文档库 最新最全的文档下载
当前位置:文档库 › P001关于新代系统发生遗失位置追随误差的处理办法

P001关于新代系统发生遗失位置追随误差的处理办法

P001关于新代系统发生遗失位置追随误差的处理办法
P001关于新代系统发生遗失位置追随误差的处理办法

2014.04.22

一、遗失位置命令警报定义:

控制器停止对某个轴向指令输出1秒后随时检查回馈指令量与输出指令量

的误差量是否在预定误差范围内,如果不在此范围内,则有遗失位置警报。

二、发生此报警的原因:

在诊断功能→系统资料看8、9、10分别代表X轴、Y轴、Z轴的追随(定位)误差量;24、25、26则代表X轴、Y轴、Z轴的回馈指令量;40、41、42

则代表X轴、Y轴、Z轴的控制器指令送出量。

控制器指令送出量—回馈指令量=误差量(一般为0)<系统设定值。如果误差量大于系统的设定值,就会发警报。

三、处理此问题的具体方法:

造成此警报的原因大体可以分为电控和机构两个方面的原因:

电控或机构原因的判断方法

在发生遗失位置命令后,去观察系统资料中的8,9,10的值,如果都为零,一般是机构的问题:如果有不为零的,一般就是电控的问题。

(一)、电控方面的原因

⑴、可能产生此警报的具体原因:

a)检查控制器参数181-183设定值是否和伺服刚性设定一致

b)控制紧急停止的继电器接触不良;

c)cpu板送给轴卡的资料遗失;

d)cpu板有问题;

e)轴卡有问题;

f)cpu板和轴卡接触不好;

g)控制器伺服线有接触不良或断线;

h)驱动器到马达的动力线接触不好或者断开;

i)马达编码器进油;

j)编码器回授线松脱或断掉;

k)局部干扰.

⑵、原理图:

⑶、具体地方问题的确定及解决方法:

当发生位置遗失警报,观察过8,9,10号参数之后。就做寻点动作,寻完原点后,观察24,25,26号参数和40,41,42号参数,

a)如果24,25,26号参数中有不为零的,则回授回路有问题。

b)如果40,41,42中有不为零,就是控制器到马达的线路中有指令丢失。

c)如果24,25,26和40,41,42都有不为零的,则信号被干扰的可能性比较大,具体表现为在加工中,8,9,10号参数的数值渐渐变大。具体故障点可能是cpu板和轴卡接触不好造成的。可依次换cpu板和轴卡试试。

d)如果是控制器到马达的发动电路有问题,先检查驱动器线和动力线。具体办法是把怀疑有问题轴相的驱动器线和动力线和其他没问题轴相的驱动器线和马达线对换,看警报会不会跑到别的轴相去,如果跑到别的轴相去了,确定是伺服线或动力线有问题,换掉即可。

e)如果是回授回路有问题,先把编码器线和动力线与其他没有问题轴相的编码器线和驱动器线对换,如果警报跑到兑换过的轴相去了,证明是编码器线或者动力线有问题。换掉即可。

f)如果编码器线和动力线都没有问题,就把发警报轴相和其他好的轴相的驱动器线对换,如果警报跑到其他轴相,证明驱动器线有问题,换过即可。

g)如果以上问题都没问题,再就是怀疑接口和编码器漏油的问题,这个问题是靠经验判断,其实编码器漏油造成的指令丢失情况和轴卡和底座接触不好的情况有些相识;而接头接触问题关键是把接头都锁紧。

(二)、机构方面的原因

a)如果确定是机构问题,并且无驱动器警报。一般来说,应该是机床缺少润滑,静摩擦力太大。此时应该检查机构是不是有卡住及润滑系统是否良好。

b)控制器有警报发出,并且伴随着驱动器警报。此时可能是床台卡死或者伺服系统有问题,如果关电重开问题依然存在很明显,无法动作,应更换伺服或者马达。如果是机构卡死,需要联系机械厂家支援。

