文档库 最新最全的文档下载
当前位置:文档库 › 刚体的运动学与动力学问题

刚体的运动学与动力学问题

刚体的运动学与动力学问题
刚体的运动学与动力学问题

刚体的运动学与动力学问题

文/沈晨

编者按中国物理学会全国中学生物理竞赛委员会2000年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从2002年起在复赛题与决赛题中使用提要中增补的内容.为了给准备参赛的学生提供有关信息,帮助选手们尽快熟悉与掌握《竞赛提要》增补部分的物理知识,给辅导学生参赛的教师提供方便,本刊编辑部特约请特级教师沈晨老师拟对相对集中的几块新补内容划分成“刚体的运动与动力学问题”、“狭义相对论浅涉”、“波的描述和波现象”、“热力学定律”四个专题,分别介绍竞赛涉及的知识内容,例说典型问题与方法技巧,推介竞赛训练精题、名题和趣题.本刊将从本期开始连载四期,供老师们参考.

《中学物理教学参考》编辑部约请笔者就复赛和决赛中新增补的内容作专题讲座,如何进行教学,笔者自身也正在探索之中,整个资料还只是一个雏形,呈献给大家是希望与广大同行交流切磋,以及能为更多的物理人才的脱颖而出作一点微薄的努力.

一、竞赛涉及有关刚体的知识概要

1.刚体

在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征.

2.刚体的平动和转动

刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理.

3.质心质心运动定律

质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成. 质心运动定律物体受外力F作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动.

4.刚体的转动惯量J

刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即

J=miri2.

从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量.

5.描述转动状态的物理量

对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=(1/2)mv2;描述刚体定轴转动状态的物理量有:

角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω.

角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα.

角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω,各质点角动量的总和即为物体的角动量,即

L=miviri=(miri2)ω=Jω.

转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质量为mi,离转轴垂直距离为ri,则其转动动能为(1/2)mivi2=(1/2)miri2ω2,整个刚体因转动而具有的动能为所有质点的转动动能的总和,即

Ek=(1/2)(miri2)ω2=(1/2)Jω2.

6.力矩M力矩的功W冲量矩I

如同力的作用是使质点运动状态改变、产生加速度的原因一样,力矩是改变刚体转动状态、使刚体获得角加速度的原因.力的大小与力臂的乘积称为力对转轴的力矩,即

M=Fd.

类似于力的作用对位移的累积叫做功,力矩的作用对角位移的累积叫做力矩的功.恒力矩M的作用使刚体转过θ角时,力矩所做的功为力矩和角位移的乘积,即A=Mθ.

与冲量是力的作用对时间的累积相似,力矩的作用对时间的累积叫做冲量矩,冲量矩定义为力矩乘以力矩作用的时间,即I=MΔt.

7.刚体绕定轴转动的基本规律

转动定理刚体在合外力矩M的作用下,所获得的角加速度与合外力矩大小成正比,与转动惯量J成反比,即M=Jα.如同质点运动的牛顿第二定律可表述为动量形式,转动定理的角动量表述形式是

M=ΔL/Δt.

转动动能定理合外力矩对刚体所做的功等于刚体转动动能的增量,即

W=(1/2)Jω12-(1/2)Jω02.

该定理揭示了力矩作用对角位移的积累效应是改变刚体的转动动能.

角动量定理转动物体所受的冲量矩等于该物体在这段时间内角动量的增量,即

MΔt=L1-L0=Jωt-Jω0.

该定理体现了力矩作用的时间积累效应是改变刚体转动中的动量矩.

角动量守恒定律当物体所受合外力矩等于零时,物体的角动量保持不变,此即角动量守恒定律.该定律适用于物体、物体组或质点系当不受外力矩或所受合外力矩为零的情况.在运用角动量守恒定律时,要注意确定满足守恒条件的参照系.

如果将上述描述刚体的物理量及刚体的运动学与动力学规律与质点相对照(如表1所示),可以发现它们极具平移对称性,依据我们对后者的熟巧,一定可以很快把握刚体转动问题的规律.

表1

ΔΔθ

= 二、确定物体转动惯量的方法 物体的转动惯量是刚体转动状态改变的内因,求解转动刚体的动力学问题,离不开转动惯量的确定.确定刚体的转动惯量的途径通常有:

1.从转动惯量的定义来确定

对于一些质量均匀分布、形状规则的几何体,计算它们关于对称轴的转动惯量,往往从定义出发,运用微元集合法,只需要初等数学即可求得.

例1 如图1所示,正六角棱柱形状的刚体的质量为M,密度均匀,其横截面六边形边长为a.试求该棱柱体相对于它的中心对称轴的转动惯量.

图1

分析与解 这里求的是规则形状的几何体关于它的中心对称轴的转动惯量.从转动惯量的定义出发,我们可将棱柱沿截面的径向均匀分割成n(n→∞)个厚度均为(/2)·(a/n)、棱长为l的六棱柱薄壳,确定任意一个这样的薄壳对中心轴的元转动惯量Ji,然后求和即可,有

J=Ji.

图2

现在,先给出一矩形薄板关于与板的一条边平行的轴OO′的转动惯量.板的尺寸标注如图2所示,质量为m且均匀分布,轴OO′与板的距离为h,沿长为b的边将板无限切分成n条长为l、宽为b/n的窄条,则有

J板=lim(m/bl)·(b/n)·l[h2+(ib/n)2]

=m[(h2/n)+(i2/n3)b2]

=m(h2+(b2/3)).

回到先前的六棱柱薄壳元上,如图1所示,由对称性可知其中第i个薄壳元的hi=ia/2n,b=ia/2n.薄壳元对轴OO′的转动惯量是12J板,即

Ji=12ρl(a/2n)(ia/2n)[(ia/2n)2+(1/3)(ia/2n)2].式中,ρ是六棱柱体的密度,即

ρ=M/6×(1/2)·a2·(/2)l=2M/3a2l.

则六棱柱体对中心对称轴OO′的转动惯量为

J=12ρl·(a/n)·(/2)·(ia/2n)[((ia/n)·(/2))2+(1/3)(ia/2n)]

=12ρl·(a4/4)·(i3/n4)·[3/4+1/12]

=(5Ma2/3)i3/n4

=(5Ma2/3)(1/n4)(13+23+…+n3)

=(5Ma2/3)(1/n4)·(n2(n+1)2/4)

=5Ma2/12.

2.借助于平行轴定理

在刚体绕某点转动时,需对过该点的轴求转动惯量,借助于平行轴定理,可以解决这样的问题:已知刚体对过质心的轴的转动惯量,如何求对不通过质心但平行于过质心转轴的轴的转动惯量.

平行轴定理:设任意物体绕某固定轴O的转动惯量为J,绕过质心而平行于轴O的转动惯量为JC,则有J=JC+Md2,式中d为两轴之间的距离,M为物体的质量.

图3

证明:如图3所示,C为过刚体质心并与纸面垂直的轴,O为与它平行的另一轴,两轴相距为d,在与轴垂直的平面内以质心C为原点,过CO的直线为x轴,建立xCy坐标系.Mi代表刚体上任一微元的质量,它与轴C及轴O的距离依次为Ri和ri,微元与质心连线与x轴方向的夹角为θi,由转动惯量的定义知,刚体对轴O的转动惯量应为

J=miri2

=mi(Ri2+d2-2dRicosθ)

=miRi2+mid2-2dmiRicosθi.

上式中第一项即为刚体对质心C的转动惯量JC;第二项J=mid2=d2mi=Md2,M是

刚体的总质量;而第三项中miRicosθi=mixi,xi是质量元在xCy平面坐标系内的x坐标,按质心的定义,有

mixi=0,所以J=JC+Md2.

