文档库 最新最全的文档下载
当前位置:文档库 › 高考导数大题汇编理科答案

高考导数大题汇编理科答案

高考导数大题汇编理科答案
高考导数大题汇编理科答案

一、解答题

1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'

112()e ln e e e .x

x x x a b b f x a x x x x

--=+-+ 由题意可得'

(1)2,(1) e.f f ==故1,2a b ==.

(Ⅱ)由(Ⅰ)知12e ()e ln ,x x

f x x x -=+从而()1f x >等价于2

ln e .e

x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1

(0,)e

x ∈时,'

()0g x <; 当1

(,)e

x ∈+∞时,'

()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e

+∞单调递增, 从而()g x 在(0,)+∞的最小值为11().e e

g =-. 设函数2

()e

e

x

h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,'

()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e

h =-

. 综上,当0x >时,()()g x h x >,即()1f x >.

2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)

2

/22

2(2)24(1)

()1(2)(1)(2)

a x x ax a f x ax x ax x +-+-=

-=++++ (*) 当1a ≥时,/

()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/

()0f x =

得1

x =,

(2

x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/

()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增.

当01a <<时,()f x

在区间(0,

上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/

()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x

的极值点只可能是1

x =

2x =-,且由定义可知,1

x a >-

且2x ≠-

,所以1a ->-

且2-≠-,解得1

2

a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102

a <<时,10x -<<;当112a <<时,01x <<. 记2

2

()ln 2g x x x

=+-, (Ⅰ)当10x -<

<时,2()2ln()2g x x x =-+-,所以/22

2222

()0x g x x x x

-=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1

02

a <<

时, 12()()0f x f x +<.

(Ⅱ)当01x <<时,2()2ln 2g x x x =+

-,所以/222222

()0x g x x x x

-=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时

1

12

a <<,12()()0f x f x +>.

综上所述,满足条件的a 的取值范围为1

(,1)2. 3. (1)证明:因为对任意x ∈R ,都有()

()e e

e e ()x x x x

f x f x -----=+=+=,所以f (x )是R 上的偶函数.

(2)解:由条件知(e e

1)e 1x x

x m --+-≤-在(0,+∞)上恒成立.

令t = e x

(x >0),则t >1,所以m ≤2

11

11111

t t t t t --

=--+-++-对于任意t >1成立.

因为11111t t -+

+≥- = 3,所以1113111

t t -

≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

因此实数m 的取值范围是1,3?

?-∞- ??

?.

(3)解:令函数31()e (3)e x x g x a x x =+--+,则2

1()e 3(1)e

x x g x a x '=-+-.

当x ≥1时,1e 0e x x

-

>,x 2

– 1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数, 因此g (x )在[1,+∞)上的最小值是1

(1)e e 2g a -=+-.

由于存在x 0∈[1,+∞),使003

0e e (3)0x x a x x -+--+<成立,当且仅当最小值g (1)<0, 故1

e+e 20a --<,即1

e e 2

a -+>.

令函数()(e 1)ln 1h x x x =---,则()1h x '=-

e 1

x

-,令h ′(x ) = 0,得e 1x =-. 当(0,e 1)x ∈-时,h ′(x )<0,故h (x )是(0,e 1)-上的单调减函数.

当x ∈(e – 1,+∞)时,h ′(x )>0,故h (x )是(e – 1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是(e 1)h -.

注意到h (1) = h (e) = 0,所以当(1,e 1)x ∈- ?(0,e 1)-时,(e 1)h -)≤h (x )

①当a ∈1e e ,e 2-??

+

???

?(1,e)时,h (a )<0,即1(e 1)ln a a -<-,从而1e 1e a a --<; ②当a = e 时,1

e 1e

a a --<;

③当(e,)(e 1,)a ∈+∞?-+∞时,h (a )>h (e) = 0,即1(e 1)ln a a ->-,故1

e 1e a a -->.

