文档库 最新最全的文档下载
当前位置:文档库 › 转速单闭环直流调速系统设计

转速单闭环直流调速系统设计

转速单闭环直流调速系统设计
转速单闭环直流调速系统设计

郑州航空工业管理学院

电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级

题目转速单闭环的直流拖动系统

姓名

学号

指导教师孙标

二ОО十年月日

电力拖动自动控制系统课程设计

一、设计目的

加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。

二、设计任务

设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计

1 技术指标

电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。

2 设计要求

(1)闭环系统稳定

(2)在给定和扰动信号作用下,稳态误差为零。

3 设计任务(1)绘制原系统的动态结构图;

(2)调节器设计;

(3)绘制校正后系统的动态结构图;

(4)撰写、打印设计说明书。

4 设计说明书

设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容:

(1)中文摘要

(2)英文摘要

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

转速单闭环调速系统设计

目录 第1章概述 (1) 1.1 转速单闭环调速系统设计意义 (1) 1.2 转速单闭环调速系统的设计要求 (1) 第2章原系统的动态结构图及稳定性的分析 (2) 2.1 原系统的工作原理 (2) 2.2 原系统的动态结构图 (3) 2.3 闭环系统的开环放大系数的判断 (3) 2.4 相角稳定裕度γ的判断 (4) 第3章调节器的设计及仿真 (5) 3.1 调节器的选择 (5) 3.2 PI调节器的设计 (5) 3.3 校正后系统的动态结构图 (8) 3.4 系统的仿真结构图及测试结果 (8) 第4章课程设计总结 (9) 参考文献 (1)

转速单闭环调速系统设计 1、概述 1.1 转速单闭环调速系统设计意义 为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。在对调速性能有较高要求的领域常利用直流电动机作动力,但直流电动机开环系统稳态性能不能满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可用积分调节器代替比例调节器. 反馈控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该量的负 反馈信号去与恒值给定相比较,构成闭环系统。对调速系统来说,若想提高静态指标, 就得提高静特性硬度,也就是希望转速在负载电流变化时或受到扰动时基本不变。要 想维持转速这一物理量不变,最直接和有效的方发就是采用转速负反馈构成转速闭环 调节系统。 1.2 转速单闭环调速系统的设计要求

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

单闭环直流调速系统的设计与仿真实验报告

比例积分控制的单闭环直流调速系统仿真 一、实验目的 1.熟练使用MATLAB 下的SIMULINK 仿真软件。 2.通过改变比例系数K P 以及积分时间常数τ的值来研究K P 和τ对比例积分控制的直流调速系统的影响。 二、实验内容 1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 三、实验要求 建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。 四、实验原理 图4-1 带转速反馈的闭环直流调速系统原理图 调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。 当t=0时突加输入U in 时,由于比例部分的作用,输出量立即响应,突跳到U ex (t )=K P U in ,实现了快速响应;随后U ex (t )按积分规律增长,U ex (t )=K P U in +(t/τ)U in 。在t =t 1时,输入突降为0,U in =0,U ex (t )=(t 1/τ)U in ,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。 五、实验各环节的参数及K P 和1/τ的参数的确定 5.1各环节的参数: 直流电动机:额定电压U N =220V ,额定电流I dN =55A,额定转速n N =1000r/min,电动机电动势系数C e =0.192V ? min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数K s =44,滞后时间常数T s =0.00167s 。

三相异步电机闭环调速设计

《控制系统设计》课程设计报告 学院:信息工程学院 姓名: 班级:11自动化 学号: 题目:三相异步电动机闭环调速系统设计与实践指导老师: 完成时间:2014年6月20日

目录 摘要............................................................... I 1概述.. (1) 1.1三相异步电动机的调速方法 (2) 1.2调压调速的简介 (3) 1.3课程设计的要求 (5) 2三相异步电动机调压调速系统的组成 (5) 3三相异步电动机调压调速系统的设计和实现 (8) 3.1三相异步电动机调压调速系统的电路 (8) 3.2闭环调速结构图 (10) 3.3 系统各部分参数的计算 (10) 4三相异步电动机调压调速系统的仿真 (13) 4.1MATLAB仿真的介绍 (13) 4.2电路的建模和参数设置........................ 错误!未定义书签。 4.3异步电机调压调速系统仿真模型................ 错误!未定义书签。 4.4仿真效果图 (17) 总结 (22) 参考文献 (23)

摘要 异步电动机具有结构简单、制造容易、维修工作量小等优点,早期多用于不可拖动。随着电力电子技术的发展,静止式变频器的诞生,异步电动机在可拖动中逐渐得到广泛的应用。实现电机调速有不少方法。研究电机调速,找出符合实际的调速方法能最大限度的节约能源,所以研究调压调速就显得很有必要。异步电机调压调速控制系统是一种比较简单实用的调速系统,该系统具有良好的运行、控制及经济性能,显示出巨大的发展潜力。 本课程设计介绍了异步电动机调压调速系统的几大组成部分,并着重讲述了三相异步电动机(M)、测速发电机(TG)、晶闸管交流调压器(TVC)的简单的工作原理。在了解异步电动机调压调速的基本原理的基础上,设计了异步电动机单闭环调压调速系统的结构原理图。还将调压调速与其他的调速方法相比,所具有的优点以及不足之处。 以转速单闭环调压调速系统为例,电机调速开环控制系统调速范围较小,采用速度作为负反馈的闭环控制系统解决了这个问题,使调速性能得到改善。 最后,经过理论分析建立模型后,基于Matlab语言开发仿真软件,并进行仿真实验,并且对仿真结果进行了一定的分析及改进。 关键词: 调压调速MATLAB三相异步电动机转速调节器

