文档库 最新最全的文档下载
当前位置:文档库 › 第一章 双馈电机的工作原理

第一章 双馈电机的工作原理

第一章 双馈电机的工作原理
第一章 双馈电机的工作原理

第一章双馈电机的基本工作原理

设双馈电机的定转子绕组均为对称绕组,电机的极对数为p ,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速1n 称为同步转速,它与电网频率1f 及电机的极对数p 的关系如下:

p

f n 1

160=

(1-1)

同样在转子三相对称绕组上通入频率为2f 的三相对称电流,所产生旋转磁场

相对于转子本身的旋转速度为:

p

f n 2

260=

(1-2)

由式1-2可知,改变频率2f ,即可改变2n ,而且若改变通入转子三相电流的

相序,还可以改变此转子旋转磁场的转向。因此,若设1n 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持常数==±12n n n ,见式1-3,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为1f 不变。

常数

==±12n n n

(1-3)

双馈电机的转差率1

1n n n S -=,则双馈电机转子三相绕组内通入的电流频率

应为:

S

f pn f 12260

==

(1-4)

公式1-4表明,在异步电机转子以变化的转速转动时,只要在转子的三相对

称绕组中通入转差频率(即S f 1)的电流,则在双馈电机的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。

根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:

1. 亚同步运行状态:在此种状态下1n n <,由转差频率为2f 的电流产生的

旋转磁场转速2n 与转子的转速方向相同,因此有12n n n =+。 2. 超同步运行状态:在此种状态下1n n >,改变通入转子绕组的频率为2f 的

电流相序,则其所产生的旋转磁场的转速2n 与转子的转速方向相反,因此有12n n n =-。

3. 同步运行状态:在此种状态下1n n =,转差频率02=f ,这表明此时通入

转子绕组的电流频率为0,也即直流电流,与普通的同步电机一样。

1.1等效电路

下面从等效电路的角度分析双馈电机的特性。首先,作如下假定: 1. 只考虑定转子的基波分量,忽略谐波分量;

2. 只考虑定转子空间磁势基波分量;

3. 忽略磁滞、涡流、铁耗;

4. 变频电源可为转子提供能满足幅值、频率、功率因数要求的电源,不计

其阻抗和损耗。

在等效电路中,发电机定子侧电压电流的正方向按发电机惯例,转子侧电压电流的正方向按电动机惯例,电磁转矩与转向相反为正,转差率S 按转子转速小于同步转速为正,参照异步电机的分析方法,可得双馈发电机的等效电路,如图1-1所示:

图1-1 双馈发电机等效电路图

根据等效电路图,可得双馈发电机的基本方程式:

?????????-=-==???

?

?

?++-=+--=m m m I I I jX I E E jX s R I E s U jX R I E U

'21

'21'2

'2'2'2'

211111)()( (1-5)

式中:

● 1R 、1X 分别为定子侧的电阻和漏抗

● '2R 、'2X 分别为转子折算到定子侧的电阻和漏抗

● m X 为激磁电抗

● 1U 、1E 、1

I 分别为定子侧电压、感应电势和电流 ● '2E 、'2

I 分别为转子侧感应电势,转子电流经过频率和绕组折算后折算到定子侧的值。

● '2U 转子励磁电压经过绕组折算后的值,s U /'2 为'2

U 再经过频率折算后的值。

1.2功率传输关系

假设风力机轴上输入的净机械功率(扣除损耗后)为m P ,发电机定子向电网输出的电磁功率为1P ,转子输入/输出的电磁功率为2P ,s 为转差率,转子转速

小于同步转速时为正,反之为负。

由于转子电磁功率122222*sP I sE I E P s ===,因此,转子电磁功率又称为转差功率。机械功率121)1(P s P P P m -=-=。在上述两公式的基础上,计算电磁转矩与机械转矩。

11

111

1

)1(T n P n

P n

P s n P T n n m m ==

=

-=

=

(1-6)