在上述例1中,我们已求得正六棱柱关于其中心轴的转动惯量,利用平行轴定理,我们还可求得六棱柱相对于棱边的转动惯量为

J′=(5/12)Ma2+Ma2=(17/12)Ma2.

3.运用垂直轴定理

对任意的刚体,任取直角三维坐标系Oxyz,刚体对x、y、z轴的转动惯量分别为Jx、Jy、

Jz,可以证明Jx+Jy+Jz=2miri2,ri是质元到坐标原点的距离.

图4

证明:如图4所示,质元mi的坐标是xi、yi、zi,显然,ri2=xi2+yi2+zi2.而刚体对x、y、z轴的转动惯量依次为

Jx=mi(yi2+zi2),Jy=(xi2+zi2),

Jz=mi(xi2+yi2).

则Jx+Jy+Jz=2mi(xi2+yi2+zi2)=2miri2.

这个结论就是转动惯量的垂直轴定理,或称正交轴定理.这个定理本身及其推导方法对转动惯量求解很有指导意义.

例2从一个均匀薄片剪出一个如图5所示的对称的等臂星.此星对C轴的转动惯量为J.求该星对C1轴的转动惯量.C和C1轴都位于图示的平面中,R和r都可看做是已知量.

图5

分析与解设星形薄片上任意一质元到过中心O而与星平面垂直的轴O距离为ri,则星对该轴的转

动惯量为miri2=JO,由于对称性,星对C轴及同平面内与C轴垂直的D轴的转动惯量相等,均为已知量J;同样,星对C1轴及同平面内与C1轴垂直的D1轴的转动惯量亦相等,设为J1,等同于垂直轴定理的推导,则

JC+JD=2J=JO,JC1+JD1=2J1=JO,

于是有2J=2J1,即J1=J.

4.巧用量纲分析法

根据转动惯量的定义J=miri2,其量纲应为[ML2],转动惯量的表达式常表现为kma2形式,m是刚体的质量,a是刚体相应的几何长度,只要确定待定系数k,转动惯量问题便迎刃而解. 例3如图6甲所示,求均匀薄方板对过其中心O且与x轴形成α角的轴C的转动惯量.

图6

分析与解如图6(甲所示为待求其转动惯量的正方形薄板,设其边长为l,总质量为M,对C轴的转动惯量为J=kMl2,过中心O将板对称分割成四个相同的小正方形,各小正方形对过各自质心且平行于C的轴的转动惯量为

(kM/4)·(l/2)2=kMl2/16.

如图6乙所示,小正方形的轴与C轴距离为D或d,由平行轴定理,它们对C轴的转动惯量应分别为(kMl2/16)+(M/4)D2(两个质心与C轴距离为D的小正方形)或(kMl2/16)+(M/4)d2(两个质心与C轴距离为d的小正方形),则有下列等式成立,即

kMl2=2((kMl2/16)+(M/4)D2)+2((kMl2/16)+(M/4)D2).

整理可得(3/2)kl2=(D2+d2).

而由几何关系,可得D=(l/2)·(/2)sin(π/4+α),

d=(l/2)·(/2)sin(π/4-α),

故有(3/2)kl2=(l2/8)[sin2(π/4+α)+sin2(π/4-α)],

则k=1/12.

于是求得正方形木板对过其中心O的轴的转动惯量为J=(1/12)Ml2,且与角α无关.

5.一些规则几何体的转动惯量

一些规则几何体的转动惯量如表2所示.

表2

三、刚体运动问题例析

根据今年将实行的CPhO新提要,刚体运动问题应该要求运用质心运动定理、角动量定理及角动量守恒定律等刚体基本运动规律来求解刚体转动的动力学与运动学问题.下面就此展示四个例题.

例4在平行的水平轨道上有一个缠着绳子且质量均匀的滚轮,绳子的末端固定着一个重锤.开始时,滚轮被按住,滚轮与重锤系统保持静止.在某一瞬间,放开滚轮.过一定的时间后,滚轮轴得到了固定的加速度a,如图7甲所示.假定滚轮没有滑动,绳子的质量可以忽略.试确定:

(1)重锤的质量m和滚轮的质量M之比;

(2)滚轮对平面的最小动摩擦因数.

图7

分析与解与处理质点的动力学问题一样,处理刚体转动的力学问题,要清楚了解力矩与转动惯量对刚体运动的制约关系.

(1)当滚轮轴亦即滚轮质心纯滚动而达到恒定的加速度a时,其角加速度为α=a/R,R为滚轮的半径.滚轮可看做质量均匀的圆盘,其关于质心的转动惯量为(1/2)MR2,分析滚轮受力情况如图7乙所示,可知以轮与水平轨道的接触点C为瞬时转动轴考察将比较方便,因为接触点处的力对刚体的这种转动不产生影响.关于C轴,对滚轮形成转动力矩的只有绳子上的张力T,张力T可以通过重锤的运动来确定:相对于接触点C,滚轮的质心的水平加速度为a,重锤相对滚轮质心的线加速度也为a,且方向应沿绳子向下,这两个加速度是由重锤所受到的重力与绳子拉力提供的,重锤的加速度为这两个加速度的矢量和.由牛顿第二定理,有

mgtanθ=ma,(mg/cosθ)-T′=ma,

则T=T′=m-ma.

再研究滚轮,注意到C点到张力T的作用线之距离的几何尺寸,滚轮对C轴的转动惯量可用平行轴定理转换为(3/2)MR2,对滚轮运用转动定律,有

(m-ma)(1-(a/))R=(3/2)MR2·(a/R).

解之得m/M=3a/2(-a)2.

(2)对滚轮应用质心运动定理,滚轮质心加速度为a,方向水平,则应有

f-Tsinθ=Ma,N-Tcosθ=Mg,

其中sinθ=a/,cosθ=g/,

那么,动摩擦因数满足μ≥f/N=a/g.

在上面解答中,确定滚轮与重锤的相关加速度是本题的“题眼”所在.

例5如图8甲所示,在光滑地面上静止地放置着两根质量均为m,长度均为l的均匀细杆,其中一杆由相等的两段构成,中间用光滑的铰链连接起来,两段在连接点可以弯折但不能分离.在两杆的一端,各施以相同的垂直于杆的水平冲量I.试求两细杆所获得的动能之比.

图8

分析与解本题的求解方向是通过质心的动量定理与刚体的角动量定理,求得杆的质心速度及绕质心的角速度,进而求出杆由于这两个速度所具有的动能.

如图8乙所示,设杆1在冲量I作用下,质心获得的速度为vC,杆的角速度为ω,由质心的动量定理,得

I=mvC,

由刚体的角动量定理,得I·l/2=Jω=(1/12)ml2ω.

则杆1的动能为Ek1=(1/2)mvc2+(1/2)Jω2

=(1/2)m(I/m)2+(1/2)J(Il/2J)2

=(I2/2m)+(3I2/2m)=2I2/m.

如图8丙所示为杆2的左、右两段受力情况,当在杆2左端作用冲量I时,在两段连接处,有一对相互作用的冲量I1与I1′,它们大小相等,方向相反.由于两段受力情况不同,各段的质心速度及角速度均不同,但在连接处,注意到“不分离”的条件,左段的右端与右段的左端具有相同的速度.现对两段分别运用动量定理和角动量定理,对杆2左段,有

I-I1=(m/2)vC1,(I+I1)·(l/4)=(ml2/96)ω1,

对杆2右段,有

I1′=(m/2)vC2,I1′·l/4=(ml2/96)ω2.

