文档库 最新最全的文档下载
当前位置:文档库 › 沸腾焙烧炉设计相关计算

沸腾焙烧炉设计相关计算

沸腾焙烧炉设计相关计算
沸腾焙烧炉设计相关计算

沸腾炉的设计4

沸腾炉的设计-----设计内容之四 第四章沸腾炉热量的平衡计算 (一) 热收入 1. 精矿带入的物理热 Q1=c1m1t1c1=0.18千卡/公斤·度; m1=106.3公斤;t1= 20℃ 故Q1=0.18×105.485×20=379.746千卡 2. 空气带入的物理热 Q2= c2V2t2c2=0.31千卡/标米3·度, V2=189米3;t2=20℃ Q2=189×0.31×20=1171.8千卡 3.放热反应产生的热 (1) ZnS +1.502 = Zn0 + SO2+ 105630千卡= 75690.254千卡 (2) ZnS+202 = ZnSO4+ 185000千卡=8354.802千卡 (3) PbS +1.502 = Pb0+SO2 + 100490千卡=368.283千卡 (4) PbS+202 = PbSO4+ 196800千卡= 721.773千卡 (5) CdS+1.502 = Cd0+SO2 + 98880千卡=131千卡 (6) CdS+202= CdS04 + 187700千卡=252干卡 (7)FeS2 = FeS +0.5S2 - 43500千卡 119.8 87.8 32 6.885 5.046 1.839 = -2499.98千卡 其中生成FeS 5.046公斤;S 1.839公斤。 (8)Fe7S8 = 7FeS+ 0.5S2 +0千卡 646.95 614.95 32 6.905 6.563 0.342 其中生成FeS 6.563公斤;S 0.342公斤。

(9)2FeS+3.5O2 = Fe2O3+2SO2 +293010千卡 =19371.031千卡 (10)2CuFeS2+6O2= CuO+Fe2O3+4SO2 + 481100千卡 =3668.584千卡 (11)0.5S2+1.5O2 = SO3+109440千卡 千卡 (SO3的质量为3.81公斤,消耗S 1.524公斤) (12)0.5S2+O2= SO2 + 71104千卡 千卡 Q3=75690.254+8354.802+368.283+721.773+252+1459.854+19371.031+ 5212.08-2499.98+3668.584=112598.681千卡 热收入=Q1+Q2+Q3= 379.746+1171.8+112598.681=114150.227千卡(二)热支出 1.烟尘带走的热 设从沸腾炉出来的烟尘温度为900℃,其比热为0.20千卡/公斤,度。则Q尘= 36.308×900×0.2=6535.44千卡 2.焙砂带走的热 设焙砂温度为850℃,比热为0.20千卡/公斤·度。 则Q焙=51.633×850×0.2=8777.61千卡 3.炉气带走的热 设炉气出炉温度为900 ℃,炉气各组份比热为(千卡/米3·度) O2 N2 H2O SO2SO3 0.350 0.333 0.403 0.529 0.771 则Q炉气=(4.52×0.350+150.30×0.333+20.27×0.529+1.07×0.771)×900 +6.83×0.403×(900-100)=59063.722千卡

绿建专篇(初步设计、方案)

第十四章 第十五章 第十六章绿色建筑专篇 一、项目基本信息 工程名称: 建设地点: 建设单位: 建筑类型: 绿色设计目标:国标一星 二、设计依据 1、《绿色建筑评价标准》 GB/T 50378-2014 2、《绿色建筑评价标准》 DB/T 1039-2007 3、《绿色建筑设计标准》 DB33/1092-2016 4、《民用建筑可再生能源应用核算标准》 DB33/1105-2014 5、《绿色建筑施工图设计文件技术审查要点》 三、节地与室外环境 1、环境噪声控制 本项目位于温岭市城西街道螺屿村(编号为GY030101-3地块),东侧为规划新河线河道,南侧为空地(规划为道路),西侧为空地(商服用地,为台州邦丰塑料有限公司项目用地),北侧临中心大道。场地环境噪声要求符合现行国家标准《城市区域环境噪声标准》GB3096的规定。 1)根据交通规模预测交通噪声量,通过计算机模拟分析交通噪声对建筑区域声环境的影响。 2)通过区域周边绿化配置形成噪声防护屏障。2、室外风环境控制 要求建筑总平面的布置和设计有利于室内自然通风,建筑周围人行区风速低于5m/s,不影响室外活动的舒适性。1)利用电脑模拟建筑室外风环境,为建筑方案提供优化建议。如优化建筑布局、建筑截面面积,建筑体形以及建筑高度等; 2)通过绿化配置,减少室外局部风力放大。 3、生态场地设计 对场地和景观设计进行优化,设计透水地面,有利于雨水回收,减低热岛效应,改善生态环境。 1)建筑周边、庭院的地面和公共广场等采用透水铺设。主要采用地下停车场,地上车位采用嵌草砖(草皮砖)铺装地面。人行道采用透水砖铺装地面。 2)关注各种下垫面的吸热特征,选择浅色与可反射适当太阳能的铺装饰面,保证有绿化覆盖率和遮荫率。 3)绿化设计优先选择适宜当地气候和土壤条件的乡土植物,采用包含乔、灌木的复层绿化;生态绿地、墙体绿化、屋顶绿化和垂直绿化等多样化的绿化方式。 四、节能设计 1、建筑造型节能 1)利用数值模拟软件对建筑造型和形体模拟,进行优化设计,如体型控制,选择浅色外墙饰面;对朝向与窗墙面积比进行有效控制等。充分利用自然通风。 2)设计建筑自遮挡,达到良好的外遮阳效果,降低外窗成本。 2、建筑部件节能 1)外窗综合遮阳遮阳设施要求构造简单、经济、耐久、轻巧、美观;一般可分为:水平式、垂直式、综合式、挡板式等四种。各种遮阳设施又有固定式及活动式两种,活动式使用灵活,但构造复杂,造价较高,建议采用综合固定式。 2)屋面有土或无土种植或屋面遮阳利用建筑屋顶作为种植屋面,适合于夏热冬暖等阳光资源丰富的地区。屋面覆盖种植土、轻质材料使整体屋面的热惰性提高,水分也容易蒸发,会使室内具有冬暖夏凉的效果。此项技术建议在本项目中广泛应用。 3)东、西外墙采用花格构件或爬藤植物遮阳