由式1-6可见,机械转矩与电磁转矩在数值上其实是相等的。

1.2.1 超同步运行状态

顾名思义,超同步就是转子转速超过电机的同步转速时的一种运行状态,我们称之为正常发电状态。(因为对于普通的异步电机,当转子转速超过同步转速

时,就会处于发电机状态)

图1-2 超同步运行时双馈电机的功率流向

由于发电机是超同步运行,所以0

剩余的功率通过转子电磁功率2P 输到电网。

1.2.2 亚同步运行状态

即转子转速低于同步转速时的运行状态,我们可以称之为补偿发电状态(在亚同步转速时,正常应为电动机运行,但可以在转子回路通入励磁电流使其工作于发电状态)

图1-3 亚同步运行时双馈电机的功率流向

由于发电机是亚同步运行,所以0>s ,此时机械功率m P 小于定子电磁功率1P ,

需要通过转子电磁功率2P 输入部分功率,不足两者之间的功率差。

附录A 频率归算

设感应电机的转子绕组其端电压为2U ,此时根据基尔霍夫第二定律,可写出转子绕组一相的电压方程: 2

22

22)(U jsX R I E s s -+=σ

=〉

s

U jX s

R I s

E s

s 22222)(-

+=σ

=〉s

U jX s

R I E s 22222)(-+=σ

(A-1)

式中,s I 2 为转子电流;2R 为转子每相电阻。图1-1表示与式A-1相对应的转子

等效电路。s

E E s 22 =为转子不转时的感应电动势。

附录B 绕组归算

所谓绕组归算,就是用相数,有效匝数和定子绕组完全相同的等效转子绕组,去代替原来的相数2m 、有效匝数为22ωk N 的转子绕组。在绕组归算时,应保持转子绕组具有同样的电磁效应,即转子磁动势的大小和相位、转子的功率、损耗和漏磁场的储能等均保持不变。以下的归算量都用加” ’ ”的量表示。

设'2I 为归算后的转子电流,为了达到绕组归算前、后转子磁动势幅值不变的要求,应有:

p

I k N m p

I k N m '

2

222'

2

1119

.029

.02

ωω= (B-1)

于是,i

k I I k N m k N m I 22111222'2=

=ωω

(B-2) 式中,2

22111ωωk N m k N m k i =

,称为电流比

(B-3)

归算后,转子的有效匝数已变换成定子的有效匝数,所以归算后转子的电动势'2E 应为:

222

211'

2E k I k N k N E e ==

ωω

(B-4) 式中,2

211ωωk N k N k e =

,称为电压比

(B-5)

根据等效电路的转子电压方程,再次改写如下:

s

U jX

s

R I s U k jX s R k I k k s U jX s R I k E k E e i i e e e '

2'2'

2'

2

2

22222222'2)(

)()(-

+=-???? ??+=??? ?

?-+==σ

σσ (B-6)

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

三相双速异步电动机控制电路

三相双速异步电动机控制电路

————————————————————————————————作者:————————————————————————————————日期:

一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 双速电机的变速原理是: 电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。 如你单位的双速电机(风机),平时转速低,有时风机就高速转,主要是通过外部控制线路的切换来改变电机线圈的绕组连接方式来实现。 1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对数; 2、在定子槽内嵌有两个不同极对数的独立绕组; 3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。 (一)双速电机定子接线图 三相双速异步电动机的定子绕组有两种接法:△接和YY接法,如下图所示。

双馈发电机工作原理

第七章双馈风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。 通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。 改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位臵上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。 交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。 一、双馈电机的基本工作原理 设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的 n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速 1