综上所述,当a ∈1e e ,e 2-??

+

???

时,1e 1e a a --<,当a = e 时,1e 1e a a --=,当(e,)a ∈+∞ 时,1

e 1e

a a -->.

4. 解题指南:(I )利用'()f x 为偶函数和()y f x =在点(0,(0))f 处的切线的斜率为4c -建立关于,a b 的方程求解. (II )利用基本不等式求解.(III)需对c 进行分类,讨论方程'()0f x =是否有实根,从而确定极值.

解析:(I )对()f x 求导得'

22()22x

x

f x ae

be

c -=+-,由()f x '为偶函数,知'

()'()f x f x -=,

即222()()0x x a b e e --+=,因220x x e e -+>,所以a b =. 又'(0)224f a b c c =+-=-,故1,1a b ==. (II )当3c =时,22()3x x f x e e x -=--,那么 故()f x 在R 上为增函数.

(III)由(Ⅰ)知'22()22x x f x e e c -=+-

,而22224,x x e e -+≥=当0x =时等号成立. 下面分三种情况进行讨论.

当4c <时,对任意22,()220x x x R f x e e c -'∈=+->,此时()f x 无极值; 当4c =时,对任意220,()220x x x f x e e c -'≠=+->,此时()f x 无极值;

当4c >时,令2x

e t =,注意到方程2

20t c t

+-=

有两根1,20t =

>, 即'()0f x =有两根112211

ln ln 22

x t x t =

=或. 当12x x x <<时,'()0f x <;又当2x x >时,'()0f x >,从而'()f x 在2x x =处取得极小值; 综上,若'()f x 有极值,则c 取值范围为()4,+∞.

5. 解题指南(1)先求导数,结合解不等式求解函数的单调区间;(2)利用单调性与导数的关系求解字

母的取值范围.

解析⑴当4b =时

,2

()(4f x x x =++定义域为12

(,)-∞

,

21

2

()(24)(44)(2)f x x x x '=+++?-=

.

令()0f x '=,解得12x =-,20x =.

当2x <-或1

2

0x <<

时,()0f x '<;当20x -<<时,()0f x '>.所以()f x 在(,2)-∞-,12

(0,)上单调递

减;

在(2,0)-上单调递增.所以当2x =-时,()f x 取得极小值(2)0f -=;当0x =时,()f x 取得极大值(0)4f =.

⑵因为()f x 在13

(0,)上单调递增,所以()0f x '≥,且不恒等于0对13

(0,)x ∈恒成立

.

221

2()(2)()(2)f x x b x bx b '=+++?-=

,所以25320x bx x --+≥,

得min 253()x b -≤.因为1

2525133

3

9x

-?->

=,所以19

b ≤,故b 的取值范围为19

(,]-∞.

6. 解析:(Ⅰ)对()f x 求导得222(6)(3)3(6)'(),()x x x x

x a e x ax e x a x a

f x e e

+-+-+-+== 因为()f x 在0x =处取得极值,所以'(0)0f =即0a =.

当0a =时,()f x =

22

336,'(),x x x x x f x e e -+=故33

(1),'(1),f f e e

==从而()f x 在点(1,(1)f )处的切线方程为33

(1),y x e e

-

=-化简得30.x ey -= (Ⅱ)由(Ⅰ)知23(6)'().x

x a x a

f x e

-+-+= 令2

()3(6),g x x a x a =-+-+

由()0g x =解得2212636636

,.a a a a x x --+-++=

= 当1x x <时,()0g x <,即'()0f x <,故()f x 为减函数;

当12x x x <<时,()0g x >,即'()0f x >,故()f x 为增函数; 当2x x >时,()0g x <,即'()0f x <,故()f x 为减函数;

由()f x 在

[)3,+∞上为减函数,知2

26363,a a x -++=

≤解得9

,2

a ≥-

故a 的取值范围为9,.2??

