文档库 最新最全的文档下载
当前位置:文档库 › 方差概念及计算公式

方差概念及计算公式

方差概念及计算公式
方差概念及计算公式

方差概念及计算公式

一.方差的概念与计算公式

例1两人的5次测验成绩如下:

X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。

平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。

单个偏离是

消除符号影响

方差即偏离平方的均值,记为D(X ):

直接计算公式分离散型和连续型,具体为:

这里是一个数。推导另一种计算公式

得到:“方差等于平方的均值减去均值的平方”,即

其中

分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。

二.方差的性质

1.设C为常数,则D(C) = 0(常数无波动);

2.D(CX )=C2D(X ) (常数平方提取);

证:

特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)

3.若X、Y相互独立,则

证:记

前面两项恰为D(X )和D(Y ),第三项展开后为

当X、Y 相互独立时,

故第三项为零。

特别地

独立前提的逐项求和,可推广到有限项。

三.常用分布的方差

1.两点分布

2.二项分布

X ~ B( n, p )

引入随机变量X i(第i次试验中A出现的次数,服从两点分布)

3.泊松分布(推导略)

4.均匀分布

另一计算过程为

5.指数分布(推导略)

6.正态分布(推导略)

~

正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。

例2求上节例2的方差。

解根据上节例2给出的分布律,计算得到

求均方差。均方差的公式如下:(xi为第i个元素)。

S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根

大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。

用matlab或c语言编写求导程序

已知电容电压uc,电容值

求电流i

公式为i=c(duc/dt)

怎样用matlab或c语言求解

SelectCommand="SELECT top 7 [tjid], [title] FROM [rec] WHERE ([pass] = @pass) ORDER BY [tuijian] DESC, [date_pass] DESC, [click] DESC">

函数的幂级数展开式

通过前面的学习我们看到,幂级数不仅形式简单,而且有一些与多项式类似的性质。而且我们还发现有一些可以表示成幂级数。为此我们有了下面两个问题:

问题1:函数f(x)在什么条件下可以表示成幂级数

问题2:如果f(x)能表示成如上形式的幂级数,那末系数c n(n=0,1,2,3,…)怎样确定?

下面我们就来学习这两个问题。

泰勒级数

我们先来讨论第二个问题.假定f(x)在a的邻区内能表示成

这种形式的幂级数,其中a是事先给定某一常数,我们来看看系数c n与f(x)应有怎样的关系。

由于f(x)可以表示成幂级数,我们可根据幂级数的性质,在x=a的邻区内f(x)可任意阶可导.对其幂级数两端逐次求导。得:

………………………………………………

………………………………………………

在f(x)幂级数式及其各阶导数中,令x=a分别得:

把这些所求的系数代入得:

该式的右端的幂级数称为f(x)在x+a处的泰勒级数.

关于泰勒级数的问题

上式是在f(x)可以展成形如的幂级数的假定下得出的.实际上,只要f(x)在x=a处任意阶可导,我们就可以写出函数的泰勒级数。

问题:函数写成泰勒级数后是否收敛?是否收敛于f(x)?

函数写成泰勒级数是否收敛将取决于f(x)与它的泰勒级数的部分和之差

是否随n→+∞而趋向于零.如果在某一区间I中有那末f(x)在x=a 处的泰勒级数将在区间I中收敛于f(x)。此时,我们把这个泰勒级数称为函数f(x)在区间I中的泰勒展开式.

泰勒定理

设函数f(x)在x=a的邻区内n+1阶可导,则对于位于此邻区内的任一x,至少存在一点c,c 在a与x之间,使得:

此公式也被称为泰勒公式。(在此不加以证明)

在泰勒公式中,取a=0,此时泰勒公式变成:

其中c 在0与x之间

此式子被称为麦克劳林公式。

函数f(x)在x=0的泰勒级数称为麦克劳林级数.当麦克劳林公式中的余项趋于零时,我们称相应的泰勒展开式为麦克劳林展开式.

即:

几种初等函数的麦克劳林的展开式

1.指数函数e x

2.正弦函数的展开式

3.函数(1+x)m的展开式

数学应用

1.解线性方程组

矩阵分解(A) [B,C]=返回

chol

lu

qr

svd

schur

求解方程AX=B XA=B

X=A\B X=B/A

恰定cramer公式,矩阵求逆,gaussian消去,lu法%主要就用A\B 不要用inv(A)*B

超定求最小二乘解用A\B %基于奇异值分解;用pinv(A)*B %基于householder变换

欠定由qr分解求得

非负最小二乘解 X=nnls(A,b,TOL) TOL指定误差,可缺省

零点法求解方程

fzero一元 fsolve多元

x=fzero(fun,x0)

[x,fval,exitflag]=fzero(fun,x0,options,P1,P2,...)