双馈风力发电机工作原理.docx

我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机, 由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属 于异步机的范畴,但是由于其有独立的励磁绕组,可以像同步电机一 样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步 化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以 同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位。这 说明交流励磁电机比同步电机多了两个可调量,通过改变励 磁频率,可改变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释 放或者吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这 就改变了发电机电势与电网电压相量的相对位置,也就改变了电机的 功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅 可以调节无功功率,也可以调节有功功率。 双馈电机的定转子绕组均为对称绕组,电机的极对数为p, 根据 旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相 电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的 转速 n 1称为同步转速,它与电网频率 f 1及电机的极对数 p 的关系如下:

n160 f 1 P 同样在转子三相对称绕组上通入频率为 f 2的三相对称电流,所产生的旋转磁场相对于转子本身的旋转速度为: n260 f 2 P 由上式可知,改变频率 f 2,即可改变 n 2, 而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设 n1为对应于电网频率为 50Hz 时双馈发电机的同步转速,而 n 为电机转子本身的旋转速度,则只要维持 n±n2=n1=常数,则双馈电机定子绕组 的感应电势,如同在同步发电机时一样,其频率将始终维持为 f 1不变。 n±n2=n1=常数 n1n S 双馈电机的转差率n1,则双馈电机转子三相绕组内通入的电流频率应为: Pn 2P( n1n) Pn1n1n f 2 6060n1sf 1 60 根据上式表明:在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即 f 1S)的电流,则在双馈电机的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。 根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:(1)亚同步运行状态。在此种状态下 n

双速电机

双速电机的变速原理是: 电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。 如你单位的双速电机(风机),平时转速低,有时风机就高速转,主要是通过外部控制线路的切换来改变电机线 圈的绕组连接方式来实现。 1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实 现变更磁极对数; 2、在定子槽内嵌有两个不同极对数的独立绕组; 3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。 三相异步电动机维护说明 一、概述: 新乡市新电电机有限公司主要生产振动电机、制动电机、力矩电机、变频调速电机、多速电机、普通Y系列电机等几 大系列,同时开发定做各种电压、频率、绝缘等级、防护等级等非标异型电机。 二、使用条件: 环境空气温度:-15℃~+40℃ 相对湿度:小于90%25℃ 海拔高度:不超过1000m 电源频率:50H z 电压:380V 工作方式:S I连续 注:特殊电机以铭牌为准 接法:3K W及以下Y接法;4K W及以上△接法特殊电机以铭牌为准。 绝缘等级:B级或F级 三、安装前的准备: 1、电动机安装前应检查是否完整无损,有无受潮的迹象。 2、安装前应小心清除电机上的尘土及轴伸的防锈层。 3、检查电动机的铭牌数据是否符合要求。 4、仔细检查电动机在运输过程中,有无变形损坏,紧固件是否松动脱落,试用手转动电动机轴是否灵活。 5、安装前应检查电动机是否漏电,如有此现象应立即妥善处理。 6、用500V兆欧表测量绝缘电阻,其值不应低于0.5兆欧,否则应对定子绕组进行干燥处理。干燥处理的温度不允 许超过120℃。 四:电动机的安装 1、电动机允许用联轴器、正齿轮及皮带轮传动,但对4K W以上的2极电动机和30K W以上4极电动机不宜采用皮带传 动。如选用小皮带轮,可扩大三角皮带的传动范围。双轴伸电动机的风扇端,仅允许用联轴器传动。 2、采用皮带传动时,电动机轴中心线与负载轴中心线平行且要求皮带中心线与轴中心线垂直;采用联轴器传动时, 电动机轴中心线与负载轴中心线应重合。 3、对立式安装的电动机,轴伸除皮带轮或相当与普通皮带轮负荷外不允许再带其它任