由连接处“不分离”条件得左、右两段的速度与角速度的关系是

vC1-ω1·(l/4)=ω2·(l/4)+vC2,

由以上各式,可得

ω1=18I/ml,ω2=-6I/ml,vC1=5I/2m,vC2=I/2m,

于是可计算杆2的动能为

Ek2=(1/2)·(m/2)(vC12+vC22)+(1/2)·(J/2)(ω12+ω22) =7I2/2m.

易得1、2两杆的动能之比为E1∶E2=4∶7.

本题求解中,抓住杆2左、右两段连接处速度相同的相关关系,全盘皆活.

例6形状适宜的金属丝衣架能在如图9所示的平面里的几个平衡位置附近做小振幅摆动.在位置

甲和位置乙里,长边是水平的,其它两边等长.三种情况下的振动周期都相等.试问衣架的质心位于何处?摆动周期是多少?(第13届IPhO试题)

图9

图10

分析与解本题涉及刚体做简谐运动的问题,即复摆的运动规律.一个在重力作用下绕水平轴在竖直面内做小角度摆动的刚体称为复摆或物理摆.我们先来推导复摆的周期公式.如图10所示,设O为转轴(悬点),质心C与转轴距离(等效摆长)为l,质量为m,对转轴的转动惯量为J,最大偏角θ<5°.由机械能守恒定律,可得

mgl(1-cosθ)=(1/2)Jω′2.①

ω′是刚体的质心通过平衡位置时的角速度.对摆长l、质量m的理想单摆而言,有

mgl(1-cosθ)=(1/2)mv2=(1/2)m(lω)2=(1/2)m(Aω0)2.②②式中ω0是摆球(质点)通过平衡位置时的角速度,A是振幅(A=l),ω0是摆球振动的圆频率.可知

ω0=.

将①式变形为

mgl(1-cosθ)=(1/2)Jω′2=(1/2)m(l·ω′)2 =(1/2)m(Aω0′)2,

比较②式,即对复摆与单摆作等效变换,可得复摆小幅振动(亦为谐振)的圆频率为

ω0′=ω0=,

那么复摆的周期公式为T=2π.

图11

由题设条件确定衣架的质心位置及转动惯量,依据复摆周期公式,即可确定三种情况下相同的摆动周期T.如图11所示,质心O到转轴A、B、C的距离设为a、b、c,由图9甲所示衣架的平衡位置可知,质心O必在衣架长边的中垂线AB上,在三种情况下衣架对转轴A、B、C的转动惯量依次为

JA=JO+ma2,JB=JO+mb2,JC=JO+mc2.

式中JO为所设衣架对质心O的转动惯量,m是衣架总质量.因为三种情况下的周期相同,故有

(JO+ma2)/mga=(JO+mc2)/mgc,

即(JO-mac)(c-a)=0,

显然c≠a,则可知JO=mac;

又有(JO+ma2)/mga=(JO+mb2)/mgb,

即(JO-mab)(b-a)=0,

此式中因c>b,故(JO-mab)≠0,

则必有a=b,即质心位于AB之中点.衣架周期为

T=2π=2π.

根据图9标注的尺寸可知

a=5cm,c=cm≈21.6cm,

代入后得T≈1.03s.

本题是国际物理奥林匹克的一道赛题,题意简洁,解答方法也很多,笔者给出的这种解法应该说比较严密且巧妙.

最后,我们再尝试解答另外一道比较繁难的国际物理奥林匹克竞赛试题,该题涉及动量矩守恒定律的运用.

例7如图12所示,一个质量为m,半径为RA的均匀圆盘A在光滑水平面xOy内以速度v沿x轴方向平动,圆盘中心至x轴的垂直距离为b.圆盘A与另一静止的、其中心位于坐标原点O的均匀圆盘B相碰.圆盘B的质量与A相同,半径为RB.假定碰撞后两圆盘接触处的切向速度分量(垂直于连心线方向的速度)相等,并假设碰撞前后两圆盘沿连心线方向的相对速度大小不变.在发生碰撞的情况下,试求:

(1)碰后两圆盘质心速度的x分量和y分量,结果要以给定的参量m、RA、RB、v和b表示;

(2)碰后两圆盘的动能,结果要以给定的参量m、RA、RB、v和b表示.(第24届IPhO试题)

分析与解(1)本题情景是质量相同的运动圆盘A与静止圆盘B在水平面上发生非弹性斜碰.碰撞前后,质心动量守恒——系统不受外力;对O点的角动量守恒——外力冲量矩为零;动能不守恒——碰撞后两圆盘接触处的切向速度分量相等,必有摩擦力存在,动能有损失.本题给出诸多的附加条件,除了根据动量守恒与角动量守恒列出基本方程外,还必须根据附加条件给出足够的补充方程,并适当选用速度分量,方可最终得解.

图12 图13

如图13所示,设碰撞时两盘质心连线与x轴成θ角,由几何关系可知

b=(RA+RB)sinθ.

对系统,在法向与切向动量均守恒,即

mvsinθ=mvAt+mvBt,

mvcosθ=mvAn+mvBn,

式中,vAt、vBt、vAn、vBn是A、B盘碰撞后沿切向与径向的质心速度;系统对O点的角动量守恒即

mvb=JAωA+mvAt(RA+RB)+JBωB,

该式中,JA=(1/2)mRA2,JB=(1/2)mRB2,ωA、ωB为两盘碰撞后的角速度(待定).注意碰撞后A盘既有转动又有平动,对O点的角动量由两部分组成,而B盘质心在O点,故角动量仅为JBωB.上述三个方程涉及六个未知量,需列出补充方程.根据两盘接触处切向速度相同有

vAt-ωARA=vBt+ωBRB,

根据两盘法向相对速度不变有

vcosθ=vBn-vAn.

对B盘,由动量定理和角动量定理,摩擦力f的作用是

f·Δt=mvBt,f·RB·Δt=JBωB,

即mvBtRB=JBωB.

由上述六个方程,解得

ωA=vsinθ/3RA,ωB=vsinθ/3RB,

vAt=(5/6)vsinθ,ωBt=(1/6)vsinθ,

vAn=0,vBn=vcosθ.

碰后两盘的质心速度的x分量分别为

vAx=vAtsinθ+vAncosθ=(5/6)vsin2θ,

vBx=vBtsinθ+vBncosθ=(1/6)vsin2θ+vcos2θ,

碰后两盘的质心速度的y分量分别为

vAy=vAtcosθ-vAnsinθ=(5/6)vsinθcosθ,

vBy=vBtcosθ-vBnsinθ=-(5/6)vsinθcosθ,

其中sinθ=b/(RA+RB),cosθ=/(RA+RB).

(2)各圆盘的动能是各盘质心平动动能与圆盘转动动能之和,这里不再赘述,答案是

EA=3mv2b2/8(RA+RB),EB=(1/2)mv2(1-(11b2/12(RA+RB)2)). 四、CPhO竞赛训练题

1.如图14所示,质量为m的均匀圆柱体的截面半径为R,长为2R.试求圆柱体绕通过质心及两底面边缘的转轴(如图中的Z1、Z2轴)的转动惯量J.

图14 图15

2.如图15所示,匀质立方体的边长为a,质量为m.试求该立方体绕对角线轴PQ的转动惯量J. 3.椭圆细环的半长轴为A,半短轴为B,质量为m(未必匀质),已知该环绕长轴的转动惯量为JA,试求该环绕短轴的转动惯量JB.