-+∞????

考点分类第四章 考点一、导数的概念、运算及其几何意义;考点二、导数的应用;第九章 考点一、不等关系与一元二次不等式

7. 解:(1)∵2

2

'()2(1)(1)0x

x

x

f x x x x =++=+≥e e e (仅当1x =-时取等号),

∴()f x 的单调递增区间为(,)-∞+∞.

(2)∵(0)10f a =-<,2

(ln )(ln )0f a a a =>,

∴()f x 在单调递增区间(,)-∞+∞上仅有一个零点.

(3)由题意知'()0P f x =,又仅'(1)0f -=,得1P x =-,2P y a =-e

由题意知'()OP f m k =,得22(1)m m a +=-e e

要证3

21m a ≤

--e

,即要证3

2(1)m a +≤-e ,

只需证32(1)(1)m

m m +≤+e ,即要证1m m +≤e ,① 设()1m

g m m =+-e ,则'()1m

g m =-e , 又'()00g m m ?==,

∴()g m 在(,0)-∞上递增,在(0,)∞+上递减。 ∴()(0)0g m g ≤=,即不等式①成立,得证. 8. 解:对()f x 求导,得2()(4)e x

f x x x '=+,

由()0f x '<,解得40x -<<,所以()f x 的单调递减区间为(4,0)-。 9. (1)解:由()f x =n

nx x -,可得()1

1()1n n f x n nx n x --'=-=-,其中n *∈N ,且2n ≥.

下面分两种情况讨论: ①当n 为奇数时.

令()0f x '=,解得1x =,或1x =-.

当x 变化时,()f x ',()f x 的变化情况如下表:

-

+

-

所以,()f x 在

(),1-∞-,()1,+∞上单调递减,在()1,1-内单调递增。

②当n 为偶数时.

当()0f x '>,即1x <时,函数()f x 单调递增;

当()0f x '<,即1x >时,函数()f x 单调递减. 所以,()f x 在

(),1-∞上单调递增,在()1,+∞上单调递减.

(2)证明:设点P 的坐标为()0,0x ,则011n x n

-=,2

0()f x n n '=-.曲线y =()f x 在点P 处的切线方程为

()00()y f x x x '=-,即00()()()g x f x x x '=-.令()()()F x f x g x =-,即00()()()()F x f x f x x x '=--,则0()()()F x f x f x '''=-. 由于1

()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减.又因为0()0F x '=,

所以当()00,x x ∈

时,()0F x '>,当()0,x x ∈+∞时,()0F x '<,所以()F x 在()00,x 内单调递增,在

()0,x +∞上单调递减,所以对于任意的正实数x ,都有0()()0F x F x ≤=,即对于任意的正实数x ,都有

()f x ()g x ≤.

(3)证明:不妨设12x x ≤.由(2)知()()()2

g x n n x x =

--.设方程()g x a =的根为2

x ',可得

202

a

x x n n

'=

+-,当2n ≥时,()g x 在(),-∞+∞上单调递减. 又由(2)知()()()

222g x f x a g x '≥==,可得22x x '≤.

类似地,设曲线

()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当()0,x ∈+∞,

()()0n f x h x x -=-<,即对于任意的()0,x ∈+∞,()()f x h x <.

设方程()h x a =的根为1x ',可得1a

x n

'=.因为()h x nx =在(),-∞+∞上单调递增,且

()

()()111h x a f x h x '==<,因此11x x '<.

由此可得212101a

x x x x x n

''-<-=+-. 因为2n ≥,所以()

1

1

112

111C 11n n n n n ---=+≥+=+-=,故01

1

2n x n -≥

=. 则当12x x ≤时,2121||x x x x -=-<21a

n

+-

同理可证当1x >2x 时,结论也成立

所以,2121a

x x n

-<

+-. 10. 解:(Ⅰ)2121()(21)11ax ax a

f x a x x x ++-'=+-=++,函数()f x 极值点的个数等价于()0f x '=,即2210ax ax a ++-=在(1,)x ∈-+∞上的变号根的个数.