课程设计——单闭环不可逆直流调速系统设计

单闭环不可逆直流调速系统设计 目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ··········································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

带电流截止负反馈转速单闭环直流调速系统设计

目录 摘要 (2) 1主电路的设计 (2) 1.1变压器参数的设计与计算 (2) 1.2平波电抗器参数的设计与计算 (3) 1.3晶闸管元件参数的计算 (3) 1.4保护电路的设计 (4) 2反馈调速及控制系统 (4) 2.1闭环调速控制系统 (4) 2.2带电流截止负反馈闭环控制系统 (5) 2.3调节器设定 (8) 2.4控制及驱动电路设计 (9) 3参数计算 (10) 3.1基本参数计算 (10) 3.2电流截止负反馈环节参数计算与设计 (12) 3.3调节器的参数设计与计算 (12) 3.4调节器串联校正设计 (15) 4总电气图 (16) 5心得体会 (18) 参考资料 (18)

带电流截止负反馈转速单闭环直流调速 系统设计 摘要 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,并且直流调速系统在理论和实践上都比较成熟,是研究其它调速系统的基础。在直流电动机中,带电流截止负反馈直流调速系统应用也最为广泛,其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。本次课设就带电流截止负反馈转速单闭环直流调速系统进行参数的设计。 1主电路的设计 1.1变压器参数的设计与计算 变压器副边电压采用如下公式进行计算: ??? ? ?? -+= N sh T d I I CU A nU U U 2min max cos αβ V U C I I U A n V U V U N sh T d 110) 105.05.09848.0(9.034.21 22205 .0105 .0109 .034 .22 1,220222 min max =??-??+==========则取已知αβ 因此变压器的变比近似为:45.3110 3802 1===U U K 一次侧和二次侧电流I 1和I 2的计算 I 1=1.05×287×0.861/3.45=75A I 2=0.861×287=247A

直流电机双闭环系统设计

直流电机双闭环系统设计 院系:机电工程学院 班级:电气自动化一班 姓名: 学号: 1 1 0 2 0 3 0 1 4 2 指导教师: 目录

1引言 2调速系统的性能指标 2.1调速系统的稳态指标 2.2调速系统的动态性能指标 2.3系统结构选择 3数字直流电机调速系统的数字PID控制3.1基于单片机控制的直流电机双闭环调速系统3.2 PID调节器的基本原理 4总结与展望 4.1工作总结 4.2研究展 参考文献 直流电机双闭环系统设计摘要

近年来,自动化控制系统在各行业中得到了广泛的应用和发展,而直流调速系统作为电力拖动系统的主要方式之一,在现代化生产中起着十分重要的作用。随着微电子技术的不断发展,计算机在调速系统中的应用使控制系统得到简化,体积减小,可靠性提高,而且各种经典和智能算法也都分别在调速系统中得到了灵活。 以单片机为控制核心的数字直流调速系统有着许多优点:由于速度给定和测速采用了数字化,能够在很宽的范围内高精度测速,所以扩大了调速的范围,提高了测速控制系统的精度;由于硬件的高度集成化,所以使得零部件数量大大减少;由于很多功能都是由软件实现的,使硬件得以简化,因此故障率小;单片机以数字信号工作,控制方法灵活便捷,抗干扰能力较强。 关键词:直流电动机;调速;双闭环 1引言 按照拖动的电动机的类型来划分,自动调速系统可以分为直流调速系统和交流调速系统两大类。由于直流电动机的电压、电流和磁通的耦合较弱,使直流电动机具有良好的运行性能和控制特性,能够在大范围内平滑调速,启动、制动性能良好,其在20世纪70年代以来一直在高精度,大调速范围的传动领域内占据主导地位。在要求高起、制动转矩,快速响应和较宽速度调节范围的电气传动领域中,采用直流电动机作为调速系统的执行电机。由于直流电动机具有良好的机械特性和调速特性,调速平滑,方便,易于在大范围内进行平滑调速,过载能力较大,能够承受频繁的冲击负载,可