锌沸腾焙烧炉工艺操作规程

锌沸腾焙烧炉工艺操作规程(部分) 3 工艺流程 6#沸腾炉锌精矿焙烧工艺流程(见图1)。 4 4.1 焙烧目的: 在焙烧时尽可能将锌精矿中的硫化物氧化生成氧化物及生产少量硫酸盐,并尽量减少铁酸锌、硅酸锌的生成,以满足浸出对焙烧矿成分和粒度的要求及补充系统中一部分硫酸根离子的损失。同时得到较高浓度的二氧化硫烟气以便于生产硫酸。 4.2 锌精矿沸腾焙烧原理: 锌精矿沸腾焙烧就是利用具有一定气流速度的空气自下而上通过炉内矿层,使固体颗粒被吹动,相互分离而呈悬浮状态,达到固体颗粒(锌精矿)与气体氧化剂(空气)的充分接触,以利化学反应进行。其主要化学反应如式(1)~式(6): 2ZnS+3O2 ====2ZnO+2SO2 (1)

ZnS+2O2====ZnSO4 (2) 3ZnSO4+ZnS====4ZnO+4SO2 (3) 2SO2+O2 2SO3 (4) ZnO+SO3 ZnSO4 (5) XZnO+YFe2O3XZnO.YFe2O3 (6) 5 原材料质量要求 5.1 入炉混合锌精矿:应符合Q/ZYJ0 6.05.01.01—2005《混合锌精矿》的规定。 5.1.1 化学成分(%): Zn≥47 S:28~32,Fe≤12,SiO2≤5,Pb≤1.8,Ge≤0.006,A s≤0.45 ,Sb≤0.07,Co≤0.015 Ni≤0.004。 5.1.2 水分:6%~8%。 5.1.3 粒度小于14mm,无铁钉、螺帽等杂物。 5.2 工业煤气(%):应符合Q/ZYJ15.02.01—2003《工业煤气》的规定。 要求煤气压力在3000Pa以上,煤气流量不小于6500m3/h。 6 工艺操作条件 6.1 沸腾焙烧 6.1.1 鼓风量:14000 Nm3/h~30000Nm3/h 6.1.2 鼓风机出口压力:12kPa~16kPa 6.1.3 沸腾层温度:840℃~920℃ 6.1.4 炉气出口负压:0~30Pa 6.2 余热锅炉 6.2.1 出口烟气温度:340℃~390℃ 6.2.2 出口烟气压力:-100Pa~-200Pa 6.2.3 汽包工作压力:4.01MPa±0.3MPa 6.2.4 过热器出口蒸汽温度:380℃~450℃ 6.2.5 给水温度:100℃~105℃ 6.3 旋涡收尘器 6.3.1 入口烟气温度:330℃~380℃ 6.3.2 出口烟气温度:320℃±10℃ 6.3.3 入、出口烟气压差:800Pa~1200Pa 6.4 电收尘 6.4.1 入口烟气温度:280℃~340℃ 6.4.2 出口烟气温度:≥235℃ 6.4.3 出口烟气压力:-2450Pa~-2700Pa 6.5 排风机 6.5.1 入口烟气温度:210℃~300℃ 6.5.2 入口烟气压力:-2650Pa~-2900 Pa

环式焙烧炉讲解

furnace) baking (ring type 环式焙烧炉 国内外碳素焙烧炉发展状况 环视焙烧炉是生产碳素制品最关键的大型热工炉窑设备,对一个预焙阳极生产厂而言,环式焙烧炉的基建投资占整个碳素厂总投资的50%~60%,而且焙烧炉设计及技术的先进性对产品的质量单位投资的产能、能耗及能源综合利用、炉子寿命、产品生产成本都有很大的影响,焙烧炉火道墙结构的设计,材质的选择和施工工艺是设计焙烧炉最关键的技术。 碳素生产企业环式焙烧炉火道墙采用砖砌结构,由轻质耐火砖、粘土耐火砖、异型耐火砖砌筑而成。根据焙烧炉火道墙尺寸的不同,每条火道墙重约7~9吨,砖层多打40层。在生产过程中,依照工艺要求反复地升降温(1250℃~1300℃),降温(20℃~30℃),每次装、出炉时,天车夹具、碳素产品都不可避免地会碰撞到火道墙上,这样火道墙就会发生变形,变形达到一定程度,就必须拆除重砌。火道墙主要损坏形式:传统工艺采用耐火砖加耐火泥浆砌筑,采用了卧缝打灰、立缝不打灰的砌筑工艺,这样会出现砖缝泥浆脱落,影响了火道墙的整体结构强度。由于砌砖更多的注重了火道墙的牢固性,但忽视了火焰的流向,不可避免地出现温度死角,对产品的均匀性造成影响。在生产过程中由于产生不均匀热膨胀以及频繁升降温和装出焙烧品的撞击,造成火道墙变形,继而火焰不走正道→温度死角→温差变大→炉箱变形等恶性循环,能耗增大,降低炉体寿命,出现频繁中小修。 目前国内碳素焙烧炉的设计是50年代从国外引进的技术,火道墙采用砖砌筑结构,经历了半个世纪,并为大多数碳素厂所采用。随着生产实践的进一步深入,该技术的一些技术问题也逐渐暴露出来。 (1)边火道墙向外突出或整体倾斜,使料箱变窄,装出炉困难; (2)中间火道向内外凹陷,使火道变窄,影响热流气体的流动和燃烧效果; (3)火道墙裂缝严重,导致漏风漏料,影响产品质量,增大热能损耗,破损比较严重的火道墙必须进行中修、大修,由于火道墙是由小块耐火砖砌筑而成,拆除一条火道墙大约需要7~8小时,重新砌筑需24小时左右,拆除并重砌一条火道墙就必须搬运近17吨的材料,这不仅给修炉工作带来困难,而且给车间的正常生产增加难度。特别是环式焙烧炉是以循环方式作业,留给维修、拆除、重砌火道墙的时间非常紧张,通常在炉温还有80℃~90℃时就必须开始刨修,工作环境极为恶劣,反过来又影响施工质量,形成恶性循环。 我国用在环式焙烧炉上的耐火材料质量与国外同类产品相比,有较大的差距,高温抗蠕变性,荷重软化点,高温热稳定性等理化指标及产品外形尺寸精确度。加之生产管理,操作等方面的影响,我国碳素焙烧炉火道墙的平均使用寿命为80~100炉次,国外焙烧炉一般达到150炉次。 在市场竞争日趋激烈的今天,各类产品都必须以优质廉价来赢得市场,炭素制品也不例外。若焙烧炉火道墙变形严重,势必影响产品的质量,特别是影响产量,增加生产成本,不能满足生产需求,难以取得良好的经济效益。 针对砖砌火道墙存在的上述缺陷,国外多家碳素制品生产公司对火道墙结构的设计,材质的采用及砌筑方式等方面作了大量研究的改进,据有关资料报道,美国贝克莱和利德汗姆公司对火道墙的砌筑方式进行了大胆创新,采用异地预砌墙的方法,整体吊运到现场安装。提高了焙烧炉的产量及砖减轻了劳动强度,改善了施工环境,该技术大大缩短了施工时间, 砌火道墙的质量。鉴于我国耐火砖型尺寸的精确度及各类碳素厂起重设备受限,实现异地整体预砌、整体吊装难以实现。 我国环形焙烧炉技术共经历两个发展阶段。第一阶段50~70年代环式焙烧炉基本上未跳出苏联援建时的炉型框架,只在局部结构上有所改进,总体上看来,基本上环式炉技术落后。第二阶段,从80年代开始至今是我国环式炉向新环式炉转变时期。