4.在一根固定的、竖直的螺杆上有一个螺帽,螺距为s,螺帽的转动惯量为J,质量为m.假定

螺帽与螺杆间的动摩擦因数为零,螺帽以初速度v0向下移动,螺帽竖直移动的速度与时间有什么关系?这是什么样的运动?重力加速度为g.

5.如图16所示,两个质量和半径均相同的实心圆柱轮,它们的质心轴互相平行,并用一轻杆相连,轴与轴承间的摩擦忽略不计.两轮先以共同的初速度v0沿水平方向运动,两轮的初角速度为零,如图16甲所示.然后同时轻轻地与地面相接触,如图16乙所示,设两轮与地面之间的动摩擦因数分别为μ1和μ2(μ1>μ2).试求两轮均变为纯滚动所需的时间及纯滚动后的平动速度大小.

图16 图17

6.如图17所示,光滑水平地面上静止地放着质量为M、长为l的均匀细杆.质量为m的质点以垂直于杆的水平初速度v0与杆的一端发生完全非弹性碰撞.试求:(1)碰后系统质心的速度及绕质心的角速度;(2)实际的转轴(即静止点)位于何处?

7.如图18所示,实心圆柱体从高度为h的斜坡上由静止做纯滚动到达水平地面上,且继续做纯滚动,与光滑竖直墙发生完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡.设地面与圆柱体之间的动摩擦因数为μ,试求圆柱体爬坡所能达到的高度h′.

图18 图19

8.如图19所示,半径为R的乒乓球绕质心轴的转动惯量为J=(2/3)mR2,m为乒乓球的质量.乒乓球以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为vC0,初角速度为ω0,两者的方向如图18所示.已知乒乓球与地面间的动摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.

9.一个均匀的薄方板的质量为M,边长为a,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在方板所在的竖直平面内摆动.在通过板的固定点的对角线上距固定点的什么位置(除去转动轴处之外),粘上一个质量为m的质点,板的运动不会发生变化?已知对穿过板中心而垂直于板的轴,方板的转动惯量为J=(1/6)Ma2.

图20

10.如图20所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M,密度均匀.横截面呈六边形且每边长为a.六角棱柱相对于它的中心轴的转动惯量为J=(5/12)Ma2,相对于棱边的转动惯量是J′=(17/12)Ma2.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为ωi,碰后瞬间角速度为ωf,在碰撞前后瞬间的动能记为Eki和Ekf,试证明:ωf=sωi,Ekf=rEki,并求出系数s和r的值.(第29届IPhO试题)

五、训练题简答

图21 图22

1.解:如图21所示,对图所示的Z1、Z2、Z坐标系与Z3、Z4、Z坐标系运用正交轴定理,有 J1+J2+J5=J3+J4+J5,

J3=(1/2)mR2,J4=(7/12)mR2,J1=J2,

则J1=J2=(13/24)mR2.

2.解:将立方体等分为边长为a/2的八个小立方体,依照本文例3分析法用量纲求解,有

kma2=2·k(m/8)(a/2)2+6·[k(m/8)(a/2)2

+(m/8)(a/)2],

则k=1/6,J=(1/6)ma2.

3.解:由正交轴定理JA+JB=mi(xi2+yi2)及椭圆方程(x2/A2)+(y2/B2)=1,得

JB=mA2-(A2/B2)JA.

4.解:由机械能守恒,得

mgs=(1/2)J(ωt2-ω02)+(1/2)m(vt2-v02),

又ωt/vt=ω0/v0=2π/s,

可得vt2-v02=2m/((4π2J/s2)+m)g=2g′s.

故螺帽沿螺杆竖直向下做匀加速直线运动,有

vt=v0+g′t,g′=m/((4π2J/s2)+m).

5.解:两轮相对于地面动量守恒,因为μ1>μ2,轮1先做纯滚动,轮2做纯滚动所需时间为t,则系统从触地到均做纯滚动时对地面角动量守恒,得

2mv0R=2mvtR+2·(1/2)mR2ω,

又vt=ωR,解得

vt=(2/3)v0,ω=2v0/3R,t=ω/α2=ωR/2μ2g=v0/3μ2g.

6.解:碰后系统质心位置从杆中点右移为

Δx=(m/(M+m))·(l/2).

由质心的动量守恒,求得质心速度为

vC=(m/(M+m))v0.

由角动量守恒并考虑质心速度与角速度关系,求得瞬时轴在杆中心左侧x=l/6处,ω=6mv0/(M+4m)l.

7.解:纯滚动时,无机械能损失,v=Rω.非纯滚动时,运用动量定理及角动量定理,求上坡前的质心速度及角速度,根据机械能守恒即可求得.h′=h/9.

8.解:乒乓球与地接触点O即滚动又滑动且达到纯滚动时,由角动量守恒,得

mRvC0-Jω0=mRvC+Jω,

即vC0-vC=(2/3)R(ω0+ω),

达到纯滚动时,有vC=Rω,

可得到纯滚时质心速度为vC=(3/5)vC0-(2/3)Rω0.

其中,若vC0>(2/3)Rω0,纯滚动后,球向右顺时针方向做纯滚动;vC0<(2/3)Rω0,则纯滚

动后,球向左逆时针方向做纯滚动.

质心做匀加速运动,达到纯滚时间设为t,由vC=vC0-μgt,可得

t=2(vC0+Rω0)/5μg.

9.解:原薄方板对悬点的转动惯量J0=(2/3)Ma2,粘上质量为m的质点后有J=(2/3)Ma2+m·x2.振动周期相同,应有

J0/Mgl=J/(M+m)gl′,

l′=(mx+Ml)/(M+m),l=(/2)a,

解得x=(2/3)a.

10.解:设以某棱为轴转动时间Δt,此碰撞瞬间前后的角速度分别为ωi、ωf,时间短,忽略重力冲量及冲量矩,知矢量关系如图23所示.

图23

对质心有NΔt=Ma(ωf-ωi)sin30°,

-fΔt=Ma(ωf-ωi)cos30°,

对刚体有

fΔtacos30°-NΔtasin30°=(5/12)Ma2(ωf-ωi).

解得ωf=(11/17)ωi,s=11/17,r=s2=121/289.

ANSYS刚体运动学分析详解

刚体运动学分析 一、前处理 1.创建分析项目 双击主界面Toolbox中的Analysis System>Rigid Dynamics(刚体动力学)选项,在项目管理区创建分析项目A,如图所示。 2.定义材料数据 1)双击项目A中的A2栏Engineering Data项,进入材料参数设置界面,在该界面下即可进行材料参数设置。 2)根据实际工程材料的特性,在Properties of Outline Row 2: Structure Steel表中可以修改材料的特性。 3)关闭A2:Engineering Data,返回到Workbench主界面,材料库添加完毕。 3.添加几何模型 1)在A2栏的Geometry上单击鼠标右键,在弹出的快捷菜单中选择Import Geometry>Browse,此时会弹出“打开”对话框。 2)在弹出的对话框中选择文件路径,导入chap16几何体文件,此时A2栏Geometry后的?变为√,表示实体模型已经存在。 3)单击DM(DesignModeler)界面右上角的“关闭”按钮退出DM,返回到Workbench主界面。 4. 定义零件行为 1)双击主界面项目管理区项目A中的A3栏Model项,进入Mechanical界面,在该界面下即可进行网格的划分、分析设置、结果查看等操作。