令2

()21g x ax ax a =++-,

①0a =时,()10g x =≠,此时()0f x '>,函数()f x 单调递增,无极值点; ②0a ≠时,令2

2

8(1)980a a a a a ?=--=-≤,解得8

09

a <≤时,()f x 单调递增,无极值点; ③0a <时,0?>,抛物线()g x 的开口向下,对称轴为1

4

x =-

,(0)10,(1)10g a g =->-=>,2210ax ax a ++-=在(1,)x ∈-+∞上有一个变号根,即()f x 有一个极值点;

④89

a >时,0?>,

抛物线()g x 的开口向上,对称轴为14x =-,(1)10g -=>,2210ax ax a ++-=在1(1,)4

x ∈--与1

(,)4x ∈-+∞上各有一个变号根,即()f x 有两个极值点.

综上:0a <时,()f x 有一个极值点;809a ≤≤时,()f x 无极值点;8

9

a >时,()f x 有两个极值点.

(Ⅱ)①由(Ⅰ)知,8

09

a ≤≤时,()0f x '≥恒成立,()f x 单调递增,所以0x ≥时,()(0)0

f x f >=符合题意;

②0a <时,令[

)1()ln(1),0,,()1011x h x x x x h x x x -'=+-∈+∞=

-=<++,所以()h x 单调递减,()(0)0h x h ≤=,所以ln(1)x x +≤,因为

()f x 在0x ≥时先增后减,

222()ln(1)()()(1)f x x a x x x a x x ax a x =++-<+-=+-.

当x →+∞时,()f x →-∞,不满足,0,()0x f x ?>≥,舍去; ③

819a <≤时,由(Ⅰ)知,对称轴1

4

x =-,0?>,(0)10g a =-≥,所以()0f x '≥恒成立,()f x 单调递增,即0x ≥时,()(0)0f x f >=符合题意;

④1a >时,由(Ⅰ)知,对称轴1

4

x =-

,0?>,(0)10g a =-<,所以存在00x >,使0(0,)x x ∈()0g x <,即()0f x '<,()f x 单调递减,故0(0,)x x ∈0x ≥时,()(0)0f x f <=不符合0,()0x f x ?>≥,舍去.

综上:所求a 的取值范围是

[]0,1.

11. 解法一:(1)令()()ln(1),[0,)F x f x x x x x =-=+-∈+∞, 则有1()111

x

F x x x -'=

-=

++. 当(0,)x ∈+∞时,()0F x '<,

所以()F x 在[0,)+∞上单调递减,

故当0x >时,()(0)0F x F <=,即当0x >时,()f x x <.

(2)令()()()ln(1),[0,)G x f x g x x kx x =-=+-∈+∞, 则有1(1)

()11

kx k G x k x x -+-'=-=

++, 当0k

≤时,()0G x '>,故()G x 在[0,)+∞单调递增, ()(0)0G x G >=,

故对任意正实数0x 均满足题意. 当01k <<时,令()0G x '=,得11

10k x k k

-==->, 取01

1x k

=

-,对任意0(0,)x x ∈,有()0G x '>, 从而()G x 在0[0,)x 单调递增,所以()(0)0G x G >=,即()()f x g x > 综上,当1k <时,总存在00x >,使得对任意0(0,)x x ∈,恒有()()f x g x >.

(3)当1k

>时,由(1)知,对于(0,),()()x g x x f x ?∈+∞>>,故()()g x f x >.

|()()|()()ln(1)f x g x g x f x kx x -=-=-+.

令2

()ln(1),[0,)M x kx x x x =-+-∈+∞,

则有212(2)1()211

x k x k M x k x x x -+-+-'=--=++.