注:x0是猜测的起始点,可用plot先绘fun,用ginput来用鼠标获取零点猜测值

符号方程

X=linsolve(A,B) 等于 X=sym(A)\sym(B) %例X=linsolve(A,b); XX=X+'k'*null(A)

S=solve('eqn1','eqn2',...'eqnN')

solve('eqn1','eqn2',...'eqnN','var1','var2',...'varN') 返回S是结构数组,引用S.var1

或返回给[x1,x2,...,xn]

矩阵的特征值和特征向量

D=eig(A) 特征值

[V,D]=eig(A) V是特征向量 A*V=V*D

[V,D]=eig(A,'nobalance') 预先平衡

[V,D]=eig(A,B) 广义特征值

符号矩阵同数值矩阵 %例中vpa(A)?

对角化

[P,D]=eig(A) inv(P)*A*P是对角阵

Jordan标准型

[V,J]=jordan(A)

其他常用

cdf2rdf(V,D) 复转实

funm(A,'function')计算函数值

eig

hess hessenberg

expm 指数

null 奇异值分解零空间标准正交基

orth 标准正交基

pinv 广义逆

sqrtm 平方根

cond 条件数

rref 阶梯阵

rsf2csf 实转复

det 行列式

subspace子空间夹角

rank 秩

condeig 特征值条件数

norm 范数

2.多项式

P=poly(A) 由给定的根A(根数组,或矩阵之特征值)创建多项式

符号多项式

ploy(A) 返回中用x表示,ploy(A,v) 中用v来表示

ploy2sym(C) 向量转符号多项式

计算

conv(a,b) 乘法a=[1 3 2 1];b=[4 3 9 10];c=conv(a,b)

[q,r]=deconv(a,b) 除法

poly(A) 用根构造

polyder(a) 求导a=[1 3 2 1];polyder(a);

polyder(a,b) :polyder(conv(a,b))

[q,d]=polyder(a,b) :b/a的倒数 q分子 d分母

polyfit(x,y,n) 拟合

polyval(p,x) 计算x处y=..

polyvalm(p,X) 矩阵多项式得值X是方阵

[r,p,k]=residue(a,b) 分式展开式r留数 p极点 k直项

[a,b]=residue(r,p,k) 分式组合

roots(a) 根

因式分解

factor(s) 因式分解

collect(S) 合并同类项缺省合并x

collect(S,v) 合并v变量同类项

expand(s) 表达式展开

简化

pretty 将代数式转化为手写格式即改变表示幂、乘方 * ^的样式

simplify 化简表达式,强如:simplify(sin(x)^2+cos(x)^2) 结果 1

simple 用simplify collect factor horner等简化函数化简,并选取最短的结果

simple(s) 化简,并显示中间过程

[R,How]=simples(s) 结果给R,过程给How

simple所用的转化运算

combine(trig) 三角运算

convert(exp) 尽量指数化

convert(sincos) 尽量三角式化

convert(tan) 尽量tan化

horner 多项式转为嵌套形式秦九韶算法

多项式提取

subexpr 代换式中一些部分

[Y,s]=subexpr(t,'s') s是复杂式的代换符号, t是原表达式,Y是代换后的式子

subs(S,old,new) 将new代入S中的old

3.曲线拟合

多项式拟合

[a,S]=polyfit(x,y,n) 对数据(xi,yi)拟合n阶多项式 a是系数 S 是Vandermonde矩阵进行Cholesky分解。。。。的结构矩阵

[ye,delta]=polyval(a,x,S) 利用计算结果估计数据带 yi +- delta y 超过五阶不好

非线性最小二乘估计转为线性

4.插值和样条

interp1

interpft

interp2

interp3

interpn

griddata

meshgrid

ndgrid

spline

一维插值

yi=interp1(x,y,xi,method) 由xy插值xi处,

method可选

linear 线性

cubic 三次

spline 三次样条

nearst 最近邻域

二维插值

zi=interp2(x,y,z,xi,yi,method)

样条

finder 对样条函数求导

fnint 对样条函数积分

mkpp(pp) 分解出样条各段的数据,依次返回[breaks断点位置,coef,pieces,order,dim]

ppval(pp,xx) 由逐段多项式求值

spline

yy=spline(x,y,xx) 三次样条xx处值

或pp=spline(x,y)获得多项式数据;yy=ppval(pp,xx)再由pp 计算xx处值

unmkpp 逐段多项式数据形式的重组

5.数值积分微分

一维数值积分

quad simpson法,精度高

quad('fun',a,b,tol,trace,p1,p2,...) (被积函数,积分上限,积分下限,tol[相对误差,绝对误差],是否图形显示,参数,...) quad8 8样条newton-cotes公式最常用

trapz 梯形法定积分

cumtrapz梯形法区间积分

sum 等宽矩阵法定积分

cumsum 等宽矩阵法区间积分

fnint 样条的不定积分

多重数值积分

dblquad('fun',inmin,inmax,outmin,outmax,tol,method) 定积分

积分限为函数时先求G(y)={x2(y),x1(y)}f(x,y)dx 再求

I={y2,y1}G(y)dy 这里用{}表示豆芽符

数值微分

多项式求导 polyder

差分算积分 diff(X)

6.符号微积分

约定变量x 系数a,b

极限

limit(f,x,a) 求x->a时f值、

limit(f,x,a,'right') 右极限 limit(f,x,a,'left')左极限导数

diff(f,a,n) 对变量a求n阶积分,a,n均有默认

差分

Y=diff(F数组,n差分阶数,dim指定维数)