2)选择Mechanical界面左侧Outline树结构图中Geometry选项下的所有Solid,在Details of “Solid”中确保所有的Solid对象的Stiffness Behavior(刚度特性)均为Rigid(刚性),如图所示。 5.设置连接 1)查看是否生成了Contact接触,如存在,则全部删除,如图所示。 2)选择Mechanical界面左侧Outline树结构图中的Connections对象,然后在工具箱中选择Body-Ground>Revolute,此时树结构图中出现Revolute对象。 3)设置Revolute对象的细节窗口如图所示,然后单击选择左边实体底部的孔,并在细节窗口中的Scope中单击Apply按钮。 4)按照上面的方法,继续添加Revolute对象。设置Revolute对象的细节窗口如图所示。然后单击选择右边实体底部的孔,并在细节窗口中的Scope中单击Apply按钮。

刚体的运动学与动力学问题

刚体的运动学与动力学问题 编者按中国物理学会全国中学生物理竞赛委员会2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从 2002 年起在复赛题与决赛题中使用提要中增补的内容. 一、竞赛涉及有关刚体的知识概要 1. 刚体 在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征. 2 . 刚体的平动和转动 刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就

是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理. 3. 质心质心运动定律 质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成. 质心运动定律物体受外力 F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动. 4 . 刚体的转动惯量J

汽车动力学试题及答案

《汽车动力学》试题 一、 名词解释(每题3分) 1. 回正力矩 答:在轮胎发生侧偏时,产生作用于轮胎绕OZ 轴(轮胎坐标系)的力矩,即为回正力矩。 2. 轮胎侧偏现象 答:当车轮有侧向弹性时,即使侧向力没有达到附着极限,车轮行驶方向亦将偏离车轮平面,这就是轮胎的侧偏现象。 3. 同步附着系数 答:对于前后制动器制动力为固定比值的汽车,车辆制动时使得车辆前后轮同时抱死的路面附着系数即为同步附着系数。(或采用β线与I 线交点说明也可以,但是必须交代β线与I 线的具体含义) 4. 旋转质量换算系数 答:汽车的质量分为平移质量和旋转质量两部分。汽车加速时,不仅平移质量产生惯性力,旋转质量也要产生惯性力偶矩。为了便于计算,一般把旋转质量的惯性力偶矩转化为平移质量的惯性力,对于固定传动比的汽车,常以常数δ作为计入旋转质量惯性力偶矩后的汽车旋转质量换算系数。 5. 理想的制动力分配特性 答:汽车制动时,前、后车轮同时抱死时前、后轮制动器制动力的分配特性。 二、 简答题(每题5分) 1. 汽车的驱动附着条件是什么? 答:汽车驱动条件:t F F ≥阻;汽车附着条件:1,21,2X Z F F ?≤;上式中,t F 表示驱动力,F 阻表示行驶阻力,1,2X F 表示作用在驱动轮上的转矩引起的地面切向反作用力,1,2Z F 表 示驱动轮法向反作用力(亦可以直接指定驱动轮后进行描述),?为附着系数。 2. 汽车制动性能主要由哪几个方面评价? 答:主要由以下三个方面评价:1)制动效能,及制动距离与制动减速度;2)制动效能的恒定性,即抗热衰退性能。3)制动时汽车的方向稳定性,即制动时汽车不发生跑偏、侧滑以及市区专项能力的性能。 3. 汽车制动跑偏的原因主要有哪些? 答:制动时汽车跑偏的原因有两个:1)汽车左、右车轮,特别是前轴左、右车轮(转向轮)制动器的制动力不相等。2)制动时悬架导向杆与转向系在运动学上的不协调(互相干涉)。 4. 汽车的稳态转向特性有几种类型?实际的汽车应具有哪种稳态转向特性,简述理由。 答:汽车的稳态转向特性分为三种类型:不足转向、中性转向和过多转向。实际汽车应具有不足转向的特性,由于不足转向时汽车的转向半径增大,这有利于汽车的操纵稳定性。 5. 汽车转向轮摆振有哪两种类型?如何加以区分? 答:汽车转向轮的摆振类型主要有两种:强迫振动类型和自激振动类型。区别二者可以从摆振自身特点加以判断:1)当车轮发生强迫振动类型的摆阵时,必然存在周期性的外界激励持续作用,如车轮不平衡。在波形路面上的陀螺力矩、悬架与转向系运动不协调等,系统的振动频率与激励频率一致,摆振明显发生在共振区域,而共振车速范围较窄;激励的存在于振动体运动无关;2)当转向轮发生自激振动形式的摆振时,系统无

大学物理练习题运动学动力学答案

练习题1:质点运动学和动力学 一、判断题(每题2分,共20分) 1.物体做匀速圆周运动,由于速率大小不变,所以加速度为零。(×) 2.质点的位置矢量方向不变,质点一定作直线运动。(√) 3. 物体匀速率运动,加速度必定为零。( × ) 4. 对于一个运动的质点,具有恒定速率,但可能有变化的速度。( √ ) 5. 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。( √ ) 6.质点运动经一闭合路径,保守力对质点作的功为零。(√) 7.一个系统如果只受到保守内力的作用,此系统机械能守恒。(√) 8.质量为 M 的木块静止在光滑水平面上,一质量为 m的子弹水平地射入木块后又穿出木块,则在子弹射穿木块的过程中,子弹和木块组成的系统动量守恒。(√) 9. 子弹分别打在固定的软和硬的两块木块内,则木块受到的冲量相同,但硬木块的平均作用力大。(√) 10. 一对内力作功之和必为零。(×) 二、选择题(每题2分,共20分) 1.当物体的加速度不为零时,则:( B ) (A)对该物体必须做功;(B)对该物体必须施力,且合力不会为零; (C)它的速率必然增大;(D)它的动能必然增大。 2. 质点在O?xy平面内运动,其运动方程为r?=2ti?+(4?t2)j? (SI),则当t=2S时,质点的速度是 ( A )

(A) (2i ??4j ?)m s ? (B) (?2i ?)m s ? (C) (?4j ?)m s ? (D) (2i ?+4j ?)m s ? 3、下列几种运动形式,哪一种运动是加速度矢量a ??保持不变的运动?( C )。 A 、单摆运动; B 、匀速度圆周运动; C 、抛体运动; D 、以上三种运动都是a ??保持不变的运动。 4. 一个质点在做圆周运动时,则有( B ) (A) 切向加速度一定改变,法向加速度也改变; (B) 切向加速度可能不变,法向加速度一定改变; (C) 切向加速度可能不变,法向加速度不变; (D) 切向加速度一定改变,法向加速度不变。 5. 质点作半径为R 的变速圆周运动的加速度大小为( D ) (A)/dv dt (B)2/v r (C)2//dv dt v r + (D) 6. 质点系统不受外力作用的非弹性碰撞过程中 ( C ) (A) 动能和动量都守恒; (B) 动能和动量都不守恒; (C) 动能不守恒,动量守恒; (D) 动能守恒,动量不守恒。 7. 质点的内力可以改变 ( C ) (A) 系统的总质量; (B) 系统的总动量; (C) 系统的总动能; (D) 系统的总角动量。 8. 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则 ( B ) (A) 它的加速度方向永远指向圆心,其速率保持不变; (B) 它受到的轨道的作用力的大小不断增加; (C) 它受到的合外力大小变化,方向永远指向圆心;