故当x ∈时,()0M x '>,

()M x

在上单调递增,

故()(0)0M x M >=,即2

|()()|f x g x x ->,所以满足题意的t 不存在 当1k

<时,由(2)知,存在00x >,使得当0(0,)x x ∈时,()()f x g x >,

此时|()()|()()ln(1)f x g x f x g x x kx -=-=+-.

令2

()ln(1),[0,)N x x kx x x =+--∈+∞,

则有212(2)1()211

x k x k

N x k x x x --++-'=--=++,

当x ∈时,()0N x '>,

()N x

在上单调递增,

故()(0)0N x N >=,即2

()()f x g x x ->.

记0x

1x ,

则当1(0,)x x ∈时,恒有2

|()()|f x g x x ->.

故满足题意的t 不存在 当1k

=时,由(1)知,当0x >时,|()()|()()ln(1)f x g x g x f x x x -=-=-+.

令2

()ln(1),[0,)H x x x x x =-+-∈+∞,

则有212()1211

x x H x x x x --'=--=++. 当0x >时,()0H x '<,

所以()H x 在[0,)+∞上单调递减,故()(0)0H x H <=. 故当0x >时,恒有2

|()()|f x g x x -<. 此时,任意正实数t 均满足题意. 综上,1k

=. 解法二:(1)(2)同解法一. (3)当1k

>时,由(1)知,对于(0,),()()x g x x f x ?∈+∞>>,

故|()()|()()ln(1)(1)f x g x g x f x kx x kx x k x -=-=-+>-=-. 令2

(1)k x x ->,解得01x k <<-. 从而得到,当1k

>时,对于(0,1)x k ∈-,恒有2|()()|f x g x x ->.

故满足题意的t 不存在。 当1k

<时,取11

2

k k +=

,从而11k k <<. 由(2)知,存在00x >,使得01(0,),()()x x f x k x kx g x ∈>>=, 此时11|()()|()()()2

k

f x

g x f x g x k k x x --=->-=, 令

212k x x ->,解得102k x -<<

,此时2

()()f x g x x ->. 记0x 与12

k -的较小者为1x ,当1(0,)x x ∈时,恒有2

|()()|f x g x x ->.

故满足题意的t 不存在.

当1k

=时,由(1)知,0,|()()|()()ln(1)x f x g x f x g x x x >-=-=-+,

令2

()ln(1),[0,)M x x x x x =-+-∈+∞,

则有212()1211

x x

M x x x x --'=--=++. 当0x >时,()0M x '<,所以()M x 在[0,)+∞上单调递减, 故()(0)0M x M <=

故当0x >时,恒有2

|()()|f x g x x -<, 此时,任意正实数t 均满足题意 综上,1k

=.

12. 证明:(1)'

()sin cos ax

ax

f x ae x e x =+ 其中tan ρ=

1a ,0<ρ<2

π. 令'

()f x =0,由x 0≥得x+ρ=mx, 即x=m π-ρ,m ∈*

N .

对k ∈N ,若2k π

()f x >0; 若(2k+1)π

()f x 的符号总相反.于是 当x= m π-ρ(m *

N ∈)时,()f x 取得极值,所以

*

() n x n n N πρ∈=-. 此时,

()()1 sin()()(1) sin .a n a n n n x e n f e πρπρπρρ--+=-=-易知()n f x ≠0,而

是常数,故数列

{}()n f x 是首项为1()f x =() sin a n e πρρ-,公比为ax e -的等比数列

(2)由(1)知,sin ρ

,于是对一切*

n N ∈,n x <|()n f x |恒成立,即

() a n n πρπρ--<

恒成立,等价于

(

)

()

a n e a a n πρ

πρ-<- (?) 恒成立(因为a>0)

设g (t )=t e t (t )0),则2

'

(1)t g t e t t -()=.令'g t ()=0得t=1 当0

g

t ()<0,所以g (t )在区间(0,1)上单调递减; 当t>1时,'g

t ()>0,所以g (t )在区间(0,1)上单调递增. 从而当t=1时,函数g (t )取得最小值g (1)=e

因此,要是(?