J=jacobian(f列向量,v行向量) 雅可比矩阵可用simple化简

积分

int(s,v,a,b) (式,变量,下限,上限)

级数求和

symsum(s,v,a,b)

泰勒级数

taylor(f,n)指定项数 (f,a)指定点 (f,x)指定变量?n,a,x可否连用,顺序

7.常微分方程 %以下有待细看

ode23

ode45

ode113

ode23t

ode15s

ode23tb

...

odefile

odeset

odeget

...

odephas2

odephas3

odeprint

8.数据分析和傅立叶变换

9.稀疏矩阵

SM=sparse(A全元素) 转为稀疏

FM=sparse(A稀疏) 转为全元素

SM=sparse(i,j,s,m,n,nzmax) 创建例:SM=sparse([3 1 2 4],[1 2 3 4],[12 3 2 4],4,4,4)

A=spdiags(B,d,m,n) 创建带状矩阵\

S=spconvert(D) 从外部导入

常用

issparse

nnz

nonzeroe

nzmax

spalloc

sprun

spones

colmmd

colperm

dmperm

randperm

symrcm

condest

normest

sprank

gplot

spy

etree

etreeplot

treelayout

treeplot

symmd

find

样本平均数的方差的推导

样本平均数的方差的推导: 假定从任意分布的总体中抽选出一个相互独立的样本 1,,n x x ,则有 22 (),i i x X E x X σσ== 即每一个样本单位都是与总体同分布的。 在此基础上, 证明样本平均数以总体平均数为期望值。 []121212()() 1 ()1 ()()()1 ()n n n x x x E x E n E x x x n E x E x E x n X X X X n +++==+++=+++=+++= 接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为: 22(())X E X E X σ=- 以下需要反复使用这一定义:

22 2 122 122 2122222 122222 122(())()1(())1 ()()()1()()()()()1()()()()()1x n n n n i j i j n i j i j E x E x x x x E X n E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++ +=-= +++-??=-+-++-? ???=-+-++-+--???? ??=-+-++-+--????=∑∑∑∑222n n n σσ?= 在证明中,一个关键的步骤是()()0i j i j E x X x X ≠--=∑,其原 因在于这一项事实上是i x 与j x 的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。 如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为221 X x N n n N σσ-= ? - 样本方差的期望: 证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。 先构造一个统计量为2 1 () n i i x x S n =-'= ∑,我们来求它的期望。 根据方差的简捷计算公式:()2 2 2X X X n σ = -∑,可得

t检验计算公式

t 检验计算公式: 当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。 t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。t 检验分为单总体t 检验和双总体t 检验。 1.单总体t 检验 单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。检验统计量为: X t μ σ-=。 如果样本是属于大样本(n >30)也可写成: X t μ σ-=。 在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差; n 为样本容量。 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显著性进步? 检验步骤如下: 第一步 建立原假设0H ∶μ=73 第二步 计算t 值 79.273 1.63X t μ σ--=== 第三步 判断 因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值0.05(19) 2.093t =,而样本离差的t =1.63小与临界值2.093。所以,接受原假设,即进步不显著。

2.双总体t 检验 双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过0r =。 相关样本的t 检验公式为: t = 在这里,1X ,2X 分别为两样本平均数; 12X σ,2 2X σ分别为两样本方差; γ为相关样本的相关系数。 例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异? 检验步骤为: 第一步 建立原假设0H ∶1μ=2μ 第二步 计算t 值 t = =3.459。 第三步 判断 根据自由度19df n =-=,查t 值表0.05(9) 2.262t =,0.01(9) 3.250t =。由于实际计算出来的t =3.495>3.250=0.01(9)t ,则0.01P <,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 检验。

方差分析公式

方差分析公式 (20PP-06-2611:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analPsisofvarianee ,简写为ANOV或ANOV A可用于两个或两个以 上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态 分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完 全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的卩1,卩2,……卩k是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6完全随机设计的多个样本均数比较的方差分析公式 GC=(艺G) 2/N=艺ni , k为处理组数 方差分析计算的统计量为F,按表19-7所示关系作判断。 例19.9某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有 无差别? 表19-8某湖水不同季节氯化物含量(mg/L)

SS 加刖=丄 和 ' 10619.265^ 170 HO:湖水四个季节氯化物含量的总体均数相等,即 卩仁卩2=卩3=卩4 H1:四个总体均数不等或不全相等 a =0.05 先作表19-8下半部分的基础计算。 C=(艺 G ) 2/N= (588.4) 2/32=10819.205 SS 总=艺 G2-C=11100.84-10819.205=281.635 V 总=N-仁31 (工吋 “ 1 广_ (】6二口尸斗/」期.匸尸千 K .IT N "一 - ? r . —I b K V 组间=k-1=4-1=3 SS 组内=SS 总-SS 组间=281.635-141.107=140.465 V 组内=N-k=32-4=28 MS 组间二SS 组间 /v 组间=141.107/3=47.057

样本方差的抽样分布

样本方差的抽样分布 样本方差 先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。 在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。[ 从一个样本取n个值y1,...,y n,其中n

