文档库 最新最全的文档下载
当前位置:文档库 › 雅可比迭代法与矩阵的特征值

雅可比迭代法与矩阵的特征值

雅可比迭代法与矩阵的特征值
雅可比迭代法与矩阵的特征值

实验五

矩阵的lu分解法,雅可比迭代法

班级:

学号:

姓名:

实验五 矩阵的LU 分解法,雅可比迭代

一、目的与要求:

熟悉求解线性方程组的有关理论和方法;

会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序; 通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。 二、实验内容:

会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解

各种方法的优缺点。 三、程序与实例

列主元高斯消去法

算法:将方程用增广矩阵[A ∣b ]=(ij a )1n (n )+?表示 1) 消元过程 对k=1,2,…,n-1

①选主元,找{}n ,,1k ,k i k +∈使得

k ,i k a =

ik a n

i k max ≤≤

②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执行③。 ③如果k i k ≠,则交换第k 行与第k i 行对应元素位置,

j i kj k a a ? j=k,┅,n+1

④消元,对i=k+1, ┅,n 计算

kk ik ik a a l /=

对j=l+1, ┅,n+1计算

kj ik ij ij a l a a -=

2) 回代过程

①若0=nn a ,则矩阵A 奇异,程序结束;否则执行②。 ②nn n n n a a x /1,+=;对i=n-1, ┅,2,1,计算

ii n

i j j ij n i i a x a a x /11,???

? ?

?-

=∑+=+

程序与实例

程序设计如下:

#include

#include

using namespace std;

void disp(double** p,int row,int col){

for(int i=0;i

for(int j=0;j

cout<

cout<

}

}

void disp(double* q,int n){

cout<<"====================================="<

cout<<"X["<

cout<<"====================================="<

void input(double** p,int row,int col){

for(int i=0;i

cout<<"输入第"<

for(int j=0;j

cin>>p[i][j];

}

}

int findMax(double** p,int start,int end){

int max=start;

for(int i=start;i

if(abs(p[i][start])>abs(p[max][start]))

max=i;

}

return max;

}

void swapRow(double** p,int one,int other,int col){

double temp=0;

for(int i=0;i

temp=p[one][i];

p[one][i]=p[other][i];

p[other][i]=temp;

}

}

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

雅克比矩阵知识介绍

雅可比矩阵(Jacobi方法) Jacobi 方法 Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论 1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得 Q T AQ = diag(λ 1 ,λ 2 ,…,λ n ) (3.1) 其中λ i (i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量。 2) 在正交相似变换下,矩阵元素的平方和不变。即设A=(a ij ) n×n ,Q交矩阵, 记B=Q T AQ=(b ij ) n×n , 则 Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小。反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量。 1 矩阵的旋转变换 设A为n阶实对称矩阵,考虑矩阵 易见 V ij (φ)是正交矩阵, 记 注意到B=V ij A的第i,j行元素以及的第i,j列元素为

可得 ≠0,取φ使得则有 如果a ij 对A(1)重复上述的过程,可得A(2) ,这样继续下去, 得到一个矩阵序列{A(k) }。可以证明,虽然这种变换不一定能使矩阵中非对角元素零元素的个数单调增加,但可以保证非对角元素的平方和递减,我们以A与A(1)为例进行讨论。 设由式(3.4) 可得 这表明,在上述旋转变换下,非对角元素的平方和严格单调递减,因而由(3.2)可

知,对角元素的平方和单调增加。 2. Jacobi方法 通过一系列旋转变换将A变成A(k+1) ,求得A的全部特征值与特征向量的方法称为Jacobi方法。计算过程如下 1)令k=0, A(k) =A 2) 求整数i,j, 使得 3) 计算旋转矩阵 4) 计算A(k+1) 5) 计算 6) 若E(A(k+1))<ε, 则 为特征值,

雅可比迭代法与矩阵的特征值

实验五 矩阵的lu分解法,雅可比迭代法 班级: 学号: 姓名:

实验五 矩阵的LU 分解法,雅可比迭代 一、目的与要求: 熟悉求解线性方程组的有关理论和方法; 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序; 通过实际计算,进一步了解各种方法的优缺点,选择合适的数值方法。 二、实验内容: 会编制列主元消去法、LU 分解法、雅可比及高斯—塞德尔迭代法德程序,进一步了解 各种方法的优缺点。 三、程序与实例 列主元高斯消去法 算法:将方程用增广矩阵[A ∣b ]=(ij a )1n (n )+?表示 1) 消元过程 对k=1,2,…,n-1 ①选主元,找{}n ,,1k ,k i k +∈使得 k ,i k a = ik a n i k max ≤≤ ②如果0a k ,i k =,则矩阵A 奇异,程序结束;否则执行③。 ③如果k i k ≠,则交换第k 行与第k i 行对应元素位置, j i kj k a a ? j=k,┅,n+1 ④消元,对i=k+1, ┅,n 计算 kk ik ik a a l /= 对j=l+1, ┅,n+1计算 kj ik ij ij a l a a -= 2) 回代过程 ①若0=nn a ,则矩阵A 奇异,程序结束;否则执行②。 ②nn n n n a a x /1,+=;对i=n-1, ┅,2,1,计算 ii n i j j ij n i i a x a a x /11,??? ? ? ?- =∑+=+ 程序与实例 程序设计如下:

#include #include using namespace std; void disp(double** p,int row,int col){ for(int i=0;i>p[i][j]; } } int findMax(double** p,int start,int end){ int max=start; for(int i=start;iabs(p[max][start])) max=i; } return max; } void swapRow(double** p,int one,int other,int col){ double temp=0; for(int i=0;i

雅可比矩阵

5.1.1 雅克比矩阵及其行列式的几何意义 因为雅克比矩阵如此重要且有趣,我们把它单列一节讨论,并放在矩阵的 行列式的几何意义后面。 说实在的,解说雅克比矩阵及其行列式的几何意义,是应一位网友的希望而作。先前的五章在网上发布以后引起了不少哥们的关注,大多是共鸣及鼓励的话。一位网友哥们说(大意是),你除了内容有些凌乱外细节写得还不错,是下了一番功夫……,不知以后写不写雅克比行列式的几何意义等等。嘿嘿,您的给力评论使俺很受鼓舞。就像在学校里,老师先表扬说你的作业写得不错,有进步,我再给你出个优等生的题目吧。因此,俺就把这事记下了,先把题目列在目录里防止忘了。 当写到这一节时才知道这个题目确实有点难度啊,又下了很大的功夫,才觉得这件事通顺了。至此俺才发现,老师出的这个题目太有目光了,雅克比矩阵简直就是线性代数和微积分的纽带,是把非线性问题转换为线性问题的有力工具之一啊。有时看到一点微分几何的内容,也觉得和微分几何颇有渊源(宽恕俺没学过微分几何)。 兹写作业在此,希望再次得到老师的表扬哦: 5.1.1雅克比矩阵及其行列式的几何意义 话说有一个函数方程组,是由n个函数组成,每个函数也有n个自变量:。。。。。。。。。。。。。。。。。 这个函数组有两个意义可以解释,一个解释它是一个映射,点被映射成; 另外的一个解释就是坐标变换的意思,如果你把这个函数组代到一个以为自变 量的某方程中,即相当于把某方程的原坐标系被替换成坐标系。这两个解释本 质是一回事,是同一件事情的从不同角度的看法。坐标系不动,一个点被变换到 另一个点;这等价于说点不动,一个坐标系被代换到另一个坐标系。 下面我们将从其坐标变换的解释角度来分析。 一般情况下,这个函数方程组不是线性方程组,它的图形多是高维曲线、曲 面类的。稍详细一点说,每一个函数是个超维曲面,n个超维曲面组合在一起交 割成超维曲线。不过猛地看起来蛮像线性方程组的样子,心里于是就有了把它弄 成线性方程组的冲动:弄成线性的可以使用矩阵、行列式啊什么的,可以和线性 变换联系起来,多有几何意义啊。

雅可比解线性方程组matlab

雅可比迭代 使用雅可比迭代法求解线性方程组的步骤 步骤1:输入系数矩阵A和方程组右端向量B; 步骤2:将矩阵A分解为下三角阵L对角阵D和上三角阵U 可分解为(D+L+U)X=B for o=1:n d(o,o)=a(o,o); u(o,o+1:n)=-a(o,o+1:n); end for p=2:n l(p,1:p-1)=-a(p,1:p-1); end; 步骤3:将上式化简为x=B0x+f,其中B0=-D-1(L+U),f=D-1B for i=1:n b0(i,i+1:n)=u(i,i+1:n)/a(i,i); f(i,:)=b(i,:)/a(i,i); end for p=2:n b0(p,1:p-1)=l(p,1:p-1)/a(p,p);;

步骤4:采用迭代公式在允许误差范围e=1e-7内求得解向量x x0=x; x=b0*x+f 雅可比迭代法matlab程序: function [x,k]=jacobi(a,b) n=length(a); e=1e-7; m=100; x0=zeros(n,1); x=x0; k=0; d=zeros(n); l=zeros(n); u=zeros(n); b0=zeros(n); f=zeros(n,1);

x0=x+2*e; for o=1:n d(o,o)=a(o,o); u(o,o+1:n)=-a(o,o+1:n); end for p=2:n l(p,1:p-1)=-a(p,1:p-1); end for i=1:n b0(i,i+1:n)=u(i,i+1:n)/a(i,i); f(i,:)=b(i,:)/a(i,i); end for p=2:n b0(p,1:p-1)=l(p,1:p-1)/a(p,p); end while max(abs(x0-x))>e&k