项目六双速电动机控制系统的安装解析

项目六 双速电机控制电路安装 一、工作场景 某型号机床变速运行采用2Y /△接法双速电动机变极调速,请按照电气图纸完成双速电动机变极调速控制电路的安装与调试。 二、能力目标 知识目标 1.了解三项异步电动机变极调速原理; 2.掌握双速电机控制电路的原理。 技能目标 1.学会正确安装调试双速电机控制电路; 2.学会排查双速电机控制电路的故障。 情感目标 1.培养学生学习兴趣和探索精神; 2.培养学生的技能规范和专业素养。 三、项目描述 根据三相异步电动机的转速公式n=(1-s)60f/p ,可知电动机的转速可通过改变极对数p 、转差率s 和电源频率f 三种范式实现。双速电机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。2Y /△接法双速电动机变极调速通过控制外部控制线路的切换来改变电机线圈的绕组连接方式来实现。本项目采用继电-接触器控制方式即可实现变极调速运行控制。双速电机的外形结构和绕组连接图如图6-1(a)、(b)所示。 U2 U1V2 U2 W2 W1 L1 V1 L2 L3 V2 L3 L1U1V1 W1 W2

(a) 外形结构 (b) 三角形(低速)与双星形(高速)接法 图6-1 双速电动机的外形结构和绕组连接图 四、使用材料、工具 表6-1 工具、仪表及器材 五、项目实施 第一步熟悉双速电机控制电路(90分钟) 双速电机控制电路如图6-2所示。图中,按钮SB2和SB1分别控制电动机起动运行和停止,KM1、KM3控制电动机低速运行接触器,KM2 、KM3控制电动机高速运行接触器,KT为断电延时时间继电器,低压断路器QF为电源开关,熔断器FU和热继电器FR别作短路和过载保护用。

双馈发电机原理讲解

双馈发电机原理讲解

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 ●笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 ●绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 ●双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 ●永磁同步发电机 特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 ●直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

三. 双馈异步发电机原理 1. 旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负 载是对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2. 旋转磁场的转速和转向 以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。 ① ωt=0 o时,合成磁场方向:向下 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωω ω

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构 第一节精编资料 本章主要介绍同步电机的结构和基本工作原理,同步电机的电动势和磁动势,异步电动...二,同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场... 原理,结构 同步电机的基本工作原理和结构 本章主要介绍同步电机的结构和基本工作原理、同步电机的电动势和磁动势、异步电动机的电势平衡,磁势平衡、等值电路及相量图、功率转矩、同步发电机运行原理等内容。本章共有10节课,内容和时间分配如下: 1.掌握同步电机的结构特点及工作原理。(2节) 2.掌握同步电机绕组有关的结构、额定参数(1节) 3.掌握同步电机机绕组的磁动势、等效电路,一般掌握相量图。(3节) 4.掌握同步电机功率、转矩和同步电机启动特性。(2节) 5.了解同步发电机的运行原理。(2节) 一、简介 交流电机,根据用途,可以分为同步发电机、同步电动机和同步补偿机三类。 (交流电能几乎全部是由同步发电机提供的。目前电力系统中运行的发电机都 是三相同步发电机。 同步电动机可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中也得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。

同步补偿机实质上是接在交流电网上空载运行的同步电动机,其作用是从电网汲取超前无功功率来补偿其它电力用户从电网汲取的滞后无功功率,以改善电网的供功率因数。) 二、同步电机的工作原理 1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场和转子旋转磁场。定子旋转磁场—又常称为电枢磁势,而相应的磁场称为电枢磁场60f1n,速度:同步速度,即 1p 方向:从具有超前电流的相转向具有滞后电流的相。 形成原因:以电气方式形成。 (当对称三相电流流过定子对称三相绕组时,将在空气隙中产生旋转磁通势。它的旋转速度 60f1n,1p为同步速度,即;它的旋转方向是从具有超前电流的相转向具有滞后电流的相;当某相电流达到最大值的瞬间,旋转磁势的振幅恰好转到该相绕组轴线处。这个旋转磁通势是以电气方式形成的。同步电机不论作为发电机运行还是作为电动机运行,只要其定子三相绕 组中流通对称三相电流,都将在空气隙中产生上述旋转磁通势,建立旋转磁场。同步电机的定子绕组被称为电枢绕组,因此,上述磁势又常称为电枢磁势,而相应的磁场称为电枢磁场。转子旋转磁场—直流励磁的旋转磁场。 60f1n, 速度:同步速度,即1p 方向:与定子相同。 形成原因:机械方式形成。 (在同步电机的转子上装有由直流励磁产生的磁极,磁极与转子无相对运动。当转子旋转时, 以机械方式形成旋转磁通势,并在气隙中形成另一种旋转磁场。由于磁场随转子一同旋转,被称为直流励磁的旋转磁场。) 2 电动势—两个旋转磁场切割绕组产生。

