者在所防范区域内移动时所引起的红外辐射变化,并能使监控报警器产生报警信号,从而完成报警功能。图4所示是该报警器的工作电路原理图。

当人体辐射的红外线通过菲涅尔透镜被聚焦在热释电红外传感器的探测元上时,电路中的传感器将输出电压信号,然后使该信号先通过一个由C1、C2、R1、R2组成的带通滤波器,该滤波器的上限截止频率为16Hz,下限截止频率为0.16Hz。由于热释电红外传感器输出的探测信号电压十分微弱(通常仅有1mV左右),而且是一个变化的信号,同时菲涅尔透镜的作用又使输出信号电压呈脉冲形式(脉冲电压的频率由被测物体的移动速度决定,通常为0.1~10Hz左右),所以应对热释红外传感器输出的电压信号进行放大。本设计运用集成运算放大器LM324来进行两级放大,以使其获得足够的增益。

当传感器探测到人体辐射的红外线信号并经放大后送给窗口比较器时,若信号幅度超过窗口比较器的上下限,系统将输出高电平信号;无异常情况时则输出低电平信号。在该比较器中,R9、R10、R11用做参考电压,两个运算放大器用做比较,两个二极管的主要作用是使输出更稳定。窗口比较器的上下限电压

即参考电压分别为3.8V和1.2V。将这个高低电平变化的信号上升沿信号作为单稳电路HEF4538B的触发信号,并让其输出一个脉宽大约为10s的高电平信号。再用这一脉宽信号作为报警电路KD9561的输入控制信号,来使电路产生10s的报警信号,最后用三极管VT1和VT2再一次对电信号进行放大,以便有足够大的电流来驱动喇叭使其连续发出10s的报警声。

4结束语

用热释电红外传感器设计的监控报警系统具有结构简单、成本低等优点。经过多次测试,该系统工作情况稳定。

图4

热释电红外报警器只能安装在室内,其误报率与安装的位置和方式有极大的关系。正确的安装应满足下列条件:

(1)报警器应离地面2.0~2.2米。

(2)报警器应远离空调、冰箱、火炉等空气、温度变化比较敏感的地方。

(3)报警器探测范围内不得有隔屏、家具、大型盆景或其他隔离物。

(4)报警器不要直对窗口,否则窗外的热气流扰动和人员走动会引起误报,有条件的话最好把窗帘拉上。另外,报警器也不要安装在有强气流活动的地方。

菲涅尔透镜又称阶梯镜,即有"阶梯"形不连续表面组成的透镜。"阶梯"由一系列同心圆环状带区构成,又称环带透镜。通过菲涅尔透镜观察远处的物体,则物体的像是倒立的,而观察近处的物体时会产生放大效果。

菲涅尔透镜作用有两个:一是聚焦作用,即将热释红外信号折射(反射)在PIR 上,第二个作用是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。

菲涅尔透镜,简单的说就是在透镜的一侧有等距的齿纹.通过这些齿纹,可以达到对指定光谱范围的光带通(反射或者折射)的作用.传统的打磨光学器材的带通光学滤镜造价昂贵。菲涅尔透镜可以极大的降低成本。典型的例子就是PIR(被动红外线探测器)。PIR广泛的用在警报器上。如果你拿一个看看,你会发现在每个PIR上都有个塑料的小帽子。这就是菲涅尔透镜。小帽子的内部都刻上了齿纹。这种菲涅尔透镜可以将入射光的频率峰值限制到10微米左右(人体红外线辐射的峰值)。成本相当的低。

菲涅尔透镜的种类很多,其几何形状、探测角、焦距及用

途也不尽相同。常用的菲涅尔透镜可大致归纳为以下几类。

1.长方形透镜。是常用普通型透镜。如0—6型尺寸为68X

38mm,焦距为29mm,水平角12Oo,垂直角8O。,探测距离

大于1Om;0—1A型尺寸为58.8X 45mm,水平角85。,垂直角450。探测距离大于1Om。

2.半球状透镜。适合吊顶安装,若设计成小型探测器,

4—56可作吊顶武自动灯、自动门等。如:Q-8型半球形透镜,直径为24mm,水平探测角1 00。,垂直探测角60。,探测距离3—5m;另外,还有RS-8型半球状透镜等。

3.水平薄片形。这类透镜设计独特,如:SC一62型透镜,

探测区域是两个水平1o0o、垂直1.91。的窄平面,对应两

个高精度传感器,特别适合对某一水平高度进行监测;SC一82型透镜,水平角140o,垂直角12。,用它组成的探测器可避免地面小动物活动产生的干扰。由于这类透镜水平角特别大,垂直角特别小。故适合于特殊场合的探测。