直接用坐标变换求解雅可比矩阵的例子1

第九章开式链机构 §9-1 开式链机构的特点及功能 由开式运动链所组成的机构称为开式链机构,简称开链机构. 一、特点 1、开式运动链的自由度较闭式运动链多,要使其成为具有确定运动的机 构,就需要更多的原动机; 2、开式运动链中末端构件的运动与闭式运动链中任何构件的运动相比, 更为任意和复杂多样。 二、应用 利用开式运动链的特点,结合伺服控制和电子计算机的使用,开式链机构在各种机器人和机械手中得到了广泛的应用。 机器人的应用是多方面的: 制造业中,完成产品的生产从单一品种大批量生产逐步向多品种小批量生产过度; 在微电子工业和制药工业中,为避免人工介入而造成的污染,用机器人代替人完成某些操作; 在深水资源开发、卫星空间回收及外层空间活动中,机器人已成为不可或缺的工具; 机器人还可用于矿产开采、排险救灾及各种军事用途。 实例:a) 喷漆机器人 b) 装配机器人 c) 搬运机器人 三、机器人与传统自动机的区别 由连杆、凸轮等闭式链机构所组成的一般自动机,用于多次完成同样的作业----- 固定自动化; 由开式链机构所组成的机器人和机械手,可在任意位置、任意方向和任意环境下单独地或协同地进行工作,是一种灵活的、万能的、具有多目的、多用途的自动化系统------ 柔性自动化。

机器人与传统自动机的区别在于前者具有更大的万能性和多目的的用途,易于调整来完成各种不同的劳动作业和智能动作,包括在变化之中以及没有事先说明的情况下的作业。 §9-2 开式链机构的结构分析 本节以机器人操作器为例,介绍开式链机构的组成和结构。 一、操作器的组成 操作器是机器人的执行系统,是机器人握持工具或工件、完成各种运动和操作任务的机械部分,由机身、臂部、腕部和手部(末端执行器)组成。 机身:用来支持手臂并安装驱动装置等部件, 常把它与臂部合并考虑。 臂部:操作器的主要执行部件,其作用是支 撑腕部和手部,并带动它们在空间运动,从 而使手部按一定的运动轨迹由某一位置达到 另一指定位置。 腕部:连接臂部和手部的部件,其作用主要 是改变和调整手部在空间的方位,从而使手 爪中所握持的工具或工件取得某一指定的姿 态。 手部:操作器的执行部件之一,其作用是握 持工件或抓取工件。 二、操作器的自由度 操作器的自由度:在确定操作器所有构件的位置时所必须给定的独立运动参数的数目。 操作器的主运动链通常是一个装在固定机架上的开式运动链。 操作器中的运动副:仅包含单自由度运动副——转动关节和移动关节。 自由度计算公式

第8章 矩阵特征值计算

第八章 矩阵特征值计算 1 特征值性质和估计 工程实践中有许多种振动问题,如桥梁或建筑物的振动,机械机件的振动,飞机机翼的颤动等,这些问题的求解常常归纳为求矩阵的特征值问题。另外,一些稳定分析问题及相关问题也可以转化为求矩阵特征值与特征向量的问题。 1.1 特征值问题及性质 设矩阵n n ?∈A R (或n n ?C ),特征值问题是:求C λ∈和非零向量n R ∈x ,使 λ=Ax x (1.1) 其中x 是矩阵A 属于特征值λ的特征向量。A 的全体特征值组成的集合记为sp()A 。 求A 的特征值问题(1.1)等价于求A 的特征方程 ()det()0p I λλ=-=A (1.2) 的根。因为一般不能通过有限次运算准确求解()0p λ=的根,所以特征值问题的数值方法只能

是迭代法。反之,有时为了求多项式 111()n n n n q a a a λλλλ--=++++L 的零点,可以把()q λ看成矩阵 123101010n a a a a ----???????????????? L O O 的特征多项式(除(1)n -因子不计)。这是一个Hessenberg 矩阵,可用QR 方法求特征值,从而求出代数方程()0q λ=的根。 矩阵特征值和特征向量的计算问题可分为两类:一类是求矩阵A 的全部特征值及其对应的向量;另一类是求部分特征值(一个或几个、按模最大或最小)及其对应的特征向量。本章介绍部分特征值和特征向量的幂法、内积法;求实对称矩阵全部特征值的雅可比法、Given 方法和Householder 方法;求任意矩阵全部特征值的QR 算法。 在第5章已给出特征值的一些重要性质,下面再补充一些基本性质。 定理1 设n n R ?∈A ,则 (1) 设λ为A 的特征值,则λμ-为μ-A I 的特