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

雷达数据处理

雷达数据处理-雷达数据处理 雷达数据处理-正文 *从一系列雷达测量值中,利用参数估值理论估计目标的位置、速度、加速度等运动参数;进行目标航迹处理;选择、跟踪目标;形成各种变换、校正、显示、报告或控制等数据;估计某些与目标形体、表面物理特性有关的参数等。早期的一些雷达,采用模拟式解算装置进行数据处理。现代雷达已采用数字计算机完成这些任务。 数据格式化雷达数据的原始形式是一些电的和非电的模拟量,经接收系统处理后在计算机的输入端已变成数字量。数字化的雷达数据以一定格式组成雷达数据字。雷达数据字可编成若干个字段,每一个字段指定接纳某个时刻测量到的雷达数据。雷达数据字是各种数据处理作业的原始量,编好后即送入计算机存储器内的指定位置。 校正雷达系统的失调会造成设备的非线性和不一致性,使雷达数据产生系统误差,影响目标参数的无偏估计。为保证高质量的雷达数据,预先把一批校正补偿数据存储于计算机中。雷达工作时,根据测量值或系统的状态用某种查表公式确定校正量的存储地址,再用插值法对测量值进行校正和补偿,以清除或减少雷达数据的系统误差。 坐标变换雷达数据是在以雷达天线为原点的球坐标系中测出的,如距离、方位角、仰角等。为了综合比较由不同雷达或测量设备得到的目标数据,往往需要先把这些球坐标数据变换到某个参考坐标系中。常用直角坐标系作为参考坐标系。另外,在球坐标系中观察到的目标速度、加速度等状态参数是一些视在几何分量的合成,不能代表目标在惯性空间的运动特征。若数据处理也在雷达球坐标系中进行,会由于视在角加速度和更高阶导数的存在使数据处理复杂化,或者产生较大的误差。适当选择坐标系,可以简化目标运动方程,提高处理效率或数据质量。 跟踪滤波器跟踪滤波器是雷达数据处理系统的核心。它根据雷达测量值实时估计当前的目标位置、速度等运动参数并推算出下一次观察时目标位置的预报值。这种预报值在跟踪雷达中用来检验下一次观测值的合理性;在搜索雷达中用于航迹相关处理。常用的跟踪滤波器有α-β滤波器、卡尔曼滤波器和维纳滤波器,可根据拥有的计算资源、被处理的目标数、目标的动态特性、雷达参数和处理系统的精度要求等条件选用。α-β滤波器的优点是算法简单,容易实现,对于非机动飞行的等速运动目标,位置估值和速度估值的平方误差最小,故可对等速运动目标进行最佳滤波。对于机动飞行的目标,由于α-β滤波器描述的目标运动模型与实际情况存在差异,会产生较大的误差。为此,广泛采用一种称为机动检测器的检测装置,以便在发现目标作机动飞行时能自动调整测量周期或修改α值和β值,使跟踪误差保持在允许的范围内。同α-β滤波器不同,卡尔曼滤波器中除装有稳态的目标轨迹模型外,还设有测量误差模型和目标轨迹的随机抖动模型。因此,它对时变和非时变的目标动态系统能作出最佳线性、最小方差的无偏估计。除目标状态的估计外,卡尔曼滤波器还能估计状态估值的误差协方差矩阵。利用误差协方差矩阵可以检测目标机动,调整滤波系数,实现对机动目标的自适应滤波。 目标航迹处理早期的搜索雷达由操作员从显示器上判定目标的存在,并逐次报出目标的位置。标图员根据报告的目标数据进行标图,并把图上的点顺序连接,形成目标航迹。这个过程称为目标航迹处理。现代雷达系统的航迹处理已无需人工处理,而主要由计算机来完成。利用计算机进行数据处理的搜索雷达,称为边跟踪边扫描雷达系统。雷达测量到的离散