4.光束式透镜。如:BS-05型透镜的水平角仅5。,可形

成一束细长的探测区.其探测距离远,有效距离可达30m以

上,适用于走廊、长通道等长距离、小角度的应用场合。

5.抗灯光干扰型。通用型透镜普遍采用聚乙烯材料制

作,由于其透明度较高,易受强光源干扰产生误动作。为了提高透镜的抗干扰能

力,在制作材料中加入某些添加剂,制成乳白色或黑色透镜,其中以黑色最为理想。经实际测试,如果配以双脉冲标准线路,其抗灯光干扰指标可达到

10000Lx(勒克斯),远远超过国家标准。黑色透镜如8S一94V3,乳白色透镜有0X一1、QX-1A等。

菲涅尔十九世纪最伟大的光学家

菲涅尔透镜又称阶梯镜,即有"阶梯"形不连续表面组成的透镜。"阶梯"由一系列同心圆环状带区构成,又称环带透镜。通过菲涅尔透镜观察远处的物体,则物体的像是倒立的,而观察近处的物体时会产生放大效果。

菲涅尔透镜作用有两个:一是聚焦作用,即将热释红外信号折射(反射)在PIR 上,第二个作用是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。

菲涅尔透镜,简单的说就是在透镜的一侧有等距的齿纹.通过这些齿纹,可以达到对指定光谱范围的光带通(反射或者折射)的作用.传统的打磨光学器材的带通光学滤镜造价昂贵。菲涅尔透镜可以极大的降低成本。典型的例子就是PIR(被动红外线探测器)。PIR广泛的用在警报器上。如果你拿一个看看,你会发现在每个PIR上都有个塑料的小帽子。这就是菲涅尔透镜。小帽子的内部都刻上了齿纹。这种菲涅尔透镜可以将入射光的频率峰值限制到10微米左右(人体红外线辐射的峰值)。成本相当的低。

菲涅耳透镜可以把透过窄带干涉滤光镜的光聚焦在硅光电二级探测器的光敏面上。

菲涅尔透镜由有机玻璃制成,不能用任何有机溶液(如酒精等)擦拭。除尘时可先用蒸馏水或普通净水冲洗,再用脱脂棉擦拭。

2015/4/15 23:15:45

太阳风暴2015/4/15 23:15:45

应用电路图4

热释电传感器处理芯片BIS0001的原理与使用

热释电传感器处理芯片BIS0001的原理与使用 BIS0001是一款具有较高性能的传感信号处理集成电路。它配以热释电红外传感器和少量外接元器件就可构成被动式的热释电红外开关、报警用人体热释电传感器等。它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。 一,芯片特点: *CMOS工艺制造 *数模混合 *具有独立的高输入阻抗运算放大器 *内部的双向鉴幅器可有效抑制干扰 *内设延迟时间定时器和封锁时间定时器 *采用16脚DIP封装 二,管脚功能:

五,工作原理简介: BIS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。

以上图所示的不可重复触发工作方式下的波形,来说明其工作过程,下图为其内部结构示意图: 首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V时,可有效抑制±1V的噪声干扰,提高系统的可靠性。 COP3是一个条件比较器。当输入电压VcVR时,COP3输出为高电平,进入延时周期。当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。

人体释热电自动灯控开关

人体释热电自动灯控开关 刘云峰沈静逸朱斌系统功能、性能的简介: 随着城市建设的迅速发展,传统的人工操作和维护控制手段已不能适应现代化城市发展的需求。当前,以人体信息为控制源的控制电路,在采集人体信息时,或直接使用热释电传感器被动远红外探测功能,或将传感器置于不断转动的云台上,使被动探测变成主动探测。本文介绍的灯控开关利用人体发出的红外线,通过热释电红外传感器的接收、放大形成具有一定电压幅度的控制信号。用这一控制信号去触发继电器使其导通,就可以制成具有自动控制功能的电灯开关。当有人到来时,电灯自动打开,人走后电灯自动关闭。 方案论证与选型: 信号的采集: 用热释电红外传感器P228收集人体红外线,输出超低频脉冲。 信号放大: 方案一:用三极管构成多级放大器对采集的微弱信号进行放大 方案二:用运算放大器构成的放大电路对信号进行放大 方案三:采用运算放大器构成低通放大器对信号进行放大 由于信号是由传感器从外界采集的,必然会存在其他不需要的干扰信号,为了滤除干扰信号,将我们所需要的信号进行有效放大,我们采用方案三,用低通放大器对采集来的超低频信号进行放大! 开关控制电路:

方案一:用三极管触发电路驱动双向可控硅,使负载电路导通。 方案二:采用继电器代替方案一中的可控硅 由于负载采用220V的高压电源供电,所以采用方案二中的继电器代替双向可控硅可将高压负载电路与低压控制电路分开,降低调试阶段的危险性,延长电路的使用寿命! 全电路框图与原理图 框图设计: 热释电红外传感器收集人体红外, 输出0.1~10HZ的超低频脉冲,幅 度不大于1mV。

原理图设计:

人体热释电红外感应电路bs0001

人体热释电红外感应电路TX0001 人体热释电红外感应电路TX0001是一款具有较高性能的传感信号处理集成电路。它和BISS0001芯片完全兼容,它配以热释电红外传感器和少量外接元器件构成被动式的热释电红外开关。它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。 TX0001完全兼容BIS0001,不但可以直接替代原用于BIS0001的场合,而且功耗更低,尤其是价格很有竞争力,以BIS0001为例,一般市场售价为3.6元,而TX0001价格可以做到2.2元,大批量价格另议。感兴趣的客户可以购买样片进行测试,每次需支付15元的邮费。 特点 *CMOS工艺 *数模混合 *具有独立的高输入阻抗运算放大器 *内部的双向鉴幅器可有效抑制干扰 *内设延迟时间定时器和封锁时间定时器 *采用16脚DIP封装 管脚图

管脚说明

工作原理 TX0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。 以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。不可重复触发工作方式下的波形 首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V 时,可有效抑制±1V的噪声干扰,提高系统的可靠性。 COP3是一个条件比较器。当输入电压Vc

热释电大全

3.3.2 热释电红外传感器 热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。将输出的电压信号加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警等。目前市场上常见的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer 公司的LHi954、LHi958,美国Hamastsu公司的P2288,日本Nippon Ceramic公司的SCA02-1、RS02D等。虽然它们的型号不一样,但其结构、外型和特性参数大致相同,大部分可以彼此互换使用。 热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大部分组成,如图3-29所示。对不同的传感器来说,探测元的制造材料有所不同。如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。传感器中两个电容是极性相反串联的。 图3-29 双探测元热释电红外传感器当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流,传感器无输出。 当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光能能量相等,且达到平衡,极性相反、能量相等的光电流在回路中相互抵消,传感器仍然没有信号输出。 当人体在传感器的检测区域内移动时,照射到两个电容上的红外线能量不相等,光电流在回路中不能相互抵消,传感器有信号输出。综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。 滤光窗是由一块薄玻璃片镀上多层滤光层薄膜而成的,能够有效地滤除7.0~14um波长以外的红外线。人体的正常体温为36~37.5℃,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)=9.67~9.64um,中心波长为9.65um,正好落在滤光窗的响应波长的中心。所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰。 热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。由于探测元输出的是电荷信号,不能直接使用,因而需要将其转换为电压形式。场效应管输入阻抗高达104MΩ,接成共漏极形式来完成阻抗变换。使用时D端接电源正极,G端接电源负极,S端为信号输出。 对于移动速度非常缓慢的物体,如阳光,两个电容上的红外线光能能量仍然可以看作是相等的,在回路中相互抵消;再加上传感器的响应频率很低(一般为0.1~10Hz),即传感器对红外光的波长的敏感范围很窄(一般为5~15um),因此,传感器对它们不敏感,因而无输出。