湿法炼锌中沸腾焙烧过程的研究现状与进展

湿法炼锌中沸腾焙烧过程的研究现状与进展 现代炼锌方法分为火法和湿法两大类,世界上大部分的锌都是从硫化锌精矿 中提取出来的。无论火法还是湿法,一般都需预先焙烧或烧结,脱除大部分硫和其他杂质,以满足下道工序的要求。目前,在国内应用较成熟的焙烧技术是硫化锌精矿的粉状沸腾焙烧技术。 沸腾焙烧又称流态化焙烧,是众多焙烧方法中的一种。所谓的沸腾焙烧是指将所要处理的固体破碎,研磨成细粉,增加固体与气体的接触面积,缩短颗粒内部的传递和反应距离。自下而上流经这些粉料的气体,在达到一定速度时,会将固体颗粒悬浮起来,使之不断运动,犹如沸腾的水,故称沸腾焙烧。沸腾焙烧的基础是固体流态化,用沸腾焙烧炉焙烧锌精矿,炉内热容量大且均匀,温差小,料粒与空气接触表面积大,反应速度快,强度高,传热传质效率高,使焙烧过程大大强化,产品质量稳定生产率高。下面主要叙述在湿法炼锌中沸腾焙烧过程的发展和应用现状。 1 湿法炼锌中沸腾焙烧过程的发展和应用现状 1.1 在制粒焙烧方面的研究情况 李芳、张建彬,张起梅等[1]在锌精矿制粒沸腾焙烧中指出随着原料供应日趋紧张、精矿质量下降,发展沸腾焙烧技术,对提高锌冶炼金属回收率具有重要的意义。他们进行了锌精矿制粒焙烧的试验研究,重点分析了制粒粘合剂的选择和制粒焙砂质量控制。在沸腾焙烧试验中,针对焙砂质量及其影响因素诸如焙烧温度、原料粒度、过剩空气系数和物料在炉内的停留时间等进行了研究;另外通过适当减少加料量,使相应提高过剩空气系数,延长停留时间,Pb的脱除有所降低,同时s脱除效果亦有明显提高。最后他们得出结论:制粒沸腾焙烧提高了炉子的处理能力,床处理能力达到30.4 t/m2·d,炉温控制得当,风量均匀,焙砂质量可以达到Pb<1.0%,Cd<0.05%,S<1%的控制要求。沸腾炉操作温度可控制在1140~1180℃,比现有粉状物料焙烧操作温度提高60~80℃。 靳澍清、刘丽珍、吉正元等[2]在锌精矿造粒、焙烧试验研究中采用几种粘结剂进行造粒试验,对成粒矿进行静态焙烧试验,提出造粒和焙烧试验工艺条件及参数,粒矿进行静态焙烧试验,为大规模的生产奠定了一定的基础。 张瑜、李志勇、吴志平等[3]在锌精矿制粒沸腾焙烧新工艺的应用与改进中介绍了锌精矿制粒沸腾焙烧新工艺的工业化生产应用与技术改进情况,同时阐述了所取得的成果及存

沸腾炉烘炉方案

云南尚呈生物科技有限公司 烘干车间沸腾炉烘炉方案 一、烘炉的目的 为了保证沸腾炉的顺利开车和安全运行,对于新建沸腾炉在第一次开车前必须进行严格认真的烘烤,烘炉的目的是去除筑炉中耐火材料内所含的多余水分,以防止沸腾炉在生产的高温条件下直接运行时,由于砌筑炉体中水分突然大量蒸发,致使炉体出现大量裂纹,造成松动、倒塌甚至发生爆炸的危险,严重的影响沸腾炉的使用寿命。 二、烘炉的原理 工业炉烘炉就是要去除炉体中多余水分,而这部分水是指:一是游离水,二是结晶水、三是残余的结合水。 当烘炉在100℃以上时,游离水就会排放出来,结晶水则要在炉温达到350℃左右才排出,而残余的结合水需要在650℃左右才排出,根据以上情况制定烘炉的升温曲线,用以指导烘炉工作的进行。 三、烘炉进度表及烘炉曲线 烘炉进度表:

四、烘炉程序 1.检查沸腾炉各层测温仪表、油枪、油泵等,以备烘炉时使用; 2.微开沸腾炉顶放空烟囱; 3.沸腾炉内铺河沙约15cm,盖住风帽; 4.余热锅炉送水,使沸腾炉蒸发管束内充满水; 5.严格按烘炉进度表的要求进行烘炉,炉温控制以沸腾炉上部温度 为准; 6.当炉顶的温度达到120℃以后,打开旋风除尘器的沙封,将烘炉 热风引入余热锅炉内,随着沸腾炉的烘炉对余热锅炉进行烘烤和煮炉; 7.当用木柴无法继续升温时,封闭检查人孔,开启炉前风机,用油 枪进行升温; 8.自然降温要缓慢进行,切忌开风机强行降温或过早的打开检查人 孔进行大通风量的降温; 9.当沸腾炉温度降至150℃后,可打开人孔盖,全开放空烟囱顶盖 进行降温; 10.当炉温降至50℃以下,对沸腾炉进行清炉; 11.对沸腾炉各部位进行检查,视情况待修整。 生产技术科 2015年9月22日

焙烧炉操作规程

第二章焙烧主控操作规程 焙烧炉主控操作规程 一.主要职责及任务 1.负责把氢氧化铝焙烧成合格的氧化铝。 2.作为车间生产控制中心,是班组各项工作的中心调度,负责班组内部工作的协调,负责班组各项工作的汇总、反馈,负责对外工作的联系汇报,负责外部信息的收集及传达。班长不在时行使班长的权利,负责班长的工作。 3.负责通过计算机中心远程开启设备,调整焙烧炉各参数,使之保持正常值。 4.严格执行上级下达的技术经济指标,降低消耗,提高经济效益。 5.严格执行各项规章制度,认真填写岗位交接班记录和各项操作记录。 6.负责本岗位所有设备和环境卫生的清理及各种工器具的管理工作。 二、工艺流程及原理 工业生产的湿氢氧化铝一般含有6~8%的附着水。在焙烧过程中,当氢氧化铝受热达到100℃以上时,附着水即被蒸发脱除,当温度达到225℃时,氢氧化铝先脱掉两个分子的结晶水,变成一水软铝石;继续加热到500℃~560℃时,一水软铝石又脱掉最后一个分子的结晶水,变成无水的r-AL2O3。脱水反应式如下:

225℃ AL2O3.3H2O======= AL2O3.H2O+ 2H2O 500℃~560℃ AL2O3.H2O===========r-AL2O3+ H2O 在500℃~560℃温度下焙烧得到的r-AL2O3是很分散的结晶质的氧化铝,需要进一步提高焙烧温度,才能结晶并且长大为粗颗粒。将r-AL2O3加热至900℃时,它开始转变为α-AL2O3,此时转化速度很慢,提高温度则转化速度加快。在1050℃~1200℃下维持足够的时间r-AL2O3才完全转变为α-AL2O3。 从成品过滤送来的氢氧化铝(含水率≤5%)卸入L01给料仓(Ф3000×8200mm)经棒式阀卸到电子计量给料机(DEM1480),计量后送入螺旋给料机(Ф600×3200mm).螺旋给料机将氢氧化铝送入文丘里闪速干燥器。从P02顶部排出的烟气(320℃)经烟道进入文丘里闪速干燥器的地步和氢氧化铝混合进行热交换,氢氧化铝附水在闪速干燥器内蒸发干燥。经干燥后的氢氧化铝被烟气、水蒸气带人P01(Ф3950×9736mm)进行气固分离,P01温度大约145℃。如果从P02来的烟气不足以平衡氢氧化铝附水的蒸发量,需要采用干燥热发生器T11来补充热量。 从P01顶部排出的含尘废气进入电收尘(BABW100m3)净化,由排风机(Q=252000m3/H、P=8800pa)将其送入烟囱排放。粉尘排放浓度小于30mg/Nm3,达到国际标准。电除尘器收下的粉尘由斜槽送入气体提升泵,再由气体提升泵送入冷却器C03的上升管内。尾气接入系统

冶金工程专业设计年产6万吨锌冶炼沸腾焙烧炉设计

江西理工大学: 冶金工程(有色金属方向)专业设计 冶金10345班 国蔚为 2013/12/21

目录 第一章设计概述…………………………………………………………………错误!未定义书签。 设计依据……………………………………………………………………错误!未定义书签。 设计原则和指导思想………………………………………………………错误!未定义书签。 _Toc2毕业设计任务…………………………………………………………错误!未定义书签。 第二章工艺流程的选择与论证…………………………………………………错误!未定义书签。 原料组成及特点……………………………………………………………错误!未定义书签。 _Toc6沸腾焙烧工艺及主要设备的选择 (1) 第三章物料衡算及热平衡计算…………………………………………………错误!未定义书签。 锌精矿流态化焙烧物料平衡计算…………………………………………错误!未定义书签。 锌精矿硫态化焙烧冶金计算…………………………………………错误!未定义书签。 烟尘产出率及其化学和物相组成计算………………………………错误!未定义书签。 焙砂产出率及其化学与物相组成计算………………………………错误!未定义书签。 焙烧要求的空气量及产出烟气量与组成的计算……………………错误!未定义书签。 热平衡计算…………………………………………………………………错误!未定义书签。 热收入…………………………………………………………………错误!未定义书签。 热支出…………………………………………………………………错误!未定义书签。 第四章沸腾焙烧炉的选型计算…………………………………………………错误!未定义书签。 床面积………………………………………………………………………错误!未定义书签。 前室面积……………………………………………………………………错误!未定义书签。 炉膛面积和直径 (13) 炉膛高度……………………………………………………………………错误!未定义书签。 气体分布板及风帽…………………………………………………………错误!未定义书签。