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

雷达基本理论与基本原理

雷达基本理论与基本原理 一、雷达的基本理论 1、雷达工作的基本过程 发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并向许多方向再辐射。向后再辐射回到雷达的信号被天线采集,并送到接受机,在接收机中,该信号被处理以检测目标的存在并确定其位置,最后在雷达终端上将处理结果显示出来。 2、雷达工作的基本原理 一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。如果目标是运动的,由于多普勒效应,回波信号的频率会漂移。该频率的漂移与目标相对于雷达的速度成正比,根据2r d v f λ =,即可得到目 标的速度。 3、雷达的主要性能参数和技术参数 3.1雷达的主要性能参数 3.1.1雷达的探测范围 雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。 3.1.2测量目标参数的精确度和误差 精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。 3.1.3分辨力 指雷达对两个相邻目标的分辨能力。可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为可分辨的极限,这个极限距离就是距离分辨力:min ()2 c R τ ?=。因此,脉宽越小,距离分辨力越好

3.1.4数据率 雷达对整个威力范围完成一次探测所需时间的倒数。 3.1.5 抗干扰能力 指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。 3.1.6 雷达可靠性 分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。 3.1.7 体积和重量 体积和重量决定于雷达的任务要求、所用的器件和材料。 3.1.8 功耗及展开时间 功耗指雷达的电源消耗总功率。展开时间指雷达在机动中的架设和撤收时间。 3.1.9 测量目标坐标或参数的数目 目标坐标是指目标的方位、斜距和仰角,此外,还指目标的速度和性质(机型、架数、敌我)。对于边扫描边跟踪雷达,还指跟踪目标批数,航迹建立的正确率。 3.2 雷达的主要技术参数 3.2.1 工作频率和工作带宽 雷达工作频率主要根据目标的特性、电波传播条件、天线尺寸、高频器件的性能以及雷达的测量精确度和功能等要求来决定 3.2.2 发射功率 分为脉冲功率和平均功率,雷达在发射脉冲信号期间所输出的功率称为脉冲功率,平均功率指一个重复周期内,发射机输出功率的平均值。 3.2.3 调制波形、脉冲宽度和重复频率 现代雷达则采用多种调制波形以供选择。脉冲宽度指发射脉冲信号的持续时间。脉冲重复频率指雷达每秒发射的射频脉冲个数,其倒数叫脉冲重复周期。 3.2.4 天线的波束形状、增益和扫描方式 天线的波束形状一般用水平和垂直面内的波束宽度来表示。天线增益用 24/G A πλ=表示。天线的主瓣在雷达的探测空域内以一定的规律运动,叫做扫