)式恒成立,只需()1g e a <=

,即只需a >

. 而当

tan ρ=

1a

>02πρ<<.于是

23

π

πρ-<

时,232n ππρπρ-≥-≥>.因此对一切 *

n N ∈

,1n ax =≠,所以g (n ax

)(1)g e a >==.故(?)式亦恒成立. 综上所述,若a

*

n N ∈,()||n n x x f <恒成立.

13. 解:(Ⅰ)2

()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2

030x a +=且3

00104x ax ++=,

解得012

x =,34a =-,因此,当3

4a =-时,x 轴为曲线()y f x =的切线;

(Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-

,则5

(1)04

f a =+≥,min{,(1)(1)(1)}(1)0h f

g g ===,故1x =是()

h x 的零点; 当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数.

对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得2

3a x =-,那么

(i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15

(0),(1)44

f f a =

=+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;

(ii )当30a -<<时,()0f x '<

(0x <<)且()0f x '>

1x <<)

,所以x =

为最小值点,且1

4

f =.

显然,若0f >,即3

04

a -<<时,()y f x =在区间(0,1)上没有零点;

若0f =,即3

4

a =-时,()y f x =在区间(0,1)上有1个零点;

若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344

a -<<-,()y f x =在区间(0,1)上有2个零点;若5

34

a -<≤-,()y f x =在区间(0,1)上有1个零点. 综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或5

4

a =-时,()h x 有2个零点;当

53

44

a -<<-时,()h x 有3个零点. 14. 解: (1)()()222ln 22=-++--+f x x a x x ax a a

令()'

0≥g x ,即()200-+≥>x x a x ,讨论此不等式的解,可得:

当140?=-≤a 时,即1

4

a 时,不等式恒成立。即()'0≥g x 恒成立,所以()g x 恒单调递增。 当1

04<<

a

时,12110,,,122????== ? ?????

x x

所以()'

0≥g x

的解为0≤≤

>x x ()g x

11022

-+≤≤>x x

综上:当1

4

a 时,()g x 在()0,+∞上单调递增。 当1

04

<

在)+∞上单调递增,

在上单调递减。 由(1)得

()()'=f x g x 在()1,+∞内单调递增。且

()'1222240=--+-=-f 。由零点存在性定理得存在唯一()01,∈+∞x 使得

()0000

2'2ln 2220=---+-=a

f x x x a x ①。

所以

()f x 在0(1,)x 上单调递减,0(,)+∞x 上单调递增。

所以满足

()0=f x 在区间()1,+∞内有唯一解只需满足()()0min 0==f x f x 即可。

()()22000002ln 220=-++--+=f x x a x x ax a a ,将①带入化简得:

当00(1)2=

>x a x 时,此时①变形为22ln 230--=a a ,在1,12??

???

上有解。令()()222

22ln 23,,'2-=--=-=

a h a a a h a a a

所以()h

a 在()0,1上单调递减。11302??

=-<

???

h 不满足。 当2

002=-a x x 时,此时①变形为2

022ln 60--=x x 在()1,2上有解。

不妨设()22

00000000

42

2()22ln 6,'4-=--=-=x h x x x h x x x x 所以0()h x 在

()1,2上单调递增。()(1)4,222ln 20=-=->h h 。所以20022ln 60--=x x 在()1,2上有解。

所以结论得证。

15. 解析(Ⅰ)1()ln

1x f x x +=-的定义域是(1,1)-,2

2

()1f x x

'=-,(0)2f '=,(0)0f =,曲线()y f x =在点()()00f ,处的切线方程为20x y -=;