速度雅克比矩阵分析

速度分析---雅可比矩阵---关节速度与末端速度的映射关系 雅克比矩阵的获得方法:位置关系求导;矢量积法;微分变换法 雅克比的性质: 6 x n 的偏导数矩阵,前3行为末端线速度传动比,后3行为末端角速度传动比。行数=机器人在操作空间的维数,列数n=关节数。 雅克比的应用: 1、判断奇异状态:|J|=0 2、雅克比矩阵的奇异值分解,将雅可比矩阵分解出对角阵(对角元素为奇异值),对角阵和雅可比矩阵具有相同的秩。 3、条件数,定义式(文献)根据是否满自由度划分,和奇异值存在关系:条件数是最大和最小奇异值的比值。条件数k ≥1,当k=1时,操作臂所具有的形位称为各向同性,灵巧性最高,各奇异值相等。 4、最小奇异值,可用来作为控制所需关节速度上限的指标(限定式见文献)。 5、运动灵巧性指标,条件数的倒数。 附件1:矢量积法 矢量积的方法是whitney 基于运动坐标系概念于1972年提出的求解机器人运动雅克比矩阵的方法。末端抓手的微分移动和微分转动分别用d 和δ表示,线速度和角速度分别用v 和w 表示。 对于移动关节i 的运动,它在末端手抓产生于z1轴相同方向的线速度,且 0i i v z q w ?? ??=???????? 因此得到雅可比矩阵的第i 列 0i i Z L ?? =???? (移动关节i) 对于转动关节i 的运动,它在终端抓手上产生的线速度为矢量积0 ()i i n i v z p q =?,产生 的角速度为i i w z q = 。 因此,雅可比矩阵的第i 列为 ()00i i i i n i n i i i Z R P Z P J z Z ??????==? ????????? 式中,?表示矢量积符号,0 i n P 表示末端抓手坐标的原点相对坐标系{i}的位置在基座标系{0} 的表示,0 i n P = ( )0 i i n R P ,Zi 是坐标系{i}的Z 轴单位方向,它是用坐标系表示的。 附件2:微分变换法 速度可以看成是单位采样时间内的微分运动。因此,操作速度与关节速度之间的额关系

第八章矩阵的特征值与特征向量的数值解法

第八章 矩阵的特征值与特征向量的数值解法 某些工程计算涉及到矩阵的特征值与特征向量的求解。如果从原始矩阵出发,先求出特征多项式,再求特征多项式的根,在理论上是无可非议的。但一般不用这种方法,因为了这种算法往往不稳定.常用的方法是迭代法或变换法。本章介绍求解特征值与特征向量的一些方法。 §1 乘幂法 乘幂法是通过求矩阵的特征向量来求特征值的一种迭代法,它适用于求矩阵的按模最大的特征值及对应的特征向量。 定理8·1 设矩阵An ×n 有n 个线性无关的特征向量X i(i=1,2,…,n),其对应的特征值λi (i =1,2,…,n)满足 |λ1|>|λ2|≧…≧|λn | 则对任何n维非零初始向量Z 0,构造Zk = AZ k-1 11()lim ()k j k k j Z Z λ→∞ -= (8·1) 其中(Zk )j表示向量Z k 的第j个分量。 证明 : 只就λi是实数的情况证明如下。 因为A 有n 个线性无关的特征向量X i ,(i = 1,2,…,n)用X i(i = 1,2,…,n)线性表示,即Z 0=α1X 1 + α2X2 +用A 构造向量序列{Z k }其中 ? 21021010, ,k k k Z AZ Z AZ A Z Z AZ A Z -=====, (8.2) 由矩阵特征值定义知AXi =λi X i (i=1,2, …,n),故 ? 0112211122211121k k k k k n n k k k n n n k n k i i i i Z A Z A X A X A X X X X X X ααααλαλαλλλααλ===++ +=+++???? ??=+ ?????? ? ∑ (8.3) 同理有 1 1 11 1121k n k i k i i i Z X X λλααλ---=? ? ????=+ ????? ? ? ∑ (8.4) 将(8.3)与(8.4)所得Zk 及Z k-1的第j 个分量相除,设α1≠0,并且注意到 |λi |<|λ1|(i=1,2,…,n )得

矩阵的特征值与特征向量习题

第五章 矩阵的特征值与特征向量 习题 1 试用施密特法把下列向量组正交化 (1)?? ? ? ? ??=931421111) , ,(321a a a (2)???? ?? ? ??---=011101110111) , ,(321a a a 2 设x 为n 维列向量 x T x 1 令H E 2xx T 证明H 是对称的正交 阵 3 求下列矩阵的特征值和特征向量: (1)??? ?? ??----20133 521 2; (2)??? ? ? ??633312321. 4 设A 为n 阶矩阵 证明A T 与A 的特征值相同 5 设 0是m 阶矩阵A m n B n m 的特征值 证明 也是n 阶矩阵BA 的特 征值. 6 已知3阶矩阵A 的特征值为1 2 3 求|A 35A 2 7A | 7 已知3阶矩阵A 的特征值为1 2 3 求|A * 3A 2E | 8 设矩阵??? ? ? ??=50413102x A 可相似对角化 求x