第十三讲刚体的运动和动力学问题

第十三讲 刚体的运动学与动力学问题 一 竞赛内容提要 1、刚体;2、刚体的平动和转动;3、刚体的角速度和角加速度;4、刚体 的转动惯量和转动动能;5、质点、质点系和刚体的角动量;6、转动定理和角动量定理;7、角动量守恒定律。 二 竞赛扩充的内容 1、刚体:在外力的作用下不计形变的物体叫刚体。刚体的基本运动包括刚体的平动和刚体绕定轴的转动,刚体的任何复杂运动均可由这两种基本运动组合而成。 2、刚体的平动;刚体的平动指刚体内任一直线在运动中始终保持平行,刚体上任意两点运动的位移、速度和加速度始终相同。 3、刚体绕定轴的转动;刚体绕定轴的转动指刚体绕某一固定轴的转动,刚体上各点都在与转轴垂直的平面内做圆周运动,各点做圆周运动的角位移Φ、角速度ω和角加速度β相同(可与运动 学的s 、v 、a 进行类比)。且有:ω=t t ??Φ→?lim 0;β=t t ??→?ωlim 0。当β为常量时,刚体做匀加 速转动,类似于匀加速运动,此时有:ω=ω0+βt ; Φ=Φ0+ω0t+βt 2/2; ω2-ω02=2β(Φ-Φ0)。式中,Φ0、ω0分别是初始时刻的角位移和角速度。对于绕定轴运动的刚体上某点的运动情况,有:v=ωR , a τ=βR , a n =ω2R=v 2/R, 式中,R 是该点到轴的距离,a τ、a n 分别是切向加速度和法向加速度。 例1 有一车轮绕轮心以角速度ω匀速转动,轮上有一小虫自轮心沿一根辐条向外以初速度v 0、 加速度a 作匀加速爬行,求小虫运动的轨迹方程。 例2 一飞轮作定轴转动,其转过的角度θ和时间t 的关系式为:θ=at+bt 2-ct 3,式中,a 、b 、c 都是恒量,试求飞轮角加速度的表示式及距转轴r 处的切向加速度和法向加速度。 例3 如图所示,顶杆AB 可在竖直槽K 内滑动,其下端由凸轮K 推动,凸轮 绕O 轴以匀角速度ω转动,在图示瞬间,OA=r ,凸轮轮缘与A 接触处,法线n 与OA 之间的夹角为α,试求此瞬时顶杆OA 的速度。

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

第二章 质点动力学 南京大学出版社 习题解答

第二章 习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ 2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2 的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。 解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律: f 1 N 1 m 1 g T a F N 2 m 2g T a N 1 f 1 f 2 T' T'

运动学静力学动力学测试题库(学生)

运动学、静力学、动力学测试题 总分100分 时间3小时 一、如图所示,一质量为M 的木块放在光滑水平面上,另一质量为m 的物体自斜面顶端无摩擦的下滑,设斜面的倾角θ已知。求 (1)下滑过程中m 对M 所施的正压力。 (2)下滑过程中,A 、B 各自的加速度为多少? (3)斜面长为L ,m 从顶端下滑到底端所用的时间。此时M 的速度。 2、如图,大炮向小山上开火,此山的山坡与地平线的夹角为α,求发射角β为多大时炮弹沿山坡射得最远。(已知炮弹发射速率为定值) 图

3、合理估计出如图所示沙漏中沙子全部流下所需要的时间。使用现实生活中的数据解释为 什么沙漏在英文中称之为“egg-timer”。提示:量纲分析,近似求解。 4、曲柄OA=r以等角速度ω绕定点O转动。此曲柄借助连杆AB使滑块B沿直线Ox运动, 求连杆上C点的轨迹方程及速度,设AC=BC=a,∠AOB=?,∠ABO=β。 x

5、设平面曲线上某点P 的加速度方向与曲率圆上弦PB 重合,已知PB=L ,P 点速度为v 0,试求P 点的加速度。 6、如图所示,有一固定的、半径为a 、内壁光滑的半球形碗(碗口处于水平位置),O 为球心。碗内搁置一质量为m 、边长为a 的等边三角形均 匀薄板ABC 。板的顶点A 位于碗内最低点,碗的最低 点处对A 有某种约束使顶点 A 不能滑动(板只能绕 A 点转动)。 1、当三角形薄板达到平衡时,求出碗对顶点 A 、 B 、 C 的作用力的大小各为多少 2、当板处于上述平衡状态时,若解除对 A 点的 约束,让它能在碗的内表面上从静止开始自由滑动, 求此后三角形薄板可能具有的最大动能.

更高更妙的物理:专题14 刚体的运动学与动力学问题

专题14 刚体的运动学与动力学问题 一、刚体知识概要 1、刚体 在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体。刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征。 2、刚体的平劝和转动 刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同,这种运动称为平动。研究刚体的平动时,可选取刚体上任意一个质点为研究对象。刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动称为转动,而所绕的直线便称为转轴。若转轴是固定不动的,刚体的运动就是定轴转动。刚体的任何一个复杂运动总可视作平动与转动的叠加,刚体的运动同样遵从运动的独立性原理。 3、质心 质心运动定理 质心 这是一个等效意义的概念:即对任何一个刚体(或质点系),总可以找到一点C ,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在C 点的运动情况,刚体(或质点系)所受外力也全部作用在C 点时,这个点被称为质心。当外力的作用线通过刚体的质心时,刚体仅做平动,当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成。 质心运动定理 物体受外力F 作用时,其质心的加速度为C a ,则必有C F ma =,这就是质心运动定理。该定理表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此时应有的运动。 4、转动惯量J 转动惯量是物体在转动中惯性大小的量度,它等于刚体中每个质点的质量i m 与该质点到转轴的距离i r 的平方的乘积的总和,即 21 lim n i i n i J m r →∞ ==∑ 从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况。在中学数学知识层面上,我们可以用微元法求一些质量均匀分布的几何体的转动惯量。 5、描述转动状态的物理量 对应于平动状态参量的速度v 、加速度a 、动量p mv =、动能 2 12 k E mv = ,描述刚体定轴转动状态的物理量有: 角速度ω 角速度的定义为0lim t t θ ω?→?=?。在垂直于转轴、离转轴距离r 处的线速度和 角速度之间的关系为v r ω=。 角加速度β 角加速度的定义为0lim t t ω β?→?=?。在垂直于转轴、离转轴距离r 处的线加 速度与角加速度的关系为t a r β=。 角动量L 角动量也可称动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r 处某质量为m 的质点的角动量大小是2 mvr m r ω=,各质点角动量的总和即为物体的角动量 2 ()i i i i i L mv r m r J ωω===∑∑ 转动动能k E 当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v ,若第i 个质点质量为i m ,离转轴垂直距离为i r ,则其动能为 22211 22 i i i i m v m r ω=, 整个刚体因转动而具有的动能为所有质点的转动动能的总和 22211 ()22 k i i E m r J ωω= =∑。

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

质点运动学和动力学习题答案

质点运动学和动力学习题参考答案 一、选择题 1、D 解析:题目只说明质点作直线运动,没有确定是匀加速还是变加速直线运动,故任意时刻的速度都不确定。 2、D 3、C 解析:2t 时间内,质点恰好运动2圈回到初始位置,其位移为0,路程为4πr ,所以其平均速度大小为0,平均速率为2πr/t 。 4、C 解析:有题目可知人与风运动速度可用下图表示,由速度合成得到可知人感受到的风高手刀锋来自西北方向。 5、B 解析:a B =2a A ,对于B 物体有:mg-T=ma B 对于A 物体有2T=ma A 上3式联解得:a B =4g/5 6、A 解析:物体收尾时作匀速运动,则其加速度为零,即mg =kv 2,即得收尾速度为v =(mg /k )1/2。 7、D 解析: 22 tan sin mg mR m l θωωθ== 1 2 2c o s 2l T g π θπω??== ??? 8、A 解析:设绳中张力为T ,则弹簧秤的读数为2T ,因为A 、B 两物体的加速度大小相等,方向相反,可设加速度大小为a ,对A 、B 两物体应用牛顿运动定律m 1g -T =m 1a ,T -m 2g =m 2a ,可得。 二、填空题 1、j 50cos50t i 50sin5t - v +=,a τ=0,a n =250m/s 2,圆; 解析:有运动方程可知:x =10cos5t y =10sin5t ;则其运动轨迹方程为:x 2+y 2=102,所以其轨迹为圆; j 50cos50t i 50sin5t - /dt r d v +==,50v =m/s,所以圆周运动的a τ=0; a n =v 2/r 。 mg T T