第十章 沸腾炉工艺计算

第十章沸腾炉工艺计算 第一节计算依据 1、常用术语: 烧出率——矿石在焙烧过程中硫被烧出的百分率。 净化收率——进转化硫量对炉气硫量的百分率。 转化率——出转化SO3对进转化SO2的摩尔百分率。 吸收率——二吸出口SO3对一吸进口SO3的摩尔百分数。 其它损失——指除了焙烧、净化、转化、吸收过程中可以查明的损失百分率。包括质量损失,成品酸中溶解的二氧化硫损失,设备开停车或泄漏等所有跑、冒、滴、漏的损失,是一个由多方面因素造成的综合性项目,不能由几个测定数据和公式来计算,一定要通过全面的系统测定来查明,而查定过程又存在误差,因此各生产单位之间的其它损失率因管理水平之差则有很大差别,一般在0.3~1%左右。计算取1%。 硫的利用率——含硫原料中,硫被利用的程度。 2、计算数据

第二节 物料衡算 根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口处进行定量计算,称为物料衡算。通过物料衡算可以计算原料与产品间的定量转变关系,以及计算各种原料的消耗量,各种中间产品、副产品的产量、损耗量及组成。 物料衡算的基础:物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。 物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。 1、硫的烧出率 1.1灰渣平均残留率 式中,C S (残)—灰渣平均残硫率,% C S (灰)—灰中残硫量,% C S (渣)—渣中残硫量,% 1.2灰渣产率: ) S(S(C 160C 160残实)--= x 式中,C S(实) — 矿石中硫的实际含量 % C S(残) — 矿渣中的残硫量 % 则灰渣产率为:

沸腾炉、转化器内衬施工方案

中明(湛江)化机工程有限公司沸腾炉、转化器内衬工程 施 工 方 案 2012年8月

编制说明 编制中明(湛江)化机工程有限公司沸腾炉、转化器内衬工程施工方案。为了确保工程质量、工期及施工安全,我公司必须依照提供的图纸及相关标准要求进行组织施工与质量控制,特制定此方案。 编制依据按以下标准: 1. GB211—87《工业炉砌筑工程施工及验收规范》 2. HGJ227—84《化工用炉砌筑工程施工及验收规范》 3. GB50309—92《工业炉砌筑工程质量检验评定标准》 4. 中石化南京化学工业集团公司设计院NB《沸腾炉砌筑技术条 件》之相关要求和标准执行。施工技术、材料质量及配合比, 安全技术、验收指标均按上列《规范》、《标准》控制全过程。

一、工程慨况 中明(湛江)化机工程有限公司沸腾炉、转化器内衬工程,编制如下施工方案: 二、工程内容 (1)沸腾炉 1.沸腾炉钢壳内壁表面清除浮锈、焊渣。 2.筒体内壁粘贴δ= 5 mm石棉板。 3.沸腾炉内壁衬轻质粘土保温砖,δ= 114 mm。 4.沸腾层内衬粘土质耐火砖δ= 230 mm、扩大层及上部燃烧层内衬粘土耐火砖δ= 230 mm,拱顶内衬浇注料δ= 300 mm。 5.炉顶保温层用膨胀珍珠岩填塞,δ=160mm。 (2)转化器 1.转化器钢壳内壁表面清除浮锈、焊渣。 2. 筒体内壁粘贴δ= 5 mm石棉板。 3. 转化器内壁衬轻质粘土耐火砖,δ= 114 mm。 4. 转化器隔层粘贴硅酸铝纤维板,δ=40mm。 5. 转化器底层衬粘土保温砖,δ= 114 mm。 三、施工组织机构 施工组织管理人员一览表。

年产0万吨锌精矿硫酸化沸腾焙烧炉设计课程设计任务

年产0万吨锌精矿硫酸化沸腾焙烧炉设计课程设计任务

《锌精矿硫酸化沸腾焙烧炉》 设 计 说 明 书

设计任务书 一、设计题目:年产10万吨锌精矿硫酸化沸腾焙烧炉设计 二、原始资料: 1、生产规模:电锌年产量100000吨 2、精矿成分: 本次设计处理的原料锌精矿成分如下表所示(%,质量百分数): 3、精矿矿物形态: 闪锌矿、黄铜矿、黄铁矿、磁流铁矿、方铅矿、硫镉矿、石灰石、菱美矿三、设计说明书内容: ?设计概述 ?沸腾焙烧专题概述 ?物料衡算及热平衡计算 ?沸腾焙烧炉的选型计算 ?沸腾炉辅助设备计算选择 ?沸腾炉主要技术经济 四、绘制的图纸 沸腾焙烧结构总图(1#图纸:纵剖面和一个横剖面) 五、设计开始及完成时间 自2011年12月25号至2012年1月3号

目录 设计任务书 .................................................................................................................................................. II 第一章设计概述 (1) 1.1设计依据 (1) 1.2设计原则和指导思想 (1) 1.3毕业设计任务 (1) 第二章沸腾焙烧专题概述 (1) 2.1沸腾焙烧炉的应用和发属 (1) 2.2沸腾炉炉型概述 (2) 2.3沸腾焙烧工艺及主要设备的选择 (2) 第三章物料衡算及热平衡计算 (6) 3.1锌精矿流态化焙烧物料平衡计算 (6) 3.2热平衡计算 (14) 第四章沸腾焙烧炉的选型计算 (19)

沸腾炉的设计

沸腾焙烧炉设计 题目年产6万吨锌冶炼沸腾焙烧炉设计专业冶金工程 班级冶金093 姓名华仔 学号31 指导教师万林生

目录 第一章设计概述 (1) 1.1设计依据 (1) 1.2设计原则和指导思想 (1) 1.3毕业设计任务 (1) 第二章工艺流程的选择与论证 (1) 2.1原料组成及特点 (1) 2.2沸腾焙烧工艺及主要设备的选择 (1) 第三章物料衡算及热平衡计算 (3) 3.1锌精矿流态化焙烧物料平衡计算 (3) 3.1.1锌精矿硫态化焙烧冶金计算 (3) 3.1.2烟尘产出率及其化学和物相组成计算 (4) 3.1.3焙砂产出率及其化学与物相组成计算 (6) 3.1.4焙烧要求的空气量及产出烟气量与组成的计算 (7) 3.2热平衡计算 (9) 3.2.1热收入 (9) 3.2.2热支出 (11) 第四章沸腾焙烧炉的选型计算 (13) 4.1床面积 (13) 4.2前室面积 (13) 4.3炉膛面积和直径 (13) 4.4炉膛高度 (14) 4.5气体分布板及风帽 (14) 4.5.1气体分布板孔眼率 (14) 4.5.2风帽 (14) 4.6沸腾冷却层面积 (14) 4.7水套中循环水的消耗量 (14) 4.8风箱容积 (15) 4.9加料管面积 (15) 4.10溢流排料口 (15) 4.11排烟口面积 (15) 参考文献 (15) - I -