9 已知p (1 1 1)T 是矩阵???? ? ??---=2135212b a A 的一个特征向量 (1)求参数a b 及特征向量p 所对应的特征值 (2)问A 能不能相似对角化?并说明理由 10 试求一个正交的相似变换矩阵, 将对称阵??? ? ? ??----020212022化为对角 阵. 11 设矩阵????? ??------=12422421x A 与??? ? ? ? ?-=Λy 45 相似 求x y 并 求一个正交阵P 使P 1AP 12 设3阶方阵A 的特征值为1 2 2 2 3 1 对应的特征 向量依次为p 1 (0 1 1)T p 2(1 1 1)T p 3(1 1 0)T 求A . 13 设3阶对称矩阵A 的特征值 1 6 2 3 3 3 与特征值 1 6对应的特征向量为p 1 (1 1 1)T 求A . 14 设?? ? ? ? ??-=340430241A 求A 100

矩阵的特征值与特征向量的求法

摘要:首先给出了求解矩阵特征值和特征向量的另外两种求法,然后运用特征值的性质讨论了矩阵合同、相似的充要条件,以及逆矩阵的求解等相关问题. 关键词:矩阵的特征多项式,特征值,特征向量,对角矩阵,逆矩阵

Abstract:Firstly,it is given matrix eigenvalues and eigenvectors of two other methods, then with the properties of eigenvalue the contract of matrix discussed,we deeply discuss the sufficient and necessary conditions for the similar matrix contract, and the inverse matrix of the related problem solving. Keywords:matrix characteristic polynomial, eigenvalue, eigenvector, diagonal matrices, inverse matrix

目录 1 前言 (4) 2 矩阵的特征值和特征向量的求法 (4) 2.1 矩阵的初等变换法 (4) 2.2 矩阵的行列互逆变换法 (6) 3 矩阵特征值的一些性质及应用 (7) 3.1 矩阵之间的关系 (7) 3.1.1 矩阵的相似 (7) 3.1.2 矩阵的合同 (7) 3.2 逆矩阵的求解 (8) 3.3 矩阵相似于对角矩阵的充要条件 (8) 3.4 矩阵的求解 (9) 3.5 矩阵特征值的简单应用 (10) 结论 (11) 参考文献 (12) 致谢 (13)

速度运动学雅可比矩阵

第4章 速度运动学——雅可比矩阵 在数学上,正运动学方程在笛卡尔位置和姿态空间与关节位置空间之间定义了一个函数,速度之间的关系由这个函数的雅可比矩阵来决定。 雅可比矩阵出现在机器人操作的几乎各个方面:规划和执行光滑轨迹,决定奇异位形,执行协调的拟人动作,推导运动的动力学方程,力和力矩在末端执行器和机械臂关节之间的转换。 1.角速度:固定转轴情形 k θ ω =(k 是沿旋转轴线方向的一个单位向量,θ 是角度θ对时间的倒数) 2.反对称矩阵 一个n n ?的矩阵S 被称为反对称矩阵,当且仅当0=+S S T ,我们用)3(so 表示所有 33?反对称矩阵组成的集合。 如果)3(so S ∈,反对称矩阵满足0=+ji ij s s 3,2,1,=j i ,所以ii S =0,S 仅包含三个独立项,并且每个33?的反对称矩阵具有下述形式: ???? ? ?????---=0001 2 13 23s s s s s s S 如果T z y x a a a a ),,(=是一个3维向量,我们将对应的反对称矩阵)(a S 定义为如下形式: ???? ????? ?---=000 )(x y x z y z a a a a a a a S 反对称矩阵的性质 1))()()(b S a S b a S βαβα+=+ 向量a 、b 属于3 R ,α、β为标量

2)p a p a S ?=)( 向量a 、b 属于3R ,p a ?表示向量叉乘 3))()(Ra S R a RS T =,左侧表示矩阵)(a S 的一个相似变换,这个公式表明:)(a S 在坐标系中经过R 旋转操作的矩阵表示与反对称矩阵)(a SR 相同,其中)(a SR 对应于向量a 被转过R 这种情形。 4)对于一个n n ?的反对称矩阵S ,以及任何一个向量n R X ∈,有0=SX X T 旋转矩阵的导数 )(θθ SR R d d = 公式表明:计算旋转矩阵的R 的导数,等同于乘以一个反对称矩阵S 的矩阵乘法操作。 3.角速度:一般情况 )())(()(t R t w S t R = ,其中,矩阵))((t w S 是反对称矩阵,向量)(t w 为t 时刻旋转坐标系相对于固定坐标系上的点p 。 4.角速度求和 假定我们有112010...-=n n n R R R R ,则00,00)(n n n R S R ω= ,其中 0,104 ,303 ,202,10 1,01,10134,30323,20212,10101,00,0......n n n n n n n R R R R ----+++++=+++++=ω ω ω ωωωωωωωω (0 2,1ω表示对应于1 2R 导数的角速度在坐标系0000z y x o 中的表达式) 5.移动坐标系上点的线速度 v r o Rp S o p R p +?=+=+=ωω 110)( 其中,1 Rp r =是从1 o 到p 的向量在坐标系0000z y x o 的姿态中的表达式,v 是原点1o 运