运动学与动力学题目

1. 图中机构在竖直平面内运动,各部件的尺寸如图所示。某时刻在图示位置上,杆OA 处于水平位置,绕O 点的角速度为2rad/s Ω=,求 (1)此时部件C 的角速度ω及杆AB 的B 端的速度的大小; (2)若此时杆绕O 点的角加速度0Ω=&,求此时部件C 的角加速度ω&及B 点的加速度B a 。 2. 5个质量相等的匀质球,其中4个半径均为a 的球,静止放在半径为R 的半球形碗内,它们的球心在同一水平面内.另1个半径为b 的球放在4球之上.设接触面都是光滑的,试求碗的半径R 的值满足什么条件时下面的球将相互分离. 3. 足球比赛,一攻方队员在图中所示的 A 处沿 Ax 方向传球,球在草地上以速度 v 匀速滚动,守方有一队员在图中 B 处,以 d 表示 A ,B 间的距离,以 θ 表示 AB 与Ax 之间的夹角,已知 θ <90° .设在球离开 A 处的同时,位于 B 处的守方队员开始沿一直线在匀速运动中去抢球,以 v p 表示他的速率.在不考虑场地边 界限制的条件下,求解以下问题(要求用题中给出的有关参 量间的关系式表示所求得的结果): (1)求出守方队员可以抢到球的必要条件. (2)如果攻方有一接球队员处在 Ax 线上等球,以 l r 表示他到 A 点的距离,求出球不被原在 B 处的守方队员抢断的条件. (3)如果攻方有一接球队员处在 Ax 线上,以L 表示他离开 A 点的距离.在球离开 A 处的同时,他开始匀速跑动去接球,以 v r 表示其速率,求在这种情况下球不被原在 B 处的守方队员抢断的条件. 4. 天体或微观系统的运动可借助计算机动态模拟软件直观显示。 这涉及几何尺寸的按比例A

刚体的运动学及动力学问题

刚体的运动学与动力学问题 文/沈晨 编者按中国物理学会全国中学生物理竞赛委员会2000年第十九次会议对《全国中学生物理竞赛 内容提要》作了一些调整和补充,并决定从2002年起在复赛题与决赛题中使用提要中增补的内容?为 了给准备参赛的学生提供有关信息,帮助选手们尽快熟悉与掌握《竞赛提要》增补部分的物理知识,给辅导学生参赛的教师提供方便,本刊编辑部特约请特级教师沈晨老师拟对相对集中的几块新补内容划分成“刚体的运动与动力学问题”、“狭义相对论浅涉”、“波的描述和波现象”、“热力学定律”四个专题,分别介绍竞赛涉及的知识内容,例说典型问题与方法技巧,推介竞赛训练精题、名题和趣题?本刊将从本期开始连载四期,供老师们参考. 《中学物理教学参考》编辑部约请笔者就复赛和决赛中新增补的内容作专题讲座,如何进行教学,笔者自身也正在探索之中,整个资料还只是一个雏形,呈献给大家是希望与广大同行交流切磋,以及能为更多的物理人才的脱颖而岀作一点微薄的努力. 一、竞赛涉及有关刚体的知识概要 1.刚体 在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征. 2.刚体的平动和转动 刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动?研究刚体的平动时,可选取刚体上任意一个质点为研究对象?刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴?若转轴是固定不动的,刚体的运动就是定轴转动?刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理. 3.质心质心运动定律 质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C, 刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心?当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成. 质心运动定律物体受外力F作用时,其质心的加速度为a c,则必有F=ma c,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动. 4.刚体的转动惯量J 冈M本的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即 lim 28 从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况?我们可以利用微元法求一些质量均匀分布的几何体的转动惯量. 5.描述转动状态的物理量 对应于平动状态参量的速度V、加速度a、动量p=mv、动能E k=(1/2 )mv 2;描述刚体定 轴转动状态的物理量有:

第三部分-流体运动学与动力学练习题

3-1.已知流场的速度分布为 问(1)属于几维流动? (2)流动是否定常? (3)(,,)=(1,2,3)点的加速度。 3-2.已知流场的速度分布为 问(1)属于几维流动? (2)流动是否定常? (3)(,,,)=(2,2,3,1)点的加速度 3-3.设平面不可压缩流体的速度分布为 其中为常数,试求加速度。 3-4.某一平面流动的速度分量为:,,试求该流动的流线蔟及在瞬时通过点P(-1,-1)的流线。 3-5.在一平面流动的流场中,已知速度分量为:,,试求流线方程并判断流动方向。 3-6.已知平面流动的速度分布规律为 式中为常数,求流线方程 3-8.不可压缩流体各流场的速度分布如下,试判断流动是否存在(连续):

(1),, (2),, (3), (4), 3-10.一不可压缩流体的流动,方向的速度分量为。方向的速度分量为零,设方向的速度分量为,且时,,求方向的速度分量,设a,b为常数。 3-11.已知流体质点在坐标原点上的速度为零,且、方向的速度分量分别为,,问能构成不可压缩流体可能运动的方向的速度分量应是什么? 3-12.用皮托管和静压管测量管道中水的流速,如图3-28所示。若U形管中的液体为四氯化碳,并测得液面差=350mm,试求管道中心的流速为多少? 图 3-28 3-13.若原油在管道截面A处以2.4m/s的流速流动,如图3-29所示。不计水头损失,试求开口U形管C内的液面高度。 图3-29

3-14.如图3-30所示,管中流量=48m3/h,管道直径=75mm,要使图中两块压强表的读数相同,不计水头损失,收缩处的直径应为多少? 图 3-30 3-15.水在竖直管道中流动,如图3-31所示。已知在管径=0.3m处的流速为2m/s,要使两压强表读数相同,渐缩管后的直径应为多少? 图 3-31 3-16.空气以流量=2.12m3/s在管中流动,空气密度=1.22kg/m3,如图3-32所示。若使水从水槽中吸入管道,试求截面面积的值应为多少? 图 3-32

量子论的运动学与动力学

量子论的运动学与动力学 200890513216号李香文计081-2班 正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式:。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。 海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。” 1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验, 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这

大学物理第2章 质点动力学习题解答

第2章 质点动力学习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-=μ f 1 N 1 m 1 g T a F N 2 m 2g T a N 1 f 1 f 2