估计值可以简单地称为样本方差。同样的证明也适用于从连续概率分布中抽取的样本。 样本方差分布 作为随机变量的函数,样本方差本身就是一个随机变量,研究其分布是很自然的。在yi是来自正态分布的独立观察的情况下,s2服从卡方分布: 所以可求;和 如果y i独立同分布,但不一定是正态分布,那么 如果大数定律的条件对于平方观测值同样适用,则s2是σ2的一致估计量。 抽样分布 抽样分布也称统计量分布、随机变量函数分布,是指样本估计量的分布。样本估计量是样本的一个函数,在统计学中称作统计量,因此抽样分布也是指统计量的分布。以样本平均数为例,它是总体平均数的一个估计量,如果按照相同的样本容量,相同的抽样方式,反复地抽取样本,每次可以计算一个平均数,所有可能

样本的平均数所形成的分布,就是样本平均数的抽样分布。 抽样分布定理 (1)从总体中随机抽取容量为n的一切可能个样本的平均数之平均数,等于总体的平均数,即(E为平均的符号,为样本的平均数,μ为总体的平均数)。 (2)从正态总体中,随机抽取的容量为n的一切可能样本平均数的分布也呈正态分布。 (3)虽然总体不是正态分布,如果样本容量较大,反映总体μ和σ的样本平均数的抽样分布,也接近于正态分布。 样本方差的抽样分布 样本方差的抽样分布是指在重复选取容量为n的样本时,样本方差的所有可能取值形成的概率分布。 χ2分布具有如下性质和特点: (1)χ2分布的变量值始终为正。 (2)χ2(n)分布的形状取决与其自由度n的大小,通常为不对称的正偏分布,但随着自由度的增大逐渐趋于对称,如图7-2所示。 (3)χ2分布的期望为E(χ2)=n,方差为D(χ2)=2n(n为自由度)。 (4)χ2分布具有可加性。若U和V为两个独立的χ2分布随机变量,U~χ2(n1),V~χ2(n2),则随机变量U+V服从自由度为n1+n2的χ2分布。

方差概念及计算公式

方差概念及计算公式 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。 平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中

分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX )=C2D(X ) (常数平方提取); 证: 特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布

2.二项分布 X ~ B( n, p ) 引入随机变量X i(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。 用matlab或c语言编写求导程序 已知电容电压uc,电容值 求电流i 公式为i=c(duc/dt) 怎样用matlab或c语言求解 函数的幂级数展开式

样本方差与总体方差的区别

样本方差与总体方差的区别 之前一直对于样本方差与总体方差的概念区分不清,对于前者不仅多了样本”两个字,而且公式中除数是N-1 ,而不是N。现在写下这么写东西,以能彻底把他们的区别搞清楚。 总体方差: 也叫做有偏估计,其实就是我们从初高中就学到的那个标准定义的方差,除数是N。女0果实现已知期望值,比如测水的沸点,那么测量 立的(期望值不依测量值而改变,随你怎么折腾,温度计坏了也好,看反了也好,总之,期望值应该是100度),那么E『(X-期望)人2』,就有10个自由度。事实上,它等于(X- 期望)的方差,减去(X-期望)的平方。”所以叫做有偏估计,测量结果偏于那个”已知的期望值“。样本方差: 无偏估计、无偏方差(unbiased varianee )。对于一组随机变量,从中随机抽取N个样本, 这组样本的方差就是Xi^2平方和除以N-1。这可以推导出来的。如果现在往水里撒把盐, 水的沸点未知了,那我该怎么办?我只能以样本的平均值,来代替原先那个期望100度。同 样的过程,但原先的(X-期望),被(X-均值)所代替。设想一下(Xi-均值)的方差,它 不在等于Xi的方差,而是有一个协方差,因为均值中,有一项Xi/n是和Xi相关的,这就 是那个”偏"的由来 刊屮)二 Ei a.—-£(A;-W) f=l 9 =rr 一 证明: 10次,测量值和期望值之间是独

DGH 兀) 担工加D (X ;)) g ? u 曰右力m-工P) 占E (m :-寸) __________ ■!■ A^(E :=iCV —2A ;T + X-)) 闵肯) ) + £:D) n(<7- + //-) E(X 力二丫) nE(X~) MD(X) + E2(X)) M 吟+ “?) 尙e + //-) - 角F + "') t7- 证毕?? D(X)二 --- ◎ E(f)= D(X) + Eh 工) E{S-)= £(E ; =1 A ;y )=

方差 — 标准差

方差(Variance) [编辑] 什么是方差 方差和标准差是测度数据变异程度的最重要、最常用的指标。 方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。 标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。 [编辑] 方差的计算公式 设总体方差为σ2,对于未经分组整理的原始数据,方差的计算公式为: 对于分组数据,方差的计算公式为: 方差的平方根即为标准差,其相应的计算公式为: 未分组数据: 分组数据: [编辑]