(Ⅱ)当(0,1)x ∈时,3()2()3x f x x >+,即不等式3

()2()03x f x x -+>对01x <<成立,设31()ln 2()13x x F x x x +=-+-,即3()ln(1)ln(1)2()3x F x x x x =+---+,则4

22()1x F x x '=-,当

(0,1)x ∈时,()0F x '>,故3

1()ln 2()13x x F x x x +=-+-在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ?∈,都有3

()2()3

x f x x >+成立; (Ⅲ)(0,1)x ∈,使3()()3x f x k x >+成立,等价于3

1()ln ()013x x F x k x x +=-+>-. 4222

2(1)2()(1)11k x F x k x x x

-+'=-+=--,(0,1)x ∈,则24

10,10x x ->-<. 当[0,2]k ∈时,()0F x '>,函数()F x 在区间(0,1)上为增函数,()(0)0F x F >=,符合题意; 当2k

>时,令()0F x '=解得402k x k -=

,易知2

01k k

-<<,即001x <<.那么(),()F x F x '在区间(0,1)上的取值情况如下:

所以,()F x 的单调递减区间是0(0,)x ,单调递增区间是0(,1)x ;()F x 在0x 处取得极小值.

()(0)0F x F <=,显然不符合题意.

综上可知:k 的最大值为2.

考点分类第四章导数及其应用 考点二、导数的应用 16. 解析(Ⅰ)'

()(e

1)2mx

f x m x =-+.

若0m ≥,则当(,0)x ∈-∞时,e 10mx

-≤,'()0f x <;当(0,)x ∈+∞时,e 10mx -≥,'()0f x >. 若0m <,则当(,0)x ∈-∞时,e

10mx

->,'()0f x <;当(0,)x ∈+∞时,e 10mx -<,'()0f x >.

所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.

(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小

值.所以对于任意12,[1,1]x x ∈-,

12()()e 1f x f x -≤-的充要条件是:(1)(0)e 1,

(1)(0)e 1,

f f f f -≤-??

--≤-?即e e 1,e e 1,

m m

m m -?-≤-??+≤-??①,设函数()e e 1t g t t =--+,则'()e 1t

g t =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)e 2e 0g --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单

调性,()0g m >,即e e 1m

m ->-;当1m <-时,()0g m ->,即e e 1m

m -+>-.综上,m 的取值范围

是[1,1]-.

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高考导数大题30道(2020年整理).doc

导数大题 1 .已知函数()b ax x x f ++=2 3的图象在点P (1,0)处的切线与直线03=+y x 平行? (1)求常数a 、b 的值; (2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )? 2 .已知函数R a ax x x f ∈+-=,)( 3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围; (2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值? 3 .设函数x e x x f 22 1)(=. (1)求函数)(x f 的单调区间; (2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围. 4 .已知函数.),2,1()(3)(3 l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程; (2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =?

()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围? 7 .已知函数2 ()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值; (Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数); 8 .已知函数21 2 ()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值; (2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。 10.已知函数2 ()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-? ⑴求函数)(x f 的解析式; ⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围; ⑶讨论函数21()ln(1)()2 h x x f x k =+- -零点的个数?

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

2016年高考导数试题及答案(精选)

1.(新课标1)已知函数 有两个零点. (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明: +x 2<2. 解:(Ⅰ) '()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1 ,)x ∈+∞时,'()0f x >.所 以 ()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0 b <且ln 2a b <,则22 3()(2)(1)()022 a f b b a b a b b >-+-=->,故()f x 存在两个零点. (iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2 e a ≥-,则ln(2)1a -≤,故当 (1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以() f x 不存在两个零点. 若2 e a <- ,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设1 2x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1) -∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于 222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---. 设 2()( 2 ) x x g x xe x e -=---, 则 2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从 而22()(2)0g x f x = -<,故122x x +<. 2(新课标2)(I)讨论函数x x 2f (x) x 2 -= +e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a , 求函数()h a 的值域.