刚体的运动学与动力学问题练习

刚体的运动学与动力学问题练习 1.如图14—14所示,一个圆盘半径为R ,各处厚度一样,在每个象限里,各处的密度也是均匀的,但不同象限里的密度则不同,它们的密度之比为1ρ:2ρ:3ρ:4ρ=1:2:3:4,求这圆盘的质心位置. 2.如图14—15所示,质量为m 的均匀圆柱体,截面半径为R ,长为2R .试求圆柱体绕通过质心及两底面边缘的转轴(如图中的1Z 、2Z )的转动惯量J . 3.如图14—16所示,匀质立方体的边长为a ,质量为m .试求该立方体绕对角线轴PQ 的转动惯量J . 4.椭圆细环的半长轴为A ,半短轴为B ,质量为m (未必匀质),已知该环绕长轴的转动惯量为A J ,试求该环绕短轴的转动惯量B J . 5.如图14—17所示矩形均匀薄片ABCD 绕固定轴AB 摆动,AB 轴与竖直方向成 30α=°角,薄片宽度AD d =,试求薄片做微小振动时的周期. 6.一个均匀的薄方板,质量为M ,边长为a ,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在所在的竖直平面内摆动.在穿过板的固定点的对角线上的什么位置(除去转动轴处),贴上一个质量为m 的质点,板的运动不会发生变化?已知对穿过板中心而 垂直于板的轴,方板的转动惯量为21 6 J Ma =. 7.如图14—18所示,两根等质量的细杆BC 及AC ,在C 点用铰链连接,质量不计,放在光滑水平面上,设两杆由图示位置无初速地开始运动,求铰链C 着地时的速度. 8.如图14—19所示,圆柱体A 的质量为m ,在其中部绕以细绳,绳的一端B 固定不动,圆柱体初速为零地下落,当其轴心降低h 时,求圆柱体轴心的速度及绳上的张力. 图14-14 图14-15 图14- 16 图14-17 图14-18 图14-19

动力学问题解题思路

动力学问题解题思路 动力学问题就是解决力和运动的关系的问题,它是力学的基本问题,也是核心问题。初中阶段该问题定性地表述为力是改变物体运动状态的原因;高中阶段给出了动量的物理规律,要求作动量的计算,要解决这个问题,就必须掌握解题规律和思路。 一、要高屋建瓴,把握力学知识体系 一个物体在力的作用下,经过一段时间和位移获得速度这个过程,可以理解为力使物体产生了加速度,经过一段时间获得了速度,也可以理解为力在这段位移内对物体作了,功使物体的动能增加了,还可理解为力在这段时间内对物体施了冲量,从而改变了物体的动量。因此,可以从三种不同的角度或用三种不同的观点,即加速度观点、能量观点、动量观点来解决它。 二、熟练掌握相应的物理规律及其解题思路 解题思路是由物理规律本身决定的,加速度观点对应的物理规律是牛顿第二定律,它是质点运动学的核心规律,动能定理、动量定理均可从牛顿第二定理导出。牛顿第二定律的数学表达式为F =ma,公式中F这一项涉及具体性质力的规律,如万有引力定律、胡克定律、摩擦定律,涉及力的合成、分解以及矢量运算遵循的平行四边形法则,a这一项涉及匀变速直线运动和匀速圆周运动等运动规律,所以全面掌握牛顿第二定律就能掌握力学中涉及的大多数规律和法则。 牛顿第二定律反映的是物体在力的作用下如何运动的问题,所以应用牛顿第二定律时,首先必须明确研究对象,即研究主体,并将其从周围环境中隔离出来(所谓隔离体法),隔离体法处理连接体问题时,在多数情况中是必不可少的,如果取连接体的整体为对象,则仍然是一个确定研究主体的问题,研究主体确定了,公式中的m这一项就确定了;第二步对研究主体进行受力分析,这是F这一项的要求;第三步分析研究对象运动状态的变化,从而由运动学规律确定a;第四步由牛顿第二定律建立方程,随后就是解方程和讨论结果了。以上思路简单概括为:明对象、两分析、列方程、议结果。 能量观点相应的物理规律是动能定理,数学表达式为: W总=△Ek=1/2mv22-1/2mv12 动量观点相应的物理规律是动量定理,数学表达式为: I合=△P=mv2-mv1 这两个规律表达的是物体在同一段过程中合外力对物体所做的总功(或总冲量)与物体运动状态变化之间的关系,应用它们同样必须明确研究对象(对应公式

运动学刚体的简单运动

第二部分 运动学 第七章 刚体的简单运动 一、基本要求 1.掌握刚体平动和定轴转动的概念及其特征。 2.能熟练地求解与定轴转动刚体的角速度、角加速度以及刚体内各点的速度和加速度有关的问题。 3.熟悉角速度、角加速度以及刚体内各点的速度和加速度的矢量表示法。 二、理论要点 1.刚体的平动 z定义 刚体在运动过程中,其上任一直线始终平行于它的初始位置,称这种运动为刚体的平行移动,简称平动。若平动刚体内各点的轨迹为直线,则称这种平动为直线平动;若平动刚体内各点的轨迹为曲线,则称这种平动为曲线平动。 z特征 刚体平动时,其上内各点轨迹的形状相同;在每一瞬时,刚体内各点的速度、加速度也相同。因此,刚体的平动可以简化为一个点的运动来研究,或刚体内任一点的运动皆可代表平动刚体的运动。 2.刚体的定轴转动 z定义 刚体在运动时,其上或其扩展部分有两点保持不动,称这种运动为刚体的定轴转动,称通过这两个固定点的直线为刚体的转轴或轴线,简称轴。 z特征 刚体绕定轴转动时,其上各点均在垂直于转轴的平面内作圆周运动。 z刚体的转动规律 (1) 转动方程——表示刚体的位置随时间的变化规律。

)(t f =? (2) 角速度——表示刚体转动的快慢程度和转向,是代数量。 ??ω ==dt d (3) 角加速度——表示角速度对时间的变化率,也是代数量。 ?ω?ωα ====22dt d dt d 当ω与α同号时,刚体作加速转动;当ω与α异号时,刚体作减速转动。 z 刚体内各点的速度和加速度 (1) 速度 ωR v = (2) 加速度 ,αR a τ= 2ωR a n = 4222ωα+=+=R a a a n τ 2),(ω α=n a tg 由此可见,在每一瞬时,转动刚体内各点的速度和加速度的大小,分别与这些点到轴线的垂直距离(即半径R )成正比;在每一瞬时,转动刚体内各点的加速度a 与半径R 间的夹角都有相同的值。 说明:刚体绕定轴转动时,转动方程、角速度和角加速度是刚体绕定轴转动的整体性质的度量,而刚体内各点的速度和加速度是刚体绕定轴转动的局部性质的度量。 z 运动的矢量描述 (1)角速度和角加速度的矢量表示 k ωω= ωk k α ===ω α 其中k 为沿转轴正向的单位矢量。 (2)点的速度和加速度的矢积表示 r ωv ×= v ωr αa a a ×+×=+=n τ 其中r 为所求点的矢径。 说明:以矢量表示角速度,在第八章点的合成运动中求科氏加速度时常常用到,那时要用右手螺旋规则来确定角速度的方向。

大学物理第二章 质点动力学习题解答

1文档来源为:从网络收集整理.word 版本可编辑. 第二章 习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物 体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度 及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对 两个质点应用牛二定律: ①+②可求得:g m m g m F a μμ-+-=2 112 将a 代入①中,可求得:2111)2(m m g m F m T +-= μ 2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和 砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴 承摩擦,绳不伸长。 解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律: '2''2211T T a m T g m a m g m T ==-=-②① 由①②可求得: 所以,天平右端的总重量应该等于T ,天平才能保持平衡。 2-21 一个机械装置如图所示,人的质量为m 1=60kg ,人所站的底板的质量为m 2=30kg 。设绳子和滑轮的质量以及滑轮轴承的摩m 1 m 2 F f 1 N 1 m 1g T a F N 2 m 2g T a N 1 f 1 f 2 m 1 m 2 T' m 1g a T' m 2g a T

相关文档
相关文档 最新文档