双馈发电机工作原理

双馈发电机工作原理 双馈风力发电机是时下应用比较广泛的风机,它的特殊之处在于其定子绕组和转子绕组都直接或间接地与电网相连,定子侧绕组产生的工频交流电直接馈入电网,转子侧的功率通过整流逆变装置上网。与一般的异步发电机相比,双馈风机允许发电机转速在一定范围内波动,因为转子侧(相当于励磁绕组)中电流的大小和频率可以通过整流逆变装置进行调节,从而在转速发生变化的情况下,维持定子侧输出功率频率的恒定。 暂态建模资料 摘要 随着风力发电并网容量的快速增加,风电接入对电网运行性能的影响越加 明显。联网运行双馈感应风电机组的运行特性对电网的安全稳定运行有着重要 的影响。 本文对联网运行双馈感应风电机组的仿真建模、运行控制及模型的有效性 进行了研究分析,主要包括以下内容: 分析了两相同步旋转坐标系下双馈感应风电机组数学模型的特点,建立了 双馈感应风电机组联网运行电磁暂态模型,对不同运行条件下双馈感应风电机 组的运行特性进行了仿真模拟,深入了解了双馈感应风电机组的联网运行特性。 建立了联网运行双馈感应风电机组运行控制策略,在此基础上,构建了控 制系统传递函数模型,分析了PI控制器参数选择对控制系统性能的影响,提出 了PI控制器参数设置的方法。 提出了电网发生对称性故障时双馈感应风电机组的短路电流计算简化模 型,为评估双馈感应风电机组短路对电网继电保护装置的影响提供了有效的计 算模型。 设计了风电机组联网短路试验方案,分析了短路试验数据识别出风电机组 厂家未提供的风电机组撬杠保护动作值,并仿真重现了风电机组联网短路试验, 仿真数据与试验数据相吻合,验证了所构建系统模型和仿真系统的有效性。 研究现状 由于风能是一种随即性很强的一种能源,不能像火力发电、水力发电那样 可以预先调度,因此大规模的风力发电的接入对电网的经济、安全、稳定运行 带来了诸多不利的影响,对系统调频、调压、调峰带来了困难。同时由于风电 机组大多包含有对运行条件要求很高的电力电子变流器,在一些运行方式下电 网的扰动对风电机组的正常运行也会带来一定的影响,严重时可能会引起风电 机组跳闸,造成电网功率大幅波动,威胁着电网的运行安全,而从系统持续运 行的角度考虑,通常希望风电机组具有一定的故障穿越能力,能够在一定的故 障情况下持续联网运行,因此对联网运行风电机组的运行特性,需要进行深入 的研究。 目前联网运行的风电机组可分为恒速恒频风电机组(CSCF)及变速恒频风 电机组(VSCF)两种,恒速恒频风电机组是指在发电过程中保持转速不变的风 电机组,所采用的发电机主要是同步发电机及鼠笼式感应发电机,前者运行于同步转速,

双速电机接线图及控制原理分析

双速电机接线图及控制原理分析 一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。 下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析(双速电机接线图如下图)

1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的

双馈发电机原理讲解完整版

双馈发电机原理讲解 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机 特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