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

论雷达系统误差产生的原因及减小方法

论雷达系统误差产生的原因及减小方法 发表时间:2019-03-12T16:05:08.947Z 来源:《电力设备》2018年第27期作者:董鲜锋蒋富强秦林林 [导读] 摘要:雷达其基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。 (陕西黄河集团陕西西安 710043) 摘要:雷达其基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。雷达是集中了现代电子科学技术各种成就的高科技系统。众所周知,雷达已成功的应用于地面车载、舰载、机载等方面。雷达己经在执行各种军事和民用任务。为了使雷达更好的服务于人类,使测量的数据更加准确,即使测量的再准确,雷达测量出的目标位置还是存在一定误差,这就是雷达系统误差。我们就来探讨雷达系统误差产生的原因及减小方法。希望能对我们雷达系统的调试起到有价值的参考。 关键词:雷达系统;发射机;接收机;天线 雷达系统利用电磁波发现并测定目标的位置、速度和其它特性的电子系统。通常由发射机、接收机、天线、信号处理、伺服糸统、定时器、显示器、电源等部分组成。雷达系统的实验鉴定,首先要逐个的测量主要的雷达参数,并对照技术规范中规定的数值加以核对。因为在许多情况下,所规定的雷达各部分特性可能难以与系统的性能联系起来。所以就要求我们对各个系统的参数进行调整满足系统的要求。下面我就各系统对雷达系统的影响分别进行讨论。 1发射机参数 雷达工作时要求发射一种特定的大功率无线电信号,发射机在雷达中就是起这一作用的。也就是说它为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关再由天线辐射出去。对于系统鉴定来说,发射机以下参数是重要的:峰值输出功率、脉冲宽度、重复频率、平均功率、功率频谱分布、频率调谐范围和稳定性、脉冲输出相位和幅度稳定性、寄生辐射、功率的内部损失等。为了测量其中的某些参数,一般雷达发射机都含有内部测试设备和监测设备,还可以利用定向耦合器和波形监视器及频率计,还有附加的外部实验设备也能够连到发射机上,以便实现其他参数测量。测量发射机功率时最好选择量热计作为测量输出功率的工具,因为它要求在发射机输出和测量仪器之间有较少的固定衰减,测量的数据更加准确。如果利用热敏电阻或者热辐射计,通常必须在这些仪表上加入衰减可能会引起一定的测量误差。另外还应提供测量寄生的和谐波输出的某些装置。在测量脉冲宽度时为保证观察到的脉冲宽度更加准确,应当选用和他匹配的仪器仪表和测试线。一般我们选择50%的幅度电平作为脉冲宽度的测量点。在大多数情况下,脉冲宽度接近于梯形。我们通常还要检测它的上升沿和下降沿时间及脉冲的前沿抖动情况及顶部的抖动情况。上升沿和下降沿的时间尽量的小,前沿和顶部的抖动应该也是最小。如果超出指标要求范围,应该对发射机进行检查找出原因。其次还要检查发热机输出信号的频率稳定度及相位的稳定度及信号的频谱分布,如果不符合技术规范要求,应该检查是自身工作不稳定产生的还是外部输入信号不稳定产生的。发射机输出功率的大小会引起发现目标的距离。而发射机发射出来信号的品质会影响到测距和测角的准确度。所以在检查发射器参数时,应全部符合技术规范指标要求。 2接收机参数 雷达接收机的好坏在雷达系统误差表现尤为突出,雷达接收机通常由它的噪声系数和带宽来表征。雷达接收机接收微弱信号的能力,通常用最小门限信号功率来描述。它与接收机噪声系数,接收机通频带及识别系数有关。当然还与脉冲积累、视频带宽等有关。宽频带噪声源已普遍用于接收机的鉴定。因为它对中频放大器的滤波特性不灵敏。通过调整噪声源和接收机之间的衰减直至总的噪声输出为没有噪声源时接收机噪声输出的两倍,能够以零点几分贝的准确度确定接收机的噪声系数。接收机通频带的确定对于非脉冲压缩雷达接收机最佳带宽常为脉冲宽度的倒数。所以在检查接收机参数时,我们要测量它的噪声系数和它的带宽,首先要检查噪声系数,只有噪声系数满足要求后才能检查下面的项目。带宽调整时不但满足宽度要求,还要关注对称性、顶部的切平度、增益等参数,这些参装订的好坏直接影响接收信号的质量。如果是多通道接收机,还要关注这几个接收通道的增益和相位一致性。 3天馈线系统 在分析测试雷达系统性能时,天线的增益方向图和噪声温度是相当重要的。所有这些参数都可以根据标准方向图的试验近似的决定。天线增益的测量能通过与标准喇叭天线的增益进行比较的方法来测量。这个标准喇叭天线与被测天线放置在同一场中,通过在大天线输出端插入定标衰减器,使两者的输出达到相等衰减器的衰减加上标准喇叭增益的总和,就是等于大天线的增益。而天线方向图可以从水平波束垂直波束宽度和旁瓣电平几个方面来考虑。为了提高角度分辨率和减小测角误差,提高天线增益,减小干扰强度,希望波束选择的窄一些。但是为了提高目标发现概率,要求天线没扫描一周能接收到足够多的回波脉冲数。则希望水平波束选择的宽一些。在雷达系统误差变大时,怀疑到天线时,应当检查天线的增益和波束的宽度是否发生变形,还有天线旁瓣电平是否发生变化。这些我们可以在远处发送点频信号,慢慢转动天线,同时在天线接收端进行测试信号幅度,用接收的幅度画出天线的方向图,用来判断天线是否工作正常和波束宽度及主副瓣电平比等参数是否正常。 4伺服系统 伺服系统的误差应该也调到最小。使整个雷达系统运转起来比较平稳,伺服系统不能出现震荡及收敛慢状态。伺服系统调整的不好会引起天线波束指向不准确,也会引起雷达系统超前或者滞后,严重时有可能产生目标跟踪不稳而丢失目标的情况。调整伺服系统误差时误差尽量的小,同时收敛还要快,震荡要小。最好是让伺服系统的实时位置超前装订位置。 5其它系统 其它系统包括定时器、显示器、电源等也会对雷达系统误差有一定的贡献。但是这些部分对系统影响比较小,影响小并不是我们就不去关注它,像定时器我们要关注同步脉冲的宽度、幅度及脉冲的连续性,不能有漏脉冲及同步脉冲前沿抖动太大的情况出现,如果出现这种情况就是定时器有故障,要及时排除。电源纹波也是我们关注的重点,纹波的大小会影响信号质量,对于模拟信号会使底部噪声变大,影响检测小信号能力,对于数字信号会产生数据错乱现象,也就是有误码出现,所以在调试开始就要检查电源的纹波。显示画面虽然不会引起系统误差,但是会干扰操作员对目标的判断。所以我们对这些辅助设备也要检查。 6总结 综上所述,为了使雷达指示目标更加的准确,我们要将雷达的主要的战术参数和技术参数都要装订到最佳状态。即雷达的工作频率、工作带宽、调制脉冲宽度、天线的波束形状增益和扫描方式、接收机的灵敏度、发射机功率等指标都要调整到设计的规定范围内。有些重要参数可能要不定期检查,摸索其随环境温度的变化规律,在参数装订时也要将这些因素考虑进去,始终使雷达工作在最佳状态,这样才