第八章 矩阵的特征值和特征向量的计算

第八章矩阵的特征值和特征向量的计算 矩阵的特征值和特征向量 乘幂法 反幂法

矩阵特征值和特征向量计算 特征值与特征向量A x = λx ( λ∈C ,x ≠0 ) 性质 (1)tr(A ) = a 11+ a 22+ ???+ a nn = λ1 + λ2+ ???+ λn (2)det(A ) = λ1 λ2???λn (3)若B = P -1AP 则A 与B 具有相同的特征值;x 是B 的特征向量?Px 是A 的特征向量. /* Calculation of Eigenvalue and Eigenvector of Matrix */

乘幂法 乘幂法:计算实矩阵按模最大的特征值 假设:(1) |λ1| >|λ2| ≥…≥|λn | ≥0 (2)对应的n 个线性无关特征向量为:x 1, x 2, ..., x n 。 计算过程:任取一个非零向量v ,要求满足(x 1,v )≠0 计算v 1=Av 0, v 2=Av 1, ..., v k +1=Av k , ...,直到收敛。 收敛分析 011221(0) n n v x x x αααα=+++≠10111222n n n v Av x x x αλαλαλ==+++111 1222k k k k k n n n v Av x x x αλαλαλ-==+++ 21112211k k k n n n x x x λλλαααλλ??????=+++?? ? ????????? 1 11 k x λα

当k 充分大时,有 1 11k k v x λα≈11111 k k v x λα++≈11k k v v λ+≈又1k k v Av +=1k k Av v λ≈()()11 k j k j v v λ+≈( j =1, 2, ... , n ) v k 为λ1的近似特征向量 乘幂法的收敛速度取决于的大小。 21 r λλ=算法(乘幂法) 任取非零向量v 0,计算 1. v k +1 = Av k 2. 对v k 中所有非零分量(v k )j ,判断是否近似于某个常 数,如果是,则停机;否则转第1 步。 ()()1k j k j v v +乘幂法

矩阵特征值和特征向量解法的研究

矩阵特征值和特征向量解法的研究 周雪娇 (德州学院数学系,山东德州 253023) 摘 要:对矩阵特征值和特征向量的一些方法进行了系统的归纳和总结.在比较中能够 更容易发现最好的方法,并提高问题的解题效率. 关键词: 矩阵; 特征值; 特征向量; 解法 引言 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.矩阵计算问题是很多科学问题的核心.在很多工程计算中,常常会遇到特征值和特征向量的计算问题,如:机械、结构或电磁振动中的固有值问题;物理学中的各种临界值等,这些特征值的计算往往意义重大.很多科学问题都要归结为矩阵计算的问题,在这里主要研究矩阵计算中三大问题之——特征值问题. 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称 λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值,其对应的特征向量分别是 n x x x ,,,21 ,则这组特征向量线性无关.

(4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量. (7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值.[]1 2 普通矩阵特征值与特征向量的求法 2.1 传统方法 确定矩阵A 的特征值和特征向量的传统方法可以分为以下几步: (1)求出矩阵A 特征多项式()A E f -=λλ的全部特征根; (2)把所求得的特征根()n i i ,,2,1 =λ逐个代入线性方程组()0=-X A E i λ, 对于每一个特征值,解方程组()0=-X A E i λ,求出一组基础解系,这样,我们也就求出了对应于每个特征值的全部线性无关的特征向量.[]2 例1 已知矩阵 ???? ? ?????-=11 111 110 A 求矩阵A 的特征值和特征向量. 解 A E -λ = 1 1 1 1 1 11 ------λλλ = ()21-λλ 所以,由()012=-λλ知A 的特征根1,0321===λλλ.