三. 双馈异步发电机原理 1.旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是 对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2.旋转磁场的转速和转向 以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。 ① ωt=0 o 时,合成磁场方向:向下 ② ωt=60o 时,合成磁场方向顺时针转过60o 。 ③ωt=120o 时,合成磁场方向顺时针又转过60o ,共120 o 。 ④ωt= 180o 时,合成磁场方向顺时针又转过60o ,共180 o 。 当三相对称电流通入三相对称绕组,必然会产生一个大小不变,且在空间以一定的转速不断旋转的旋转磁场。一个电流周期,旋转磁场在空间转过360°。则一个电流周期,旋转磁场在空间转过360°。 则160f n s =/P (转/分) 旋转磁场的旋转方向由通入三相绕组中的电流的相序决定的。即当通入三相对称绕组的对称三相电流的相序发生改变时,即将三相电源中任意两相绕组接线互换,旋转磁场就会改变方向。 3.变速恒频发电原理 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωω ω

同步电机原理和结构

每相感应电势的有效值为

(15.2) ◆ 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速 从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: (15.3) ◆要使得发电机供给电网50Hz 的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min ,4极电机的同步转速为1500r/min ,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 ? 西安交通大学电机教研室 版权所有,侵权必究 2000.12?

水轮发电机 水轮发电机的特点是:极数多,直径大,轴向长度短,整个转子在外形上与汽轮发电机大不相同。大多数水轮发电机为立式。水轮发电机的直径很大,定子铁心由扇形电工钢片拼装叠成。为了散热的需要,定子铁心中留有径向通风沟。转子磁极由厚度为1~2mm 的钢片叠成;磁极两端有磁极压板,用来压紧磁极冲片和固定磁极绕组。有些发电机磁极的极靴上开有一些槽,槽内放上铜条,并用端环将所有铜条连在一起构成阻尼绕组,其作用是用来拟制短路电流和减弱电机振荡,在电动机中作为起动绕组用。磁极与磁极轭部采用 T 形或鸽尾形连接,如图15.4所示。 隐极式转子 隐极式转子上没有凸出的磁极,如图15.2b 所示。沿着转子本体圆周表面上,开有许多槽,这些槽中嵌放着励磁绕组。在转子表面约1/3部分没有开槽,构成所谓大齿,是磁极的中心区。励磁绕组通入励磁电流后,沿转子圆周也会出现 N 极和 S 极。在大容量高转速汽轮发电机中,转子圆周线速度极高,最大可达170米/秒。为了减小转子本体及转子上的各部件所承受的巨大离心力,大型汽轮发电机都做成细长的隐极式圆柱体转子。考虑到转子冷却和强度方面的要求,隐极式转子的结构和加工工艺较为复杂。

双馈发电机原理讲解

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机

特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。 三. 双馈异步发电机原理 1. 旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是对 称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2. 旋转磁场的转速和转向 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωωω

双馈发电机原理讲解

双馈发电机原理讲解 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机

特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。 三. 双馈异步发电机原理 1. 旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是 对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2. 旋转磁场的转速和转向 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωωω

双速电机自动控制电气原理简要说明

双速电机自动控制电气原理简要说明 设备简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 控制电路 1、合上低压电断路器QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动 机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,此时中间继电器KA,时间继电器KT的线圈都 通电并自锁,经时间继电器设定的时间后,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。同时交流接触器KM2、KM3线圈通电,辅助触点KM3自锁,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 4、FR为电动机△运行和YY运行的过载保护元件。 5、此控制回路中KM2、KM3的常闭触点与KM1线圈串联,KM1常闭触点与KM3线圈串联, 这种控制就是接触器的互锁控制,保证△与YY两种接法不可能同时出现,保证电路正常工作和电路安全。 行业现状 双速电机主要用于煤矿、石油天然气、石油化工和化学工业。此外,在纺织、冶金、城市煤气、交通、粮油加工、造纸、医药等部门也被广泛应用。双速电机作为主要的动力设备,通常用于驱动泵、风机、压缩机和其他传动机械。 随着科技、生产的发展,存在爆炸危险的场所也在不断增加。例如,近年来我国公路发展迅速,一大批燃油加油站出现,也给双速电机提供了新的市场。