热释电红外传感器的工作原理

热释电红外传感器的工作原理 热释电红外传感器的工作原理 整理日期:2019-12-25 14:09:14 资料编辑: 点击次数: 67 热释电红外传感器通过目标与背景的温差来探测目标,其工作原理是利用热释电效应,即在钛酸钡一类晶体的上、下表面设置电极,在上表面覆以黑色膜,若有红外线间歇地照射,其表面温度上升△T,其晶体内部的原子排列将产生变化,引起自发极化电荷,在上 下电极之间产生电压△U。常用的热释电红外线光敏元件的材料有陶瓷氧化物和压电晶体,如钛酸钡、钽酸锂、硫酸三甘肽及钛铅酸铅等。热释电红外传感器内部由光学滤镜、场 效应管、红外感应源(热释电元件)、偏置电阻、EMI电容等元器件组成,其内部电路框图 如图1所示。 光学滤镜的主要作用是只允许波长在10μm左右的红外线(人体发出的红外线波长)通过,而将灯光、太阳光及其他辐射滤掉,以抑制外界的干扰。红外感应源通常由两个串 联或者并联的热释电元件组成,这两个热释电元件的电极相反,环境背景辐射对两个热释 电元件几乎具有相同的作用,使其产生的热释电效应相互抵消,输出信号接近为零。一旦 有人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元件接收,由于角度 不同,两片热释电元件接收到的热量不同,热释电能量也不同,不能完全抵消,经处理电 路处理后输出控制信号。 热释电效应同压电效应类似,是指由于温度的变化而引起晶体表面电荷的现象。热释 电红外传感器由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极,在传感器监 测范围内温度有 △T的变化时,热释电效应会在两个电极上产生电荷△Q,即在两电极之间产生一微弱的电压△V。由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。热释电 效应所产生的电荷△Q会被空气中的离子所结合而消失,即当环境温度稳定不变时,△T=O,传感器无输出。 在自然界,任何高于绝对温度(-273℃)时物体都将产生红外光谱,不同温度的物体, 其释放的红外能量的波长是不一样的,因此红外波长与温度的高低有关。 人体或者体积较大的动物都有恒定的体温,一般在37度,所以会发出特定波长10μm 左右的红外线,当人体进入检测区,因人体温度与环境温度有差别,人体发射的10μm左 右的红外线通过菲涅耳透镜滤光片增强后聚集到红外感应源(热释电元件)上,红外感应源 在接收到人体红外辐射时就会失去电荷平衡,向外释放电荷,进而产生△T并将△T向外 围电路输出,后续电路经检测处理后就能产生报警信号。 若人体进入检测区后不动,则温度没有变化,传感器也没有信号输出,所以这种传感 器适合检测人体或者动物的活动情况。

红外热释感应模块

红外热释电感应模块 相关键连:菲涅尔镜片的原理和应用 配套的热释电元件RE200B 体积:8.3*4.2mm 灵敏元面积2.0×1.0mm2 基片材料硅 基片厚度 0.5mm 工作波长 7-14μm 平均透过率>75% 输出信号>2.5V (420°k黑体1Hz调制频率0.3-3.0Hz 带宽72.5db增益) 噪声<200mV (mVp-p) (25℃) 平衡度<20% 工作电压 2.2-15V 工作电流 8.5-24μA

(VD=10V,Rs=47kΩ,25℃) 源极电压 0.4-1.1V (VD=10V,Rs=47kΩ,25℃) 工作温度 -20℃- +70℃ 保存温度 -35℃- +80℃ 视场139°×126° 说明该传感器采用热释电材料极化随温度变化的特性探测红外辐射,采用双灵敏元互补方法抑制温度变化产生的干扰,提高了传感器的工作稳定性。 1、上述特性指标是在源极电阻R2=47KΩ条件下测定的,用户使用传感器时,可根据自己的需要调整R2的大小。 2、注意灵敏元的位置及视场大小,以便得到最佳光学设计。 3、所有电压信号的测量都是采用峰一峰值定标。平衡度B中的EA和EB分别表示两个灵敏元的电压输出信号的峰一峰值。 4、使用传感时,管脚的弯曲或焊接部位应离开管脚基部4mm以上。 5、使用传感器前,应先参考说明书,尤其要防止接错管脚 被动式热释电红外探头的工作原理及特性: 在自然界,任何高于绝对温度(-273度)时物体都将产生红外光谱,不同温度的物体,其释放的红外能量的波长是不一样的,因此红外波长与温度的高低是相关的。 在被动红外探测器中有两个关键性的元件,一个是热释电红外传感器(PIR),它能将波长为8一12um之间的红外信号变化转变为电信号,并能对自然界中的白光信号具有抑制作用,因此在被动红外探测器的警戒区内,当无人体移动时,热释电红外感应器感应到的只是背景温度,当人体进人警戒区,通过菲涅尔透镜,热释电红外感应器感应到的是人体温度与背景温度的差异信号,因此,红外探测器的红外探测的基本概念就是感应移动物体与背景物体的温度的差异。 另外一个器件就是菲涅尔透镜,菲涅尔透镜有两种形式,即折射式和反射式。菲涅尔透镜作用有两个:一是聚焦作用,即将热释的红外信号折射(反射)在PIR上,第二个作用是将警戒区内分为若干个明区和暗区,使进入警戒区的移动物体能以温度变化的形式在PIR 上产生变化热释红外信号,这样PIR就能产生变化的电信号。 人体都有恒定的体温,一般在37度,所以会发出特定波长10微米左右的红外线,被动式红外探头就是靠探测人体发射的10微米左右的红外线而进行工作的。人体发射的10微米左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10微米左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲泥尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电