样本方差和标准差 样本方差与总体方差在计算上的区别是:总体方差是用数据个数或总频数去除离差平方和,而样本方差则是用样本数据个数或总频数减1去除离差平方和,其中样本数据个数减1即n-1 称为自由度。设样本方差为,根据未分组数据和分组数据计算样本方差的公式分别为: 未分组数据: 分组数据: 未分组数据: 分组数据: 例:考察一台机器的生产能力,利用抽样程序来检验生产出来的产品质量,假设搜集的数据如下: 根据该行业通用法则:如果一个样本中的14个数据项的方差大于0.005,则该机器必须关闭待修。问此时的机器是否必须关闭? 解:根据已知数据,计算

因此,该机器工作正常。 方差和标准差也是根据全部数据计算的,它反映了每个数据与其均值相比平均相差的数值,因此它能准确地反映出数据的离散程度。方差和标准差是实际中应用最广泛的离散程度测度值。 ?函数VAR假设其参数是样本总体中的一个样本。如果数据为整个样本总体,则应使用函数VARP来计算方差。 ?参数可以是数字或者是包含数字的名称、数组或引用。 ?逻辑值和直接键入到参数列表中代表数字的文本被计算在内。 ?如果参数是一个数组或引用,则只计算其中的数字。数组或引用中的空白单元格、逻辑值、文本或错误值将被忽略。 ?如果参数为错误值或为不能转换为数字的文本,将会导致错误。 ?如果要使计算包含引用中的逻辑值和代表数字的文本,请使用VARA 函数。 ?函数VAR 的计算公式如下: 其中x 为样本平均值AVERAGE(number1,number2,…),n 为样本大小。 示例 假设有10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行抗断强度检验。 如果将示例复制到一个空白工作表中,可能会更容易理解该示例。 STDEV(number1,number2,...) Number1,number2,...为对应于总体样本的 1 到255 个参数。也可以不使用这种用逗号分隔参数的形式,而用单个数组或对数组的引用。 注解 ?函数STDEV 假设其参数是总体中的样本。如果数据代表全部样本总体,则应该使用函数STDEVP来计算标准偏差。 ?此处标准偏差的计算使用“n-1”方法。

第三章附录:相关系数r 的计算公式的推导

相关系数r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ=11-n 2 )(∑-A A i 2B σ=11-n )(B B i -∑2 2P σ= 11-n 2 )1 (∑∑ - i i P n P =2 )](1 )[(11i B i A i B i A B A A A n B A A A n +- +-∑∑ =2 )]()[(11 B A A A B A A A n B A i B i A +-+-∑ =2 )]()([1 1 B B A A A A n i B i A -+--∑ = )])((2)()([1 1 2 222B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2A × 22 1 ) (B i A n A A +--∑× 1 )] )([(21 ) (2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22222---? ++∑n B B A A A A A i i B A B B A A σ σ 对照公式(1)得: = 1 )(2 --∑ n A A i × 1 )(2 --∑ n B B i × r AB ∴ r AB = ∑∑∑-? ---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ=---∑1 )])([(

为什么样本方差里面要除以(n-1)而不是n

为什么样本方差里面要除以(n-1)而不是n?(---by小马哥整理) 首先,我们来看一下样本方差的计算公式: (1) 刚开始接触这个公式的话可能会有一个疑问就是:为什么样本方差要除以(n-1)而不是除以n?为了解决这个疑惑,我们需要具备一点统计学的知识基础,关于总体、样本、期望(均值)、方差的定义以及统计估计量的评选标准。有了这些知识基础之后,我们会知道样本方差之所以要除以(n-1)是因为这样的方差估计量才是关于总体方差的无偏估计量。这个公式是通过修正下面的方差计算公式而来的。 公式(2)是我们按照正常的思维, 思考的应该有的方差的计算公式,也就是除以n的情况: (2) 公式(3)是我们经过修正得到的式子, 修正过程为: (3) 我们在课本上看到的其实是修正后的结果: (4) 下面详细(推导)讲, 为啥会要乘以前面那个(1/n-1), 来对公式(2)进行修正. 为了方便叙述,在这里说明好数学符号: (5) 前面说过样本方差之所以要除以(n-1)是因为这样的方差估计量才是关于总体方差的无偏估计量。在公式上来讲的话就是样本方差的估计量的期望要等于总体方差。如下: (6) 但是没有修正的方差公式,它的期望是不等于总体方差的(下面会讲解详细原因, 就是下面那个公式推导!) (7) 也就是说,样本方差估计量如果是用没有修正的方差公式来估计总计方差的话是有偏差的 下面给出比较好理解的公式推导过程:

(8) 也就是说,除非否则一定会有 (9) 需要注意的是不等式右边的才是的对方差的“正确”估计,但是我们是不知道真正的总体均值是多少的,只能通过样本的均值来代替总体的均值。所以样本方差估计量如果是用没有修正的方差公式来估计总计方差的话是会有偏差,是会低估了总体的样本方差的。为了能无偏差的估计总体方差,所以要对方差计算公式进行修正,修正公式如下: (10) 这种修正后的估计量将是总体方差的无偏估计量,下面将会给出这种修正的一个来源; 为了能搞懂这种修正是怎么来的,首先我们得有下面几个等式: 1.方差计算公式: (11) 2. 均值的均值、方差计算公式: (12) 对于没有修正的方差计算公式我们有: (13)