第一章设计概述 1.1设计依据 根据《冶金工程专业课程设计指导书》。 1.2设计原则和指导思想 对设计的总要求是技术先进;工艺上可行;经济上合理,所以,设计应遵循的原则和指导思想为: 1、遵守国家法律、法规,执行行业设计有关标准、规范和规定,严格把关,精心设计; 2、设计中对主要工艺流程进行多方案比较,以确定最佳方案; 3、设计中应充分采用各项国内外成熟技术,因某种原因暂时不上的新技术要预留充分的可能性。所采用的新工艺、新设备、新材料必须遵循经过工业性试验或通过技术鉴定的原则; 4、要按照国家有关劳动安全工业卫生及消防的标准及行业设计规定进行设计; 5、在学习、总结国内外有关厂家的生产经验的基础上,移动试用可行的先进技术; 6、设计中应充分考虑节约能源、节约用地,实行自愿的综合利用,改善劳动条件以及保护生态环境。 1.3毕业设计任务 一、沸腾焙烧炉专题概述 二、沸腾焙烧 三、沸腾焙烧热平衡计算 四、主要设备(沸腾炉和鼓风炉)设计计算 五、沸腾炉主要经济技术指标 第二章工艺流程的选择与论证 2.1原料组成及特点 本次设计处理的原料锌精矿成分如下表所示。 2.2沸腾焙烧工艺及主要设备的选择 金属锌的生产,无论是用火法还是湿法,90%以上都是以硫化锌精矿为原料。硫化锌不能被廉价的、最容易获得的碳质还原剂还原,也不容易被廉价的,并且在浸出—电积湿法炼锌生产流程中可以再生的硫酸稀溶液(废电解液)所浸出,因此对硫化锌精矿氧化焙烧使之转变成氧化锌是很有必要的。焙烧就是通常采用的完成化合物形态转变的化学过程,是冶炼前

碳素焙烧炉的介绍

碳素焙烧炉的新老产品对比介绍 碳素焙烧炉是将高压成形后的各种碳素制品,在隔绝空气的条件下按规定的焙烧温度进行间接加热,从而达到改善制品的导电、导热性能,提高制品强度的一种热工设备。 碳素焙烧炉按其结构划分为炉底、侧墙、火道墙、横墙、炉顶和烟道。 国内外通常使用的炭素焙烧炉有两种形式,即敞开式环式焙烧炉和有盖式焙烧炉。这两种焙烧炉主要用于铝用炭素阳极与阴极焙烧和炼钢电极焙烧。目前,我国铝用炭素阳极焙烧均采用敞开式环式焙烧炉。生产实践表明焙烧炉的热利用率和热损失约各占一半,每吨炭素阳极成品的燃料消耗一般在2.4GJ/t~3.2GJ/t(约折合一般重油60kg/t~80kg/t)。目前国际上有些发达国家的先进焙烧炉在阳极原料要求十分苛刻和沥青被完全燃烧(新技术)的条件下,燃料消耗可以降到1.8GJ/t~1.9GJ/的重油。因此,降低铝用炭素阳极焙烧炉的燃料消耗,一直是炭素行业长期探索和研究的重大课题。 多年来,国内外在炭素焙烧炉节能降耗方面,针对炉体结构、焙烧工艺和燃料燃烧等进行了大量的研究工作,尚没有注意到焙烧炉的辅助设备对能耗的影响。目前,我国绝大多数炭素企业使用的焙烧炉是上世纪九十年代末开发的,炉面配置的辅助设备沿用了传统的铸铁圈/铸铁盖/铁皮盖、重油燃烧器座、气体燃烧器、热电偶架、测温测压架和测负压架,而材质均为普通铸铁和普通钢材,设备笨重简陋,而且功能是配合测温仪表、测压仪表和控制系统来完成对炉温和能源输入的测量控制。由于焙烧炉与炉面辅助设备接口直径过大,导致炉面温度高,损失了大量的热能,增加了燃料消耗;同时,由于辅助设备结构和材质有较大的缺陷,致使产品使用寿命短且操作劳动强度大。因此,必须研发一组新型炭素焙烧炉炉面接口测控组件,解决上述存在的各种缺陷,提高企业的经济效益和社会效益。 新型炭素焙烧炉炉面接口测控组件由炉口变径盖、配套座、平口塞、新型燃烧器、新型热电偶支架、新型测温测压探头、新型负压探头组成。该组件实现了: 1、新型变径炉盖将接口直径由300mm减少到70mm,面积缩小77%,明显降低散热量,减少热损失,炉面温度及环境温度相应降低; 2、变径盖的配套底座直接镶嵌于炉面接口内壁,增加了炉面辅助器件与炉面接口处的密封性,保证负压操作,稳定炉况; 3、组件中各工件结构及材质的优化,耐火浇注料材质的变径炉盖和配套座、平口塞代替了传统的铸铁组件,重量明显降低,使用寿命和性价比得到提高,劳动强度相应减轻。 新型碳素焙烧炉产品与传统产品的效果对比 图-1图-2

沸腾炉操作规程

沸腾炉操作规程 一、安全操作 1.工作时必须穿戴劳动防护用品. 2.启动鼓风机前,必须将炉门关好,以免喷火烫伤 3.启动鼓风机前,必须先将鼓风风门关闭,然后慢慢打开至所需风量位置,防止电 机电流超限. 4.停机压火再次打开炉门引火时,操作人员不得站在炉门正前方. 5.接班开机前应用钢钎检查渣层情况,发现渣块及时排除并根据渣层温度采取相应 措施引火。引火时应注意安全检查避免煤气。 6.不宜频繁停炉压火,以免因急冷急热次数多而影响炉子寿命。 7.热工仪表安装好后,不要随便擅自调整. 8避免正压操作. 9.炉膛未冷却,切忌进入炉膛内. 10.紧急出渣时,排渣口若有人,切忌开启鼓风机. 二、点火前准备 1.准备好司炉工具:钩、耙、锹、铲、推车等。 2.准备好点火用材料:

● 木材,直径<100mm ,长度500mm 左右。 ● 优质碎烟煤,筛选1-6mm 粒径为宜。 ● 木炭,废油或废棉纱适量。 ● 黄沙或炉渣,炉渣粒径<10mm 。 3.逐台检查配套设备:风机、提升机、破碎机及圆盘喂料机等运行情况是否正常。 4.检查控制柜连线及各仪表、传感器情况是否正常。 5.检查布风板上风帽通风孔是否通畅,将炉床清理干净。 6.在炉床上面铺上厚150mm --200mm 左右的干黄沙,打开风机让炉料沸腾后逐渐减小风量至黄砂成鼓泡状,观察床料是否腾跃均匀;然后停风机观察床料是否平坦。 三、点火操作 1.在炉床上加铺厚度150mm --200mm 左右的过筛干粗黄砂,并同时加入占其总量8-10%,粒度<10mm 的优质煤。若用干煤渣做床料,则视渣的含量多少适当减少加入的煤量。然后开启风机使床料混合均匀、平整。 2.视炉型大小加入适量木材,点火燃烧已预热炉膛和加热底料,底料上有足够火炭层(厚度30~60mm )后,再把未梢头的大块木材钩出,将赤红火炭层扒平。 3.开动鼓风机,关闭炉门,瞬间将风压升至3500Pa (风门开度30% 左右)后突然关木柴 煤粉

沸腾焙烧炉设计相关计算(借鉴分享)

沸腾焙烧炉设计

目录 第一章设计概述 (1) 1.1设计依据 (1) 1.2设计原则和指导思想 (1) 1.3课程设计任务 (1) 第二章工艺流程的选择与论证 (1) 2.1原料组成及特点 (1) 2.2沸腾焙烧工艺及主要设备的选择 (1) 第三章物料衡算及热平衡计算 (3) 3.1锌精矿流态化焙烧物料平衡计算 (3) 3.1.1锌精矿硫态化焙烧冶金计算 (3) 3.1.2烟尘产出率及其化学和物相组成计算 (5) 3.1.3焙砂产出率及其化学与物相组成计算 (6) 3.1.4焙烧要求的空气量及产出烟气量与组成的计算 (8) 3.2热平衡计算 (10) 3.2.1热收入 (10) 3.2.2热支出 (13) 第四章沸腾焙烧炉的选型计算 (16) 4.1床面积 (16) 4.2前室面积 (16) 4.3炉膛面积和直径 (13) 4.4炉膛高度 (17) 4.5气体分布板及风帽 (17) 4.5.1气体分布板孔眼率 (17) 4.5.2风帽 (17) 4.6沸腾冷却层面积 (17) 4.7水套中循环水的消耗量 (14) 4.8风箱容积 (15) 4.9加料管面积 (15) 4.10溢流排料口 (15) 4.11排烟口面积 (15) 参考文献 (15)

第一章设计概述 1.1设计依据 根据《冶金工程专业课程设计指导书》。 1.2设计原则和指导思想 对设计的总要求是技术先进;工艺上可行;经济上合理,所以,设计应遵循的原则和指导思想为: 1、遵守国家法律、法规,执行行业设计有关标准、规范和规定,严格把关,精心设计; 2、设计中对主要工艺流程进行多方案比较,以确定最佳方案; 3、设计中应充分采用各项国内外成熟技术,因某种原因暂时不上的新技术要预留充分的可能性。所采用的新工艺、新设备、新材料必须遵循经过工业性试验或通过技术鉴定的原则; 4、要按照国家有关劳动安全工业卫生及消防的标准及行业设计规定进行设计; 5、在学习、总结国内外有关厂家的生产经验的基础上,移动试用可行的先进技术; 6、设计中应充分考虑节约能源、节约用地,实行自愿的综合利用,改善劳动条件以及保护生态环境。 1.3毕业设计任务 一、沸腾焙烧炉专题概述 二、沸腾焙烧 三、沸腾焙烧热平衡计算 四、主要设备(沸腾炉和鼓风炉)设计计算 五、沸腾炉主要经济技术指标 第二章工艺流程的选择与论证 2.1原料组成及特点 本次设计处理的原料锌精矿成分如下表所示。 化学成分Zn Pb Cu Cd Fe S CaCO 3MgCO 3 SiO 2 其他 w B (%) 47.67 3.58 0.24 0.18 5.58 28.94 1.58 1.43 6.82 3.98 2.2沸腾焙烧工艺及主要设备的选择 金属锌的生产,无论是用火法还是湿法,90%以上都是以硫化锌精矿为原料。硫化锌不能被廉价的、最容易获得的碳质还原剂还原,也不容易被廉价的,并且在浸出—电积湿法炼锌

沸腾炉的设计

沸腾炉的设计----设计内容之三 第三章沸腾焙烧炉的设计计算 由于热平衡计算中,在计算炉子的热损失时需要知道沸腾全部炉壁与炉顶的总表面积。所以在热平衡计算之前应先沸腾炉主要尺寸的计算。 3.1、沸腾焙烧炉主体尺寸的计算 (一)沸腾焙烧炉单位生产率的计算 在计算沸腾炉炉床面积时,本例题所采用的炉子单位生产率不按生产实践数字选取而是按理论公式(6-2-1)进行计算。 单位生产率A= (6-2-1) 式中:1440——一天的分钟数; ——系数,介于0.93-0.97之间; ——单位炉料空气消耗量,; ——最佳鼓风强度,。 (6-2-1)式中只有不知道,根据研究结果 =(1.2~1.4)k (6-2-2) 式中,k——最低鼓风强度,,根据理论 (6-2-3) 式中:——物料间自由通道断面占总沸腾层断面的比率,一般介于0.15-0.22,对硫化物取0.15,对粒状物料如球粒取0.22;0.15 ——单位体积的鼓风量在炉内生成的炉气量,