红外传感器

使用SD02型热释电人体红外传感器组成的放大检测电路。电路中使用LM324四运放分别构成IC1、IC2两级高倍放大器,对SD02检测到的信号进行放大。IC3、IC4构成窗口比较器,当IC2电压幅度在UA到UB之间时,IC3、IC4输出低电平;当IC2输出电压大于UA时,IC3输出高电平;当IC2输出电压小于UB时,IC4输出高电平,经VD1、VD2隔离后分别输出,以控制后续报警及控制电路。R11用于设定窗口的阈值电平,调节R11可调节检测器的灵敏度。当有人在热释电检测电路的有效范围内走动时,将引起LED1和LED2交替闪烁。电路中,运放LM324无论是作放大器还是比较器,都采用了单电源。在传感器无信号时,IC1的静态输出电压为0.4~1.0V左右;IC2在静态时,由于同相端电位为2.5V,故直流输出电平为2.5V;而两个比较器IC3和IC4的基准电位则由电阻R10、R11和R12的大小确定。

用SD02型热释电人体红外传感器组成的放大检测电路.电路中使用LM324四运放分别构成的IC1,IC2两极高倍放大器,对SD02检测的微弱信号进行放大。IC3,IC4构成窗口比较器,当IC2电压幅度在UA到UB之间时,IC3,IC4输出低电平;当IC2输出电压大于UA时,IC3输出高电平;当IC2小于UB时,IC4输出高电平,经VD1,VD2隔离电压分别输出,以控制后续报警及控制电路。R11可调节检测器的灵敏度.当有人在热释电路的有效范围内走动时,可引起LED1和LED2交替闪烁。运放LM324无论是放大器还是比较器,都采用了单电源。在传感器无信号无信号时,IC1的静态输出电压为0.4~1V左右;IC2在静态时,由于同相端电位为2.5V,故输出电平为2.5V;而两个比较器IC3和IC4的输出则由R11和R12的大小决定。 单元电路的分析 4.1信号采集电路当人体辐射的红外线通过非涅尔透镜被聚焦在热释电红外传感器的探测元件上,电路的传感器将输出电压信号。 4.2放大电路电压信号通过C1,C2,R1,R2组成的带通滤波器,该滤波器的上限截止频率为16HZ,下限截止频率为0.16HZ,由于热释电红外传感器的输出探测信号电压十分微弱(通常仅仅1MV左右)而且是一个变化的信号,菲涅尔透镜的作用使输出信号电压呈脉冲形式,脉冲电压的频率由被测物移动的速度决定,通常为0.1~100HZ左右,所以应对热释红外传感器输出电压信号进行放大,本设计运用集成运放LM324进行两极放大,以便获得足够的增益。 4.3比较电路探测到人体辐射的红外信号并送给窗口平比较器时,信号幅度经窗口比较器的上下限,系统将输出高电平,无异常情况时输出低电平信号,在比较器中,R9,R1O用作参考电压,两个运放作比较器,两个三极管的用途使输出更稳定,窗口比较器的上下限电压为3.8V和1.2V.

热释电红外线传感器

红外线传感器是将红外辐射能转换成电能的一种光敏元件,根据红外传感器的工作原理,可分为红外热传感器和红外光子传感器两类。其中热释电红外传感器 ( P I R)是红外热传感器应用广泛的一类。 热释电红外(PIR)传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。将输出的电压信号加以放大,便可驱动各种控制电路。热释电红外传感器采用的材料是一种具有极化现象的热晶体,其内部的热电元件通常由高热电系数的钽酸锂(LiTaO3)、钛酸钡(BaTiO3)、锆钛酸铅(PZT)等材料组成。这种热晶体的极化强度 (单位而积的电荷)随温度变化而变化。当红外光照射到已经极化的热晶体薄片表面上时,引起薄片温度升高,使其极化强度降低表面电荷减少,这相当于释放一部分电荷,所以叫做热释电红外传感器。如果将负载电阻与铁电体薄片相连,则负载电阻上会产生一个电信号输出。输出信号的大小取 决于薄片温度变化的快慢,从而反映出入射的红外光的强度。由此可知,热释电红外传感器的电压响应率正比于入射红外光的变化率,当恒定的红外光照射在热释电红外传感器上时,传感器没有电信号输出,而只有热晶体处于变化过程中才有电信号输出。所以,必须有交变的红外光照射,不断引起传感器的温度变化,才能导致热释电产生并输出交变信号。 热释电探测器的响应速度比其他热探测器快得多。由于热释电红外传感器具有远红外线不受可见光影响,故可不分昼夜连续检测,由于被测对象自身发射红外线,故可不必另设光源。它不但可以工作于低频,而且能工作于高频,目前最 好的热释电探测器的探测率可以高达,已经超过了所有的室 温热探测器。因而热释电探侧器不仅具有室温工作、光谱响应宽,隐蔽性好,可流动安装等热探测器的共同优点,而且也是探测率最高、频率响应最宽的热探测器。 热释电红外传感器选择不同的带通滤波片,就可以检测不同的对象,实现不同的目的,比如监测火源,安全检查,防盗防窃,以及军事上的应用。随着热释电探测器研究的不断深入和发展,其应用也日趋广泛,除了在我们熟知的楼道自动开关、防盗报警上得到应用外,在更多的领域应用前景看好。比如:在房间无人时会自动停机的空调机、饮水机。电视机能判断无人观看或观众已经睡觉后自动关机的机构。开启监视器或自动门铃上的应用。结合摄影机或数码照相机自动记录动物或人的活动等等。您可以根据自己的奇思妙想,结合其它电路开发出更加优秀的新产品 、或自动化控制装置。 911510cmHz W -⨯