标准差σ的4种计算公式

标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中 标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中的Pooled standard deviation(合并标准差) 做数据分析,经常会碰到提到标准差σ这个概念,关于标准差σ的计算方式,目前,本人知道有4种标准差σ的计算方法,如下: 一,简易标准差σ的计算方式 上面是计算整体的标准差,如果是计算样本的标准差,这里的N, 应该为N-1. 一般情况下,都是计算样本的标准差。关于这个标准的详细运算公式和案例分析,可以参考附件,里面有比较详细的解释。 标准差的简易计算公式和案例分析.rar(28.19 KB, 下载次数: 1262) 二,XBAR-R管制图分析( X-R Control Chart)图中的Rbar/d2 算法 XBAR-R管制图分析( X-R Control Chart):由平均数管制图与全距管制图组成。 ●品质数据可以合理分组时,可以使用X管制图分析或管制制程平均;使用R管制图分析制程变异。 ●工业界最常使用的计量值管制图。

关于上面公式中用到的A2、A3、D2、D3、D4等常数请参考https://www.wendangku.net/doc/418802619.html,/thread-476-1-1.html帖子下面的表格 三,XBAR-s管制图分析( X-sControl Chart)中的Sbar/C4算法 XBAR-S 管制图分析( X-S Control Chart):由平均数管制图与标准差管制图组成。 ●与X-R管制图相同,惟s管制图检出力较R管制图大,但计算麻烦。 ●一般样本大小n小于等于8可以使用R管制图,n大于8则使用S管制图。 ●有电脑软件辅助时,使用S管制图当然较好。

方差计算公式的证明

方差计算公式的证明 (1)用新数据法求平均数 当所给的数据都在某一常数a的上下波动时,一般选用简化公式:=+a.其中,常数a通常取接近这组数据平均数的较“整”的数,=-a,=-a,…,=-a ○1 =(+)是新数据的平均数(通常把,,…,,叫做原数据, ,,…,,叫做新数据)。证明: 把○1左边的数据相加,把○1右边的数据相加,得到一个等式: +=-a+-a+…+-a +=++…+-na =—a 即○2 亦即=+a (2)方差的基本公式 方差的基本公式由方差的概念而来。方差的概念是:在一组数据,,,中,各数据与他们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“” 表示,即: =[+] (3) 方差的简化计算公式 =[++…+)-n] 也可写成=[++…+)]- 此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。 证明: =[+] =[++++…++] =[++…+)-2++…++n] =[++…+)-2n =[++…+)-2n =[++…+)-n] =++…+)-………………..(I)

根据○1,有=+a,=+a,…=+a,和=+a(详见(1)的证明) 代入简化公式(I),则有: =[()+()+…()- =[(++…+)+2a(++…+)+n]-(+2a+) =(++…+)+2a+-2a- =(++…+)+ 2a+ =(++…+)…………………….(II) 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。 由方差的基本公式,经恒等变形后,产生了简化公式(I);由简化公式(I)进行等 量代替产生了简化公式(II).因此,基本公式和简化公式(I)(II)所计算出的方 差都相同。基本公式和简化公式(I)按原数据,,…,计算方差;简化公 式(II)按新数据,,…,计算方差,计算出的方差相同。 (4) 用新数据法计算方差 原数据,,…,的方差与新数据=-a,=-a,…,=-a的方差相等。也就 是说,根据方差的基本公式,求得的,,…,的方差就等于原数据 ,,…,的方差。 证明: 把○1式里的每一个式子的两边,减去○2式的两边(左边-左边,右边-右边)有: -=(-a)-(-a)=- -=(-a)-(-a)=- ………… -=(-a)-(-a)=- 再把以上每一个新生成等式左右两边平方,即有左2=右2: ()=() ()=() ………… ()=() 最后把这些式子的左边加左边,右边加右边,其和分别除以n,即有:[()+()+…+()]=[+] 这就是根据方差的基本公式,求得的,,…,的方差就等于原数据 ,,…,的方差。

标准差的计算公式的推导及理解

方差s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/n 标准差=方差的算术平方根 标准差计算公式的来源 标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标。 虽然样本的真实值是不能知道,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,基检测值应该很紧密的分散在真实值周围。如不紧密,那距真实值的就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。 一组数据怎样去评价与量化它的离散度?有很多种方法: 1.极差 最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法最为常见,比如比赛中去掉最高最低分就是极差的具体应用。 2.离均差的平方和 由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度,越大离散度也就越大。 但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数相加为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值相加。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方累加成了评价离散度一个指标。 3.方差(S2) 由于离均差的平方累加值与样本个数有关,只能反应相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将标准差求平均值,这就是我们所说的方差成了评价离散度的较好指标。 我们知道,样本量越大越能反映真实的情况,而算数均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。 4.标准差(SD) 由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。