雷达方位误差的调节方法

雷达方位误差的调节方法 众所周知,在许多的船舶导航设备中,雷达占有举足轻重的地位,尤其航行在能见度不良的情况下,通过系统的雷达了望,可以有助于我们及早地采取合理的避碰措施。工作中,你也许曾遇到过这样尴尬的问题:明明位于船首偏右的物标,在雷达上却显示在船首偏左,更有甚者,位于船首的物标却显示在船尾方向,令人真假难辨,这给船舶避让带来极大的安全隐患,严重危及船舶安全。诸如此类情况,笔者曾遇到过两次。第一次因为值班水手未经驾驶员同意擅自动用雷达,出现以上情况;另一次在修船过程中因为船厂工人的疏忽,导致雷达出现方位误差,后来公司在新加坡安排专业人员上船维修才将故障修复。出现上述情况后,要对雷达进行修正,方法其实很简单,只是大多数产品说明书中都不曾介绍,只有专业人员精通此道,笔者有幸受到该专业人员的指导,现将解决方案介绍如下,以期在遇到类似情况 时可自行解决,避免失误。 首先确定误差大小(见步骤1-3),然后再进行调节(见步骤4-5)。具体步骤分述如下: (1)按下“AZI MODE”键,打开“相对运动首向上”显示模式。 (2)在确定罗经无误差的情况下,用罗经观测某岸标(诸如锚泊船、防波堤或灯塔),假定该物标位于本轮右舷10°,同时用雷达观测该岸标,假定该物标位于本轮右舷15°。 (3)比较两舷角,得知雷达测得的舷角比罗经测得的舷角大5°,也就是说,雷达指示的 船首向比实际船首向小5°。 (4)在雷达面板右上方的小键盘中按下“MENU”键,打开位于雷达荧光屏左侧中部的菜单界面;接着依次按下“#”和“0”键,出现如图界面;选择菜单中第二项(2 BEARING), 再次展开下一级子菜单。 (5)按下“EBL”键,在雷达荧光屏将电子方位线移至此时荧光屏所显示的船首线右侧5°处,连续两次按下“SEL”键,你会发现船首线已与电子方位线重合了,表明大功告成。 (6)重复步骤(1)、(2)和(3),验证一下你的结果,如果仍然存在误差,证明你在观测物标方位的过程中出现了失误。为了避免因船首偏荡引起观测误差,建议选择在锚泊或靠泊时进行,另外应尽可能同时观测罗经方位和雷达方位。 怎么样,你学会了吗?最后提醒大家不要轻易模仿操作,以免弄巧成拙,造成不必要的麻烦。