实验12 热释电红外传感器

实验12 组员: 姓名:张凯凯学号:00094831110 姓名:张超学号:00094831153 姓名:俞涛学号:00094831073 12.1实验目的: 12.1.1、了解热释电红外传感器结构、工作原理及应用。 12.2实验设备和元件: 12.2.1实验设备: 12号热释电红外传感器模块、±12V电源。 12.2.2其它设备:导线若干。 12.3实验内容: *12.3.1、利用网络或图书馆等,首先掌握热释电红外传感器原理、型号、使用方法、以及信价比等,整理成不少于3000字的说明书。 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~ 0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线 最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个收集到的实例,介绍一下红外线传感器的应用。 热释电红外传感器是一种能检测人或动物发射的红外线而输出电信号的传感器。早在1938年,有人提出过利用热释电效应探测红外辐射,但并未受到重视,直到六十年代,随着激光、红外技术的迅速发展,才又推动了对热释电效应的研究和对热释电晶体的应用。热释电晶体已广泛用于红外光谱仪、红外遥感以及热辐射探测器,它可以作为红外激光的一种较理想的探测器。它目标正在被广泛的应用到各种自动化控制装置中。除了在我们熟知的楼道自动开关、防盗报警上得到应用外,在更多的领域应用前景看好。比如:在房间无人时会自动停机的空调机、饮水机。电视机能判断无人观看或观众已经睡觉后自动关机的机构。开启监视器或自动门铃上的应用。结合摄影机或数码照相机自动记录动物或人的活动等等。您可以根据自己的奇思妙想,结合其它电路开发出更加优秀的新产品、或自动化控制装置。 人体热释电红外传感器和应用介绍 被动式热释电红外探头的工作原理及特性:一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左

HC-SR501-人体红外感应模块-热释电-红外传感器要点

HC-SR501 人体红外感应模块 1. 简介 HC-SR501 人体红外感应模块是一种基于热释电传感器的红外感应模块,可以检测人体或动物的热量并输出电信号。它广泛应用于安防、智能家居、自动化控制等领域。 2. 热释电传感器 热释电传感器是一种能够检测物体热场变化的传感器。它利用了材料本身的热电效应,将热能转化为电信号,实现对温度、热辐射等物理量的测量。 3. 红外感应原理 HC-SR501 模块的红外感应原理基于热释电传感器的工作原理。当室内有人体等物体经过时,人体会散发出热量,热量会引起模块内置的热释电传感器产生电信号,并通过模块的放大电路、滤波电路、比较电路最终输出数字信号。 4. 主要特点 4.1 灵敏度高 HC-SR501 模块能够检测到物体的微小热量变化,灵敏度高,能够实现快速、准确地检测人体或动物的运动。 4.2 可调节延时时间和感应距离 HC-SR501 模块的延时时间和感应距离均可通过模块上的旋钮进行调节,可以根据实际需求进行灵活设置。 4.3 低功耗设计 HC-SR501 模块采用低功耗设计,工作电流仅为 50uA,非常适合应用于电池供电系统。 4.4 两个触发模式可选 HC-SR501 模块支持两种触发模式:自动循环触发模式和单次触发模式。在自动循环触发模式下,模块会每隔一定时间自动检测是否有人体运动;在单次触发模式下,只有当检测到人体运动时才触发输出信号,适用于对电池寿命有要求的应用场合。

5. 技术参数 •工作电压:DC 5V - 20V •工作电流:50uA •工作温度:-15℃ ~ +70℃ •检测角度:120度锥形 •检测距离:3米 ~ 7米可调 •输出信号:高电平(3.3V)、低电平(0V) •触发模式:自动循环触发模式、单次触发模式 •触发时间:约两秒钟(可调) 6. 应用场景 •安防系统:可用于入侵检测、区域控制等场合。 •智能家居:可用于自动开关灯、空调等设备,实现便捷、智能化的家居生活。 •自动化控制:可用于自动门、自动售货机、自动洗手间等领域。 7. 总结 HC-SR501 人体红外感应模块是一种能够实现快速、准确人体检测的红外传感器。它具有灵敏度高、可调节延时时间和感应距离、低功耗设计、两个触发模式可选等特点,被广泛应用于安防、智能家居、自动化控制等领域。