方差计算公式的变形及应用

方差计算公式的变形及应用 江苏 庄亿农 我们知道,对于一组数据x 1、x 2、…x n ,若其平均数为x ,则其方差可用公式 S 2=21)[(1 x x n -+22)(x x -+…+2)(x x n -]计算出来.我们可以对其作如下变形: 2s =n 1[( x 21+2x -2 x 1x )+( x 22+2x -2 x 2x )+…+( x 2n +2x -2 x n x )]=n 1[ (x 21+x 22+…+ x 2n )+n 2x -2x ( x 1+ x 2+…+ x n )]= n 1[ (x 21+x 22+…+ x 2n )+ n 2x -2n 2x ]=n 1[ (x 21+x 22+…+ x 2n )-n 2x ]=n 1[ (x 21+x 22+…+ x 2n )-n 1(x 1+x 2+…+ x n )2],即2s =n 1[ (x 21+x 22+…+ x 2n )-n 1(x 1+x 2+…+ x n )2].显然当x 1=x 2=…=x n 时,2s =0. 这个变形公式很有用处,在解决有些问题中,巧妙地利用这个变形公式,可化繁为简,具有事半功倍之效. 一、判断三角形形状 例1 若△ABC 的三边a 、b 、c ,满足b+c=8,bc=a 2-12a+52,试判断△ABC 的形状. 解析:因为b+c=8,所以(b+c)2=64,所以b 2+c 2=64-2bc .因为bc=a 2-12a+52,所以b 2+c 2=64-2(a 2-12a+52)=-2a 2+24a -40.由方差变形公式知,b 、c 的方差为2s = 21[(b 2+c 2)-21(b+c)2]= 21[(-2a 2+24a -40)-2 1×64]=-a 2+12a -36=-(a -6)2.因为2s ≥0,则-(a -6)2≥0,即 (a -6)2≤0,而(a -6)2≥0,所以(a -6)2=0,所以a -6=0,所以a=6.所以2s =0, 所以b=c .又b+c=8,所以b=c=4.所以△ABC 是等腰三角形. 二、解方程组 例2 解方程组?? ???+==+22493z xy y x . 解析:两个方程,三个未知数,一般情况下是求不出具体的未知数的值的.若考虑利用方差变形公式,则能解决问题. 因为x+y=3,所以(x+y)2=9,所以x 2+y 2=9-2xy .因为xy= 4 9+2z 2,所以x 2+y 2=9-2(49+2z 2)=29-4z 2.由方差变形公式知,x 、y 的方差为2s =21[ (x 2+y 2)-21(x+y)2]=21[2 9-4z 2-21×9]=-2z 2.因为2s ≥0,-2z 2≥0,则2z 2≤0,而z 2≥0,所以z=0.所以2s =0,所以

方差分析公式

方差分析公式 (2012-06-26 11:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analysis of variance,简写为ANOV或ANOVA)可用于两个或两个以上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的μ1,μ2,……μk是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6 完全随机设计的多个样本均数比较的方差分析公式变异来源离均差平方和SS 自由度v 均方MS F 总ΣX2-C* N-1 组间(处理组间)k-1 SS组间/v组间MS组间/MS组间 组内(误差)SS总-SS组间N-k SS组内/v组内 *C=(ΣX)2/N=Σni,k为处理组数 表19-7 F值、P值与统计结论 αF值P值统计结论 0.05 <F0.05(v1.V2)>0.05 不拒绝H0,差别无统计学意义 0.05 ≥F0.05(v1.V2)≤0.05 拒绝H0,接受H1,差别有统计学意义 0.01 ≥F0.01(v1.V2)≤0.01 拒绝H0,接受H1,差别有高度统计学意义 方差分析计算的统计量为F,按表19-7所示关系作判断。

例19.9 某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有无差别? 表19-8 某湖水不同季节氯化物含量(mg/L ) X ij 春 夏 秋 冬 22.6 19.1 18.9 19.0 22.8 22.8 13.6 16.9 21.0 24.5 17.2 17.6 16.9 18.0 15.1 14.8 20.0 15.2 16.6 13.1 21.9 18.4 14.2 16.9 21.5 20.1 16.7 16.2 21.2 21.2 19.6 14.8 ΣX ij j 167.9 159.3 131.9 129.3 588.4(ΣX ) n i 8 8 8 8 32(N ) X i 20.99 19.91 16.49 16.16 ΣX 2 ijj 3548.51 3231.95 2206.27 2114.11 11100.84(ΣX 2 ) H0:湖水四个季节氯化物含量的总体均数相等,即μ1=μ2=μ3=μ4 H1:四个总体均数不等或不全相等 α=0.05 先作表19-8下半部分的基础计算。 C= (Σx )2/N=(588.4)2/32=10819.205 SS 总=Σx2-C=11100.84-10819.205=281.635 V 总=N-1=31 V 组间=k-1=4-1=3 SS 组内=SS 总-SS 组间=281.635-141.107=140.465 V 组内=N-k=32-4=28

样本平均数的方差的推导

样本平均数的方差的推导: 假定从任意分布的总体中抽选出一个相互独立的样本 1,,n x x ,则有 22 (),i i x X E x X σσ== 即每一个样本单位都就是与总体同分布的。 在此基础上, 证明样本平均数以总体平均数为期望值。 []121212()() 1 ()1 ()()()1 ()n n n x x x E x E n E x x x n E x E x E x n X X X X n +++==+++=+++=+++= 接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为: 22 (()) X E X E X σ=- 以下需要反复使用这一定义:

22 2 122 122 2122222 122222 122(())()1(())1 ()()()1()()()()()1()()()()()1x n n n n i j i j n i j i j E x E x x x x E X n E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++ +=-= +++-??=-+-++-? ???=-+-++-+--???? ??=-+-++-+--????=∑∑∑∑222n n n σσ?= 在证明中,一个关键的步骤就是()()0i j i j E x X x X ≠--=∑,其原 因在于这一项事实上就是i x 与j x 的协方差。由于任意两个样本都就是相互独立的,因此其协方差均为0。 如果采用的就是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为22 1 X x N n n N σσ-= ? - 样本方差的期望: 证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。 先构造一个统计量为2 1 () n i i x x S n =-'= ∑,我们来求它的期望。 根据方差的简捷计算公式:()2 2 2 X X X n σ = -∑,可得 ()22211()()()i i E S E x nx E x nE x n n '??= -=-??∑∑

相对标准方差的计算公式

标准偏差 标准偏差(Std Dev,Standard Deviation) -统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。 目录 编辑本段公式 标准偏差公式:S = Sqrt[(∑(xi-x拨)^2) /(N-1)]公式中∑代表总和,x拨代表x的均值,^2代表二次方,Sqrt代表平方根。 例:有一组数字分别是200、50、100、200,求它们的标准偏差。 x拨= (200+50+100+200)/4 = 550/4 = 137.5 S^2 = [(200-137.5)^2+(50-137.5)^2+(100-137.5)^2+(200-137.5)^2]/(4-1) 标准偏差 S = Sqrt(S^2) STDEV基于样本估算标准偏差。标准偏差反映数值相对于平均值(mean) 的离散程度。 编辑本段语法 STDEV(number1,number2,...)

编辑本段标准差 标准差也被称为标准偏差,或者实验标准差,标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。例如,A、B两组各有6位学生参加同一次语文测验,A 组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 编辑本段标准偏差与标准差的区别 标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

样本方差的证明

样本方差为何除以n-1? 方差的概念从小学就开始建立了。对于一个随机变量,分别表示其数学期望和 方差,从中随机抽取n个样本,是样本均值, 是样本方差。那么为什么样本方差是除以而不是n 呢? 这里涉及到一个无偏估计的概念,是随机变量,同样也是随机变量,其中是对总体的一个估计,如果的期望分别等于的话,就说这种 估计是无偏的。容易证明,但是 的证明就不是那么显而易见了,下面我证明给大家看。记为的方差和期望。

证毕~~

这样看,x1,x2,...xn是n个可以自由变化的样本,互不影响。 而x1-xbar, x2-xbar,...xn-xbar是否也是n个自由变化的呢?不是……因为这n个统计量受到一个约束条件的影响就是之和等于0。如果我们记yi=xi-xbar,也就是说y1+y2+...yn=0, 这样我们可以任意变动其中n-1值,比如取定了y1,y2,...y(n-1),那么yn就不能任意变化,yn=-(y1+y2+y(n-1))。 这个只是从自由变化的角度直观解释,实际上证明分布比较烦琐…… 比如说让十跟人任意取十个数,很容易理解可以随便取.十个都是自由的. 如果我加一个条件,十个人取十个数,但是这是个书加起来必须得零. 第一个人可以随便取,第二个人也可以,第九个也可以,都是自由的, 但是第十个人不能随便自由取,只能取特定的数,才能保证这十个数的 和是零.所以加了一个条件就丢了一个自由度 自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数称为该统计量的自由度。当平均数的值和其中n-1个数据的值已知时,另一个数据的值就不能自由变化了,因此样本方差无偏估计的自由度为n-1。

2016高考数学方差公式汇总

2016高考数学方差公式汇总 一.方差的概念与计算公式例1两人的5次测验成绩如下: X:50,100,100,60,50E(X)=72;Y:73,70,75,72,70E(Y)=72。平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期 望的偏离程度。方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型,具体为:这里是一个数。推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动二.方差的性质1.设C为常数,则D(C)=0(常数无波动);2.D(CX)=C2D(X)(常数平方提取);特别地D(-X)=D(X),D(-2X)=4D(X) (方差无负值)方差公式:平均数:M=(x1+x2+x3+…+xn)/n(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)方差公式:S2=〈(M-x1) 2+(M-x2)2+(M-x3)2+…+(M-xn)2〉╱n三.常用分布的方差1.两点分布2.二项 分布X~B(n,p)引入随机变量Xi(第i次试验中A出现的次数,服从两点分布) 3.泊松分布(推导略)4.均匀分布另一计算过程为5.指数分布(推导略)6.正态分布(推导略)7.t分布:其中X~T(n),E(X)=0;D(X)=n/(n-2);8.F分布:其中 X~F(m,n),E(X)=n/(n-2);正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。方差的定义:设一组数据 x1,x2,x3······xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1- x拔)2,(x2-x拔)2······(xn-x拔)2,那幺我们用他们的平均数s2=1/n【(x1-x拔) 2+(x2-x拔)2+·····(xn-x拔)2】来衡量这组数据的波动大小,并把它叫做这组 数据的方差。

相关文档