最新2019高考数学《导数及其应用》专题完整题(含答案)

2019年高中数学单元测试卷 导数及其应用 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.22 (1cos )x dx π π-+?等于( ) A .π B . 2 C . π-2 D . π+2(2009福建理) 2.若()224ln f x x x x =--,则()'f x >0的解集为( ) A .()0,+∞ B. ()()1,02,-?+∞ C. ()2,+∞ D. ()1,0-(2011江西理4) 3.若[0,)x ∈+∞,则下列不等式恒成立的是 (A)2 1x e x x ++ (211) 1 24x x <-+ (C)21cos 12x x -… (D)21 ln(1)8 x x x +-… 4.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()() 00S t S =,则导函数()' y S t =的图像大致为 二、填空题 5.已知3 2 ()26(f x x x m m =-+为常数)在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为____________ 6.已知f (x )=x 3,g (x )=-x 2+x -29a ,若存在x 0∈[-1,a 3](a >0),使得f (x 0)<g (x 0),则实

数a 的取值范围是 ▲ .(0,-3+21 2) 7. 若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为 .[1,5) 8.曲线2 y 21x x =-+在点(1,0)处的切线方程为________ 9.已知函数()322f x x ax bx a =+++在1x =处有极值10,则a b += . 10.已知32()33f x x bx cx =++有两个极值点12,x x ,且[][]121,0,1,2x x ∈-∈,则(1)f 的取值范围 . 11.已知函数ln ()x f x x = ,则()f x 的最大值为 12.函数y=x 3+lnx 在x=1处的导数为 . 13.若函数()()02 3 >-=a ax x x f 在区间?? ? ??+∞,320上是单调递增函数,则使方程()1000=x f 有整数解的实数a 的个数是 。 三、解答题 14. 已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值; (2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围. .

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高考导数大题汇编理科答案

高考导数大题汇编理科 答案 YUKI was compiled on the morning of December 16, 2020

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,' 112()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知12e ()e ln ,x x f x x x -=+从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1(,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为11().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 2 2 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = ,(2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令2a - 01x <<. 记(g x (Ⅰ)当1 - 因此,g 1()( f x f +(Ⅱ)当0 因此,(g x 1()( f x f + 综上所 3. (1)证明函数. (2)解:由条 令t = 因为 当且 因此 (3)解:令函 当x ≥1时, 因此g (x )在 由于存在x 0故1 e+e 2 --令函数() h x

2017年北京高三模拟题分类汇编之导数大题

2017年北京高三模拟题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2017北京市各城区一模二模真题。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共12小题,共0分)1.(2017北京东城区高三一模数学(文))设函数ax x x x f 232131)(,R a .(Ⅰ)若2x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围;(Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.2.(2017北京丰台区高三一模数学(文))已知函数1()e x x f x ,A 1()x m ,,B 2()x m ,是曲线()y f x 上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围;(Ⅱ)证明:120x x . 3.(2017北京丰台区高三二模数学(文))已知函数ln ()x f x ax (0)a . (Ⅰ)当1a 时,求曲线()y f x 在点(1(1)),f 处的切线方程;姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

导数历届高考试题精选含答案

导数高考试题精选 一.选择题(共16小题) 1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为() A. 3 B.2 C. 1D. 2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=() A.1B.C. D.﹣1 3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A. 2B.C.D.﹣2 4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为() A. B. C.D. 5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是() A. [0,) B.C. D. 6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为() A. 30° B. 45°C.60°D.120°7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为() A. y=x﹣2 B. y=﹣3x+2C. y=2x﹣3 D. y=﹣2x+1 8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于() A. ﹣1或B. ﹣1或 C. 或 D. 或7 9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是() A.y=7x+4 B. y=7x+2 C.y=x﹣4 D.y=x﹣2 10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有 >2恒成立,则a的取值范围是() A. (0,1]B.(1,+∞) C. (0,1) D.[1,+∞)

相关文档 最新文档