红外热释电传感器

红外热释电传感器 什么是红外热释电传感器 红外热释电传感器是一种被广泛使用在安防监控中的传感器,可以检测并识别 人体的红外辐射信号。它可通过检测人体辐射的红外线来判断人体的存在,从而实现人体感应的应用。与其他传感器相比,它在检测精度、灵敏度和稳定性方面都有很优秀的表现。 红外热释电传感器的原理 红外热释电传感器采用的是“热释电效应”,当红外线照射在热释电传感器的各 个区域上,红外线会通过吸收、反射、透过等过程,转化成电信号输出。热释电材料在吸收红外线照射后,自身温度会提高,并且电荷的分布状态也会发生改变,从而产生输出电信号。通过对红外辐射信号的检测和分析,可以判断出人体的存在与否。 红外热释电传感器的优劣势 优势: 1.高精度。红外热释电传感器可以检测人体的移动方向、速度、距离等, 准确度较高。 2.环境适应性强。在各种天气环境下,红外热释电传感器都可以保持稳 定的检测效果。 3.无线控制。红外热释电传感器可以实现与其他设备的无线联动和控制。 劣势: 1.价格较高。红外热释电传感器的经济性不如其他传感器。 2.局限性。红外热释电传感器只能检测人体等物品的红外辐射信号,无 法判断物品的其他特征。 红外热释电传感器的应用 红外热释电传感器主要应用于安防现场,例如办公室、居民小区、道路、停车 场等。具体应用如下: 1.报警。红外热释电传感器可以在特定的区域内检测人体的存在,当检 测到非法闯入时,会即时发送信号到安全系统进行报警。

2.自动开关灯。在开启了自动感应的灯具中,红外热释电传感器可以检 测人体的存在,从而实现灯具的自动开关。 3.智能家居。将红外热释电传感器应用到家居中,可以通过对家具的感 知,实现智能化的控制管理。 红外热释电传感器与其他传感器的区别 与其他传感器相比,红外热释电传感器的最大优势在于检测的是人体的红外辐射信号。与光线传感器、声音传感器等其他传感器相比,红外热释电传感器可以在低光照、较弱声音等条件下工作,并且抗干扰能力较强。但是,它也有自己的局限性,如无法检测人体之外的物体,且价格和功耗较高。 结语 红外热释电传感器是当前安防监控中广泛应用的一种传感器,具有精度高、环境适应性强等优点。与其他传感器相比,在人体检测方面具有很大的优势。它也有它的缺点和局限性,但在实际应用中,它已经得到了广泛地利用。

传感器简介

序 号 名称型号图片介绍 1温度传感器DS18B20DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域.测温范围-55℃~+125℃,固有测温分辨率0.5℃. 2温度传感器 (不锈钢防 水) DS18B20 同上 3超声波传感器HC—SR04模块高精度 1:使用电压:DC5V 2:静态电流:小于2mA 3:电平输出:高5V 4:电平输出:底0V 5:感应角度:不大于15度6:探测距离:2cm-450cm 4人体红外感应 模块 HC-SR501 热释电红外传感器是一种能检测人或动物发射的红外线而输出电信号的传感 器。热释电效应同压电效应类似,是指由于温度的变化而引起晶体表面荷电 的现象。当有人进入其感应范围则输入高电平,人离开感应范围则自动延时 关闭高电平。输出低电平。工作电压DC5V至20V。 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感