物理实验中的测量误差与数据处理方法总结

物理实验中的测量误差与数据处理方法总结

物理实验中的测量误差与数据处理方法总结 作者:石皓昆李珩 指导教师:邓靖武 2014年4月17日

摘要:在学习物理的过程中,学习进行物理实验是不可忽略的一步。在笔者参加学校在北京大学物理实验教学中心学习的过程中,发现在实验结果处理中,应用了许多高中没有出现的方法。我们在这里对我们使用过、遇到过的方法进行总结。 关键词:基础物理实验误差分析不确定度数据处理 目录 一、引言 二、正文 1、测量误差与测量结果的不确定度 2、测量结果的书写规则 3、对测量数据进行处理的几种方法 三、结尾

一、引言:本文着重总结了测量误差与数据处理的几种方法,其中测量误差理论是重中之重。笔者认为进行一项物理实验始终与误差理论有密切的关系,不断减小测量误差即使我们进行试验时不断需要考虑的问题,亦可以帮助我们正确、有效地设计实验方案、进行实验操作、正确处理数据。 二、正文 1、测量误差与测量结果的不确定度 ①测量误差的定义 首先,需要明确测量误差的定义。当我们进行测量时,由于理论的近似性、实验仪器的局限性等,测量结果总不可能绝对准确。待测物理量的真值同我们的测量值之间总会存在某种差异。我们将测量误差定义为 测量误差=测量值-真值 ②测量误差的分类 其次,按照习惯的分类方法,根据误差的性质,误差又分为系统误差和随机误差。 ③系统误差 我们在这里讨论系统误差。系统误差指的是在相同条件下,多次测量同一物理量时,测量值对真值的偏离总是相同的误差。其造成原因大概分为三类:(1)、实验理论、计算公式的局限性(例:测量单摆周期中使用在摆角趋于0 的情况下的周期公式) (2)、仪器的使用问题 (3)、测量者的生理心理因素的影响 (4)、未定系统误差(例如仪器的允差) ④随机误差 与系统误差相对应,随机误差是由于偶然的、不确定的因素造成每一次测量值的无规律的涨落,这类误差我们称作随机误差。 随机误差的特点在于它的随机性。即如果在相同宏观条件下,对某一物理量进行多次测量,每次的测量结果都不相同。但当测量次数足够多时,我们一般认为大多数的随机误差近似符合正态分布。 不妨记随机误差为连续型随机变量x,其概率密度函数为(x) ρ。由“概率论”中对于随机变量的数字特征的定义 数学期望 ()() E x x x dx ρ +∞ -∞ =? 方差 2 D()[()]() x x E x x dx ρ +∞ -∞ =- ? 正态分布的概率密度函数 2 2 2 (x) x σ ρ- =(1.1)

测量误差及数据处理技术规范22页word文档

测量误差及数据处理技术规范 JJG 1027—1991 本技术规范对测量误差和数据处理中比较常遇到的一些问题做出统一的规定,以便正确地给出和使用测量结果。 本规范适用于测量不确定度的评定,计量器具准确度的评定,及其评定结果的表达。 本规范所研究的测量结果的方差是有限的例如,在晶振频率的误差中,由于噪声导致理论方差发散,而是非有限的*。除非特别指明,本规范所述处理方法与误差的分布无关。 一测量结果的误差评定 1 一般原理 由于存在一些不可避免对测量有影响的原因,导致测量结果中存在误差。 误差的准确值、总体标准差都是未知的,但可以通过重复条件或复现条件下的有限次数测量列的统计计算或其它非统计方法得出它们的评定值。 计算得到的误差和(或)已确定的系统误差,应尽量消除或对结果进行修正。无法修正的部分,在测量不确定度评定中作为随机误差处理。 2 测量误差的种类 测量误差是指测量结果与被测量真值之差。它既可用绝对误差表示,也可以用相对误差表示。按其出现的特点,可分为系统误差、随机误差和粗大误差。