第五章 习题与复习题详解(矩阵特征值和特征向量)----高等代数

习题 1. (1) 若A 2 = E ,证明A 的特征值为1或-1; (2) 若A 2 = A ,证明A 的特征值为0或1. 证明(1)2 2A E A =±所以的特征值为1,故A 的特征值为1 (2) 2222 2 ,,()0,001 A A A X A X AX X X X λλλλλλλ===-=-==所以两边同乘的特征向量得即由于特征向量非零,故即或 2. 若正交矩阵有实特征值,证明它的实特征值为1或 -1. 证明 1,1 T T T A A A E A A A A A λλλλ -=∴==±设是正交阵,故有与有相同的特征值, 1 故设的特征值是,有=,即 3.求数量矩阵A=aE 的特征值与特征向量. 解 A 设是数量阵,则 000000000000a a A aE a a a E A a λλλλ?? ? ?== ? ??? ---= -L L L L L L L L L L L L 所以:特征值为a (n 重), A 属于a 的特征向量为 k 1(1,0,…,0)T + k 2(0,1,…,0)T + k n (0,0,…,1)T ,(k 1, k 2, …, k n 不全为0)

4.求下列矩阵的特征值与特征向量. (1)113012002-?? ? ? ??? (2)324202423?? ? ? ??? (3)??? ?? ??---122212 221 (4)212533102-?? ?- ? ?--?? ()1112221211(5) , , (0,0)0.T T n n n n a a b a a b A b b b a b a a b αβαβαβ?? ???? ? ? ? ? ? ?====≠≠= ? ? ? ? ? ? ? ? ??? ???? L M M M 其中,且 解(1) 11 3 0120,1,2,00 2A E AX λλλ λλλλ ---=-====-0,123求得特征值为:分别代入=求得 A 属于特征值1的全部特征向量为k(1,0,0)T ,(k ≠0) A 属于特征值2的全部特征向量为k(1,2,1)T ,(k ≠0) 解(2)

雅克比矩阵

Jacobi 方法 Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论 1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得 Q T AQ = diag(λ 1,λ 2 ,…,λ n ) 其中λ i (i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量。 2) 在正交相似变换下,矩阵元素的平方和不变。即设A=(a ij ) n×n ,Q交矩阵, 记B=Q T AQ=(b ij ) n×n , 则 Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小。反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量。 1 矩阵的旋转变换 设A为n阶实对称矩阵,考虑矩阵 易见 V ij (φ)是正交矩阵, 记 注意到B=V ij A的第i,j行元素以及的第i,j列元素为 可得 如果a ij ≠0,取φ使得则有 对A(1)重复上述的过程,可得A(2) ,这样继续下去, 得到一个矩阵序列{A(k) }。可以证明,虽然这种变换不一定能使矩阵中非对角元素零元素的个数单调增加,但可以保证非对角元素的平方和递减,我们以A与A(1)为例进行讨论。

设由式 可得 这表明,在上述旋转变换下,非对角元素的平方和严格单调递减,因而由可知,对角元素的平方和单调增加。 2. Jacobi方法 通过一系列旋转变换将A变成A(k+1) ,求得A的全部特征值与特征向量的方法称为Jacobi方法。计算过程如下 1)令k=0, A(k) =A 2) 求整数i,j, 使得 3) 计算旋转矩阵 4) 计算A(k+1) 5) 计算 6) 若E(A(k+1))<ε, 则 为特征值, Q T = (V(0) V(1)…V(k+1))T 的各列为相应的特 征 向量;否则,k+1=>k

矩阵的特征值与特征向量专题讲解

矩阵的特征值与特征向量专题讲解 一、内容提要 一、矩阵的特征值和特征向量 1、基本概念 设A 为n 阶方阵,若存在数λ和n 为非零向量0,a ≠使Aa a λ=,则称λ是A 的特征值,a 是属于λ的特征向量;矩阵E A λ-称为A 的特征矩阵;E A λ-是 λ的n 次多项式,称为A 的特征多项式;E A λ-=0称为A 的特征方程; 2、特征值、特征向量的求法 (1)计算A 的特征值,即解特征方程E A λ-=0; (2)对每一个特征值0λ,求出相应的齐次线性方程组()00E A X λ-= 一个基础解系123,ξξξ,,...,则属于0λ的全部特征向量为11...s s k k ξξ++,其中1,...,s k k 为不全为零的任意常数; 3、特征值、特征向量的性质 (1)A 与T A 的特征值相同(但特征向量一般不同); (2)属于同一特征值的特征向量的线性组合仍是属于该特征值的特征向量; (3)属于不同特征值的特征向量线性无关; (4)设()0A a a a λ=≠,则(),,m kA A P A 的特征值分别为(),,m k P λλλ,其中 ()P x 为任一多项式,而a 仍为相应的特征向量; (5)若A 可逆,()0Aa a a λ=≠,则 1 λ 是1 A -的特征值; A λ 是*A 的特征值, a 仍为相应的特征向量; (6)设12n λλλ,,...是n 阶方阵的特征值,则有()1 1 n n i ii i i a tr A λ====∑∑(迹);