单闭环直流调速系统

第十七单元晶闸管直流调速系统 第二节单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统得原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR、触发器CF、晶闸管变流器U、测速发电机TG等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n成正比得转速反馈电压Ufn。 转速给定电压Ugn与Ufn比较,其偏差电压ΔU=Ugn—Ufn送转速调节器ASR输入端。 ASR输出电压作为触发器移相控制电压Uc,从而控制晶闸管变流器输出电压Ud。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统、 1.转速负反馈调速系统工作原理及其静特性 设系统在负载TL时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl。 当电动机负载TL增加时,电枢电流Id也增加,电枢回路压降增加,电动机转速下降,则Ufn也相应下降, 而转速给定电压Ugn不变,ΔU=Ugn—Ufn增加。 转速调节器ASR输出电压Uc增加,使控制角α减小,晶闸管整流装置输出电压Ud增加,于就是电动机转速便相应自动回升,其调节过程可简述为: T L↑→Id↑→Id(R∑+Rd)↑→n↓→Ufn↓→△U↑→Uc↑→α↓→Ud↑→n↑。 图17-41所示为闭环系统静特性与开环机械特性得关系。

图中①②③④曲线就是不同Ud之下得开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性得A点上、 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降、 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器得输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性得B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性得C,D点上。 将A,B,C,D点连接起来得ABCD直线就就是闭环系统得静特性、 由图可见,静特性得硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性与开环机械特性虽然都表示电动机得转速-电流(或转矩)关系,但两者就是不同得, 闭环静特性就是表示闭环系统电动机转速与电流(或转矩)得静态关系,它只就是闭环系统调节作用得结果,就是在每条机械特性上取一个相应得工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不就是沿着静特性AB直线变化得。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起得电动机转速变化外,还有其她许多扰动会引起电动机转速得变化,例如交流电源电压得变化、电动机励磁电流得变化等,所有这些扰动与负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速得影响。也就就是说在闭环系统中,对包围在系统前向通道中得各种扰动(如负载变化、交流电压波动、电动机励磁电流得变化等)对被调量(如转速)得影响都有强烈得抑制作用、但就是对于转速负反馈调速系统来说,转速给定电压Ugn得波动与测速发电机得励磁变化引起得转速反馈电压Ufn变化,闭环系统对这种给定量与检测装置得扰动将无能为力。为了使系统有较高得调速精度,必须提高转速给定电源与转速检测装置得精度。

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

单闭环直流调速系统的设计与Matlab仿真(一)资料

课题:一、单闭环直流调速系统的设计与 Matlab仿真(一) 作者: 学号: 专业: 班级: 指导教师:

摘要 在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。 通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。 本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。 另外,设计过程中还要以Matlab为工具,以求简明直观而方便快捷的设计过程。 摘要:Matlab 开环闭环负反馈静差稳定性 V-M系统

目录 摘要 (2) 一、设计任务 (4) 1、已知条件 (4) 2、设计要求 (4) 二、方案设计 (5) 1、系统原理 (5) 2、控制结构图 (6) 三、参数计算 (7) 四、PI调节器的设计 (9) 五、系统稳定性分析 (11) 六、小结 (12) 七、参考文献 (13)

1、已知条件 已知一晶闸管-直流电机单闭环调速系统(V-M系统)的结果如图所示。图中直流电机的参数:Pnom=2.2KW,nnom=1500r/min,Inom=12.5A,Unom=220V,电枢电阻Ra=1欧,V-M系统主回路总电阻R=2.9欧,V-M系统电枢回路总电感L=40mH,拖动系统运动部分飞轮力矩GD2=1.5N.m2,测速发动机为永磁式,ZYS231/110xi型,整流触发装置的放大系数Ks=44,三相桥平均失控时间Ts=0.00167s。 2、设计要求: (1)生产机械要求调速范围D=15 (2)静差率s≤5%, (3)若U*n=10V时,n=nnom=1500r/min,校正后相角稳定裕度γ=45o,剪切频率ωc≥35.0rad/s,超调量σ≤30%,调节时间ts≤0.1s

实用文档之直流电机的PWM电流速度双闭环调速系统课程设计

实用文档之"电力拖动课程设计" 题目:直流电机的PWM电流速度双闭环调速 系统 姓名:赵强 学号:U201311856 班级:电气1303 指导老师:徐伟 课程评分:

日期:2016-07-10 目录 一、设计目标与技术参数 二、设计基本原理 (一)调速系统的总体设计 (二)桥式可逆PWM变换器的工作原理 (三)双闭环调速系统的静特性分析 (四)双闭环调速系统的稳态框图 (五)双闭环调速系统的硬件电路 (六)泵升电压限制 (七)主电路参数计算和元件选择 (八)调节器参数计算 三、仿真 (一)仿真原理(含建模及参数) (二)重要仿真结果(目的为验证设计参数的正确性)四、结论 参考文献 附录1:调速系统总图

附录2:调速系统仿真图 一、设计目标与技术参数 直流电机的PWM电流速度双闭环调速系统的设计目标如下: 额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min; 电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s; 电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r; 允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A; 电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ; 晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。 PWM变换器的放大系数:K S=20。 二、设计基本原理 (一)调速系统的总体设计 在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。如图2-1所示。

单闭环控制系统设计及仿真要点

单闭环控制系统设计及仿真 班级电信2014 姓名张庆迎 学号142081100079

摘要直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 关键词直流电机直流调速系统速度调节器电流调节器双闭环系统 一、单闭环直流调速系统的工作原理 1、单闭环直流调速系统的介绍 单闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。 2、双闭环直流调速系统的介绍 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图1—1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称

相关文档
相关文档 最新文档