2.1 系统误差 在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差的分量。按其变化规律可分为两类: a 固定值的系统误差。其值(包括正负号)恒定。如,采用天平称重中标准砝码误差所引起的测量误差分量。 b 随条件变化的系统误差。其值以确定的,并通常是已知的规律随某些测量条件变化。如,随温度周期变化引起的温度附加误差。 2.2 随机误差 在同一量的多次测量过程中,以不可预知方式变化的测量误差分量。它引起对同一量的测量列中各次测量结果之间的差异,常用标准差表征。对标准差以及系统误差中不可掌握的部分的估计,是测量不确定度评定的主要对象。 2.3 粗大误差 指明显超出规定条件下预期的误差。它是统计的异常值,测量结果带有的粗大误差应按一定规则剔除。 3 误差来源及分解 任何详细的误差评定报告,应包括各误差项的完整材料,其中应有评定方法的说明。 3.1 误差来源 设被测量的真值为Y0,而测量结果为Y,则绝对误差ΔY可表示为:ΔY=Y-Y0 (1.1)本条叙述由测量绝对误差ΔY分解成可以评定的误差分量ΔYk的法

测量误差及数据处理技术规范

测量误差及数据处理技术规范 JJG 1027-1991 本技术规范对测量误差和数据处理中比较常遇到得一些问题做出统一规定,以便正确地给出和使用测量结果。 本规范适用于测量不确定度的评定,计量器具准确度的评定,及其平时结果的表达。 本规范所研究的测量结果的方差是有限的,例如,在品振频率的误差中,由于噪声导致理论方差发散,而是非有限的*。除非特别指明,本规范所述处理方法与误差分布无关。 1.一般原理 由于存在一些不可避免对测量有影响的原因,导致测量结果中存在误差。 误差的准确值、总体标准差都是未知的,但可以通过重复条件或复现条件下的有限次数测量列的统计计算或其它非统计方法得出它们的评定值。 2.测量误差的种类 测量误差是指测量结果与被测量真值之差,它既可用绝对误差表示,也可以用相对误差表示。按其出现的特点,可分为系统误差、随机误差和粗大误差。 2.1系统误差 在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差的分量。按其变化可分为两类: a 固定值的系统误差。其值(包括正负号)恒定。如,采用天平称重中标准砝码误差所引起的测量误差分量。 b 随条件变化的系统误差。其值以确定的,并通常是已知的规律随某些测量条件变化。如,随温度周期变化引起的温度附加误差。 2.2随机误差 在同一被测量的多次测量过程中,以不可预知方式变化的测量误差的分量。它引起对同一量的测量列中各次测量结果之间的差异,常用标准差表征。对标准差以及系统误差中不可掌握的部分的估计,是测量不确定度评定的主要对象。 2.3粗大误差 指明显超出规定条件下预期的误差。它是统计的异常值,测量结果带有的粗大误差应该按一定规则剔除。 3.误差来源及分解 任何详细的误差评定报告,应包括各项误差的完整材料,其中应有评定方法的说明。 3.1误差来源及分解 设被测量的真值为0Y ,而测量结果为Y ,则绝对误差Y ?可表示为: 0Y Y Y -=? (1.1) 本条叙述由测量绝对误差Y ?分解成可以评定的误差分量K Y ?的法则。

测量误差及数据处理.

测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理 量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内 容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其 数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量, 提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单 位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同 等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比 较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等, 都是直

相关文档
相关文档 最新文档