-——炉料的比重,4000 ; ——炉气重度, = =1.429 ; ——通过料层炉气的算术平均温度, = =460℃; ——物料粒子平均粒度,米。 根据已知精矿的粒度组成,精矿中大粒部分: 粒度 0.323㎜ 10%(33%) 0.192㎜ 20%(67%) 共计 30%(100%) =0.9 =0.9(0.67×0.192+0.33×0.323)=0.212㎜ 精矿中细粒部分: 粒度 0.081㎜ 35%(50%) 0.068㎜ 35%(50%) 共计 70%(100%) =0.9 =0.9(0.50×0.068+0.50×0.081)=0.067㎜ 对全部精矿: 大粒部分 0.212㎜ 30% 细粒部分 0.067㎜ 70% = × =0.32 物料粒子平均粒度按经验公式计算,对混合料,≤0.415 时,

蓄热式焙烧炉说明书

一,设备简介 蓄热式燃烧器是在极短时间内把常温空气加热,被加热的高温空气进入炉膛后,卷吸周围炉内的烟气形成一股含氧量大大低于21%的稀薄贫氧高温气流,同时往稀薄高温空气附近注入燃料,燃料在贫氧(2%~20%)状态下实现燃烧。同时,炉膛内燃烧后的热烟气经过另一个蓄热式燃烧器排空,将高温烟气显热储存在另一个蓄热式燃烧器内。工作温度不高的换向阀以一定的频率进行切换,常用的切换周期为 30~200秒。两个蓄热式燃烧器处于蓄热与放热交替工作状态,从而达到节能目的。 1.实现了蓄热体温度效率、热回收率和炉子热效率三高 作为一个回收烟气余热的燃烧系统,温度效率、热回收率和炉子热效率可以说是衡量它热工性能优劣的主要指标。国内外大量生产实际的测试数据表明,在适当的换向周期下,经过蓄热体后的高温空气温度和进入蓄热体的烟气温度十分接近,仅差100℃左右,温度效率高达95%左右,热回收率为80%左右。炉子热效率得到了较大的提高。 2 . 加热质量好,氧化烧损小 由于高温空气燃烧技术是属于低氧空气燃烧范畴,而且助燃空气的切入点和燃料切入点与传统的燃烧方法不一样,从而避免了高温火焰过分集中造成的炉内各区域温差大的弊病,同时也减少了高温氧化烧损的可能性。由于炉温的均匀程度大大提高,被冶炼的物料加热质量得到了充分保证。

3.节能效果显著 蓄热式燃烧系统与传统燃烧系统比,热回收率大大提高,节能效果特别明显,其节能率往往达到40~50%。这对于传统燃烧系统来说几乎是不可能的。 4.适用性较强,能用于多种不同工艺要求的工业炉 由于蓄热式燃烧系统的炉温均匀性好,炉温波动小,不存在高温区过分集中及火焰对工件的冲刷等问题,所以它的适用范畴较宽。目前己在大中型推钢式及步进式轧钢加热炉、均热炉、罩式热处理炉、辐射管气体渗碳炉、钢包烘烤炉、玻璃熔化炉、熔铝炉、锻造炉等工业炉上使用。不论是采用蓄热式燃烧器的炉子或蓄热式工业炉,在实际运行中都比较稳定可靠,取得了比较好的经济效益和社会效益。 5.建设投资相对不高,投资回收期短 从全国冶金行业已经改造或新建的二十余座蓄热式工业炉情况来看,将传统燃烧方式的工业炉改造为蓄热式工业炉的投资比仍采用传统燃烧方式的炉子要高,但是在同等要求下新建蓄热式工业炉与新建传统燃烧方式的工业炉投资基本相当或略有上升。蓄热式工业炉与传统燃烧方式工业炉在建设投资的比较上并没有显示较大的优势,但是在投资回收期的缩短上体现了强劲的优势。如果考虑到由于炉温均匀而导致加热质量提高、氧化烧损减少,由于加热能力的提高导致产量的增加等方面的收益,则综合经济效益更加可观。 二,主要技术参数

碳材烘干方案

碳材烘干生产线电气方案 碳才烘干线由沸腾炉、烘干窑、除尘器系统组成,要求对整个生产线具有联动、分动的功能,远程能控制生产线的所有操作和数据监控,自动记录生产数据形成报表,现场也要单独能手动控制。电气控制框图如下:

下面从沸腾炉、烘干窑、除尘器系统依次说明: 一、沸腾炉:煤粉仓里的煤粉在圆盘输送机下均匀的送煤粉给炉子,炉子里的温度和压力都要检测,炉子出口有温度检测,此温度高了,要减少煤粉的供应,同时调节高压分机的风量,单位时间内风量和炉温直接决定了下流所需的能量,下流煤粉量大,沸腾炉要给出的能量就要线性比例的增大,具体下流烘干炉需要多少的能量都可以计算出来的,Q=CM(t2-t1) Q----热量C----物体的比热(查表) t2---物体最后温度t1---物体初始温度,显然当知道了单位质量被烘干的物体从窑顶到窑底的时间,再知道窑的入口和出口的温度,热量就知道了,沸腾炉根据下流要求自动调整煤粉的供应和高压风机风量的调整,这里是个闭环的PID自动调节。煤粉仓要监控仓内的温度、CO检测、O2检测、煤粉挥发含量等,煤粉在一定温度遇到空气时容易自然,同时仓内煤粉颗粒悬浮在仓顶容易爆炸,在仓内温度明显升高时要通入CO2,有火光时要做清仓处理。仓内有上下料位仪,用来控制煤粉进仓。PLC的I/O点如附件。 二、烘干窑:烘干窑在生产前先要烘窑保温,炉体本身消耗的热量要计算在内,单位时间内要烘干多少质量,都是有热量交换计算好的,一般情况下都是由沸腾炉提供稳定的热量给烘干窑,烘干窑的送料振动电机有慢到快往上调节,同时检测出口的材料的干燥程度和温度,出口如果干燥了,但是出口材料温度还高,说明材料在炉内行走

相关文档
相关文档 最新文档