1 n i i A λ ==∏;推论:A 可逆当且仅当A 的特征值全不为零; (7)若A 为实对称阵,则A 的所有特征值均为实数,且属于不同特征值的特征向量彼此正交。 二、相似矩阵 1、定义 设,A B 为n 阶方阵,若存在n 阶可逆阵P ,使1P AP B -=,称A 与B 相似,记为A ~B ; 2、A ~B 的性质 T T A B ,,,M M kA kB A B ~~~ ()(),P A P B ~其中P 为任一多项式;()(),,,r A r B A B E A E B λλ==-=- ?特征值相同,()()tr A tr B =;若A 可逆,则B 也可逆,且11A B --~。 三、矩阵对角化的条件及方法 1、若矩阵A 与对角阵相似,则称A 可对角化, (1)n 阶方阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量; (2)若A 的特征值两两不同,则必可对角化。 2、实对称阵A 必可对角化,且存在正交阵P ,使1P AP -=Λ 实对称矩阵正交对角化具体计算步骤如下: (1)求出实对称矩阵A 的全部特征值; (2)若特征值是单根,则求出一个线性无关的特征向量,并加以单位化; 若特征值是重根,则求出重数个线性无关的特征向量,然后用施密特正交化方法化为正交组,再单位化;

Stewart平台雅可比矩阵分析

Stewart平台雅可比矩阵分析 赵慧[1]张尚盈[2] [1]武汉科技大学机械自动化学院 430081 Email: [2]华中科技大学数字制造及设备技术国家重点实验室 430074 Email: 摘要:雅可比矩阵是对Stewart平台进行分析时的重要变量,通过对其的分析和计算,可以得到平台速度和液压缸速度之间的关系,得到平台承载与各液压缸出力之间的关系,可以判断液压缸的可控性,可以得到各自由度之间的运动耦合情况。因此,导出雅可比矩阵,并对其物理意义进行诠释和深刻理解非常重要。本文通过Stewart平台的运动学分析,推导出雅可比矩阵的公式,并通过仿真结果对其物理意义进行验证。 关键词:Stewart平台,运动学分析,雅可比矩阵 1 引言 随着科技的发展以及人们对未知世界探索的需求,Stewart平台在飞行模拟器、空中交会对接(RVD)仿真技术[1]、虚拟轴机床、力-扭矩传感器、装配机械手等领域有广泛的应用。其中液压驱动Stewart平台由于具有快速、高精度、大负载和结构紧凑等特点而受到青睐 [2]。 Stewart平台是一个典型的多变量和本质非线性的复杂系统。对Stewart平台运动学和动力学进行研究,是设计、分析和控制Stewart平台的基础。雅可比矩阵是在对Stewart平台进行运动学动力学分析过程中产生和定义的矩阵,具有重要的物理意义,本文将对其实质展开论述,并用仿真结果来验证。 2 Stewart平台描述 2.1 坐标系建立 如图1所示,Stewart平台的主体部分由上平台(Platform)、下平台(Base)以及六个液压缸组成。静止不动的下平台与可动作的上平台分别通过上、下胡克铰与液压缸的两端相连。选取体坐标系{}P— O X Y Z在上平台上,坐 p p p p

潮流计算程序至雅克比矩阵

%本程序的功能是用牛顿——拉夫逊法进行潮流计算 % X1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳 % 5、支路的变比;6、支路首端处于K侧为1,1侧为0 % X2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值 % 4、PV节点电压V的给定值;5、初相角给定值6、节点所接的无功补偿设备的容量 % 7、节点分类标号:1为PQ节点;2为PV节点;3为平衡节点; clear; n=6; %input('请输入节点数:n=') nl=7; %input('请输入支路数:nl=') n2=5; %input('请输入已知条件中含有有功功率的节点数:n2=') n3=4; %input('请输入已知条件中含有无功功率的节点数:n3=') isb=6; %input('请输入平衡母线节点号:isb=') pr=0.00001; %input('请输入误差精度:pr=') X1=[1 2 0.000+0.300i 0 1.025 1; 1 4 0.097+0.407i 0 1 0; 1 6 0.123+0.518i 0 1 0; 2 5 0.282+0.640i 0 1 0; 3 5 0.723+1.050i 0 1 0; 3 4 0.000+0.133i 0 1.100 0; 4 6 0.080+0.370i 0 1 0] %input('请输入由支路参数形成的矩阵:X1=') X2=[0 50.0+5.0i 1.000 0 0 0 1; 0 30.0+18.0i 1.000 0 0 0 1; 0 55.0+13.0i 1.000 0 0 0 1; 0 0 1.000 0 0 0 1; 50.1 0 1.000 1.100 0 0 2; 0 0 1.000 1.050 0 0 3] %input('请输入各节点参数形成的矩阵:X2=') X3=[1 0; 2 0; 3 0; 4 0; 5 0; 6 0] %input('请输入由节点号及其对地阻抗形成的矩阵:X3=') Y=zeros(n);u=zeros(1,n);v=zeros(1,n);delt=zeros(1,n);JJ=zeros(n2+n3);%设置各个参数矩阵的形式 for i=1:n if X3(i,2)~=0; a=X3(i,1); Y(a,a)=1./X3(i,2); end end

相关文档
相关文档 最新文档