无刷双馈电机控制原理

无刷双馈电机控制原理 一、设备名称 1250KW无刷双馈电机低压变频控制系统 二、设备用途 本设备用于电机厂1250kw无刷双馈电机低压绕组测变频控制 三、现场技术条件及技术参数 1、环境条件 ·工作环境温度:0--40摄氏度 ·存储环境温度:-25-- 55摄氏度 ·相对湿度:<95%(无凝露) ·环境等级/ 有害化学物质:Class 3K3,符合标准 EN 60721-3-3 ·有机体 / 生物体影响因素:Class 3B1,符合标准 EN 60721-3-3 ·污染等级:2 (EN 61800-5-1) 2、电源 ·660 — 690 V 3 AC, ±10 % (-15 % < 1 min) ·不平衡度±5 % 3、无刷双馈同步电动机技术参数 3、1电机型号:TWS630-8 3、2额定功率:1250KW 3、3额定转速:743r/min 3、4满载效率:95、1% 3、5工频绕组额定电压:6kV 3、6工频绕组额定频率:50Hz 3、7工频绕组额定电流; 100A

3、8工频绕组功率因数:0、84 3、9变频绕组额定电压:690V 3、10变频绕组额定频率: 25Hz 3、11变频绕组额定电流; 528A 3、12变频绕组功率因数: 0、8 4.变频调速装置技术参数 4、1额定功率:450 kW 4、2额定输入电压: 690V 4、3额定输入电流:598 A 4、4额定输入频率:50 Hz 4、5额定输出电压:690 V 4、6额定输出电流:560 A 4、7额定输出频率:25 Hz 5、变频器供电变压器技术参数 5、1产品型号及名称_ZTSFG(H)-800-6__ 5、2额定容量___ _800______kVA 5、3高、低压额定电压___6___ / _0、69__ kV 5、4高压分接范围_____±2×2、5__ _% 5、5短路阻抗________6________% 5、6相数________3________ 5、7绕组数________3________ 5、8频率________50_______Hz 5、9使用条件 5、9、1海拔________1000_____m 5、9、2环境温度________-10~40__℃

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。

2、三相异步电动机的转子: 转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明:

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钻永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机

永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转子的转速总是小于旋转磁场(由定子绕组电流产生)的转速。因此,转子看起来与定子绕组的电流频率总是“不一致”,这也是其为什么叫异步电机的原因。 相比于永磁同步电机,异步电机的优点是成本低,工艺简单;当然其缺点就是其功率密度与转矩密度要低于永磁同步电机。而特斯拉Models为何选用异步电机而不是永磁同步电机,除了控制成本这个主要原因之外,较大的Models车体能够有足够空间放的下相对大一点的异步电机,也是一个很重要的因素。 永磁同步电动机怎样产生动力? 在交流异步电动机中,转子磁场的形成要分两步走:第一步是定子旋转磁场先在转子绕组中感应出电流;第二步是感应电流再产生转子磁场。在楞次定律的作用下,转子跟随定子旋转磁场转动,但又“永远追不上”,因此才称其为异步电动机。如果转子绕组中的电流不是由定子旋转磁场感应的,而是自己产生的,则转子磁场与定子旋转磁场无关,而且其磁极方向是固定的,那么根据同性相斥、异性相吸的原理,定子的旋转磁场就会拉动转子旋转,并且使转子磁场及转子与定子旋转磁场“同步”旋转。这就是同步电动机的工作原理。 根据转子自生磁场产生方式的不同,又可以将同步电动机分为两种: 一是将转子绕组通上外接直流电(励磁电流),然后由励磁电流产生转子磁场,进而使转子与 定子磁场同步旋转。这种由励磁电流产生转子磁场的同步电动机称为励磁同步电动机。 二是干脆在转子上嵌上永久磁体,直接产生磁场,省去了励磁电流或感应电流的环节。这种由永久磁体产生转子磁场的同步电动机,就称为永磁同步电动机。

相关文档