6霍尔开关传感 器 A3144E 霍尔传感器应用霍尔效应原理,采用半导体集成技术制造的磁敏电路,它是由 电压调整器、霍尔电压发生器、差分放大器、史密特触发器,温度补偿电路和集 电极开路的输出级组成的磁敏传感电路,其输入为磁感应强度,输出是一个数字 电压信号。 产品特点:体积小、灵敏度高、响应速度快、温度性能好、精确度高、可靠性高。 典型应用:无触点开关、汽车点火器、刹车电路、位置、转速检测与控制、安全 报警装置、纺织控制系统. 7反射式光电传 感器 ST188 RRP220 根据反射式红外光电传感器的原理和内部结 构,我们可以设计上面的电路,电阻主要起限流 作用,电阻值常设置为:R1=510Ω,R2=20kΩ。 这样,如果接收管接收到反射回来的红外线,红 外接收头导通,E管脚输出高电平,接近Vcc;如 果没有没有接收到反射回来的红外线,红外接收 头不导通,E管脚输出低电平,接近GND。 在实际应用中,我们可以通过单片机扫描E管 脚(类似按键扫描的方法)以确定接收管的状态。 8 3-50cm可调 红外避障传感 器 E18—D50N K 这是一种集发射与接收于一体的光电传感器。检测距离可以根据要求进行调 节。该传感器具有探测距离远、受可见光干扰小、价格便宜、易于装配、使用方 便等特点,可以广泛应用于机器人避障、流水线计件等众多自动化产品.前方无障 碍输出高电平,有障碍输出口(黄色)电平会从高电平变成低电平 红色:接4。5-5V电源高电平 黄色:接单片机,输出TTL电平给单片机 绿色:接GND 0V 电源低电平

HC-SR501人体红外感应模块热释电红外传感器

产品描述: D—SUN PIR 人体红外感应模块是基于红外线技术的自动控制产品。灵敏度高、可靠性强、超低功耗,超低电压工作模式.广泛应用于各类自动感应电器设备,尤其是干电池供电的自动控制产品.

电气参数

••

•功能特点: 1、全自动感应:人进入其感应范围则输出高电平,人离开感应范围则自动延时关闭高电平,输出 低电平。 2、 光敏控制(可选):模块预留有位置,可设置光敏控制,白天或光线强时不感应。光敏控制为可选功能,出厂时未安装光敏电阻。如果需要,请另行购买光敏电阻自己安装。光敏电阻请拍这里: http://item.taobao。com/item.htm?spm=a1z10。3.w6624242385。11。kHNbhx&id=14510222016& 3、温度补偿(可选择,出厂时未设):在夏天当环境温度升高至30~32℃,探测距离稍变短,温 度补偿可作一定的性能补偿。 4、两种触发方式:(可跳线选择) a、不可重复触发方式:即感应输出高电平后,延时时间段一结束,输出将自动从高电平变成 低电平; b、可重复触发方式:即感应输出高电平后,在延时时间段内,如果有人体在其感应范围 活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检 测到人体的每一次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。 5、具有感应封锁时间(默认设置:2.5S封锁时间):感应模块在每一次感应输出后(高电平变 成低电平),可以紧跟着设置一个封锁时间段,在此时间段内感应器不接受任何感应信号. 此功能可以实现“感应输出时间”和“封锁时间"两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。(此时间可设置在零点几秒—几十秒钟)。 6、工作电压范围宽:默认工作电压DC3。6V~30V。 7、微功耗:静态电流<50微安,特别适合干电池供电的自动控制产品。 8、输出高电平信号:可方便与各类电路实现对接. •外形尺寸与调节

BIS0001热释电传感器处理芯片

BIS0001热释电传感器处理芯片 型号:BIS0001 封装:DIP-16 BIS0001是一款具有较高性能的传感信号处理集成电路。它配以热释电红外传感器和少量外接元器件就可构成被动式的热释电红外开关、报警用人体热释电传感器等。它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。 一,芯片特点: *CMOS工艺制造 *数模混合 *具有独立的高输入阻抗运算放大器 *内部的双向鉴幅器可有效抑制干扰 *内设延迟时间定时器和封锁时间定时器 *采用16脚DIP封装 二,管脚功能: 三,管脚说明:

四,芯片使用参数:

五、工作原理简介: BIS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。

以上图所示的不可重复触发工作方式下的波形,来说明其工作过程,下图为其内部结构示意图: 首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。由于VH≈0.7VDD、

VL≈0.3VDD,所以,当VDD=5V时,可有效抑制±1V的噪声干扰,提高系统的可靠性。 COP3是一个条件比较器。当输入电压VcVR时,COP3输出为高电平,进入延时周期。当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。 以上图所示的可重复触发工作方式下的波形,来说明其工作过程。可重复触发工作方式下的波形在Vc=“0”、A=“0”期间,信号Vs不能触发Vo为有效状态。在Vc=“1”、A=“1”时,Vs可重复触发Vo为有效状态,并可促使Vo在Tx周期内一直保持有效状态。在Tx时间内,只要Vs发生上跳变,则Vo将从Vs上跳变时刻起继续延长一个Tx周期;若Vs保持为“1”状态,则Vo一直保持有效状态;若Vs保持为“0”状态,则在Tx周期结束后Vo恢复为无效状态,并且,同样在封锁时间Ti时间内,任何Vs的变化都不能触发Vo为有效状态。 六,实际应用:

相关文档
相关文档 最新文档