文档库 最新最全的文档下载
当前位置:文档库 › 旋转机械振动故障诊断理论与技术进展综述_冯志鹏

旋转机械振动故障诊断理论与技术进展综述_冯志鹏

振动与冲击

第20卷第4期J OURNA L OF VIBR ATION AND SHOCK Vol.20No.42001旋转机械振动故障诊断理论与技术进展综述*

冯志鹏宋希庚薛冬新谢宇邓东风

(大连理工大学内燃机研究所,大连116024)(中国石油锦州石化分公司机动设备处,锦州121001)

摘要非线性理论、信号处理、知识工程和计算智能等学科的发展,丰富了故障诊断的内容。总结了旋转机械故障机理、征兆提取和诊断推理等方面的一些进展情况。

关键词:旋转机械,故障诊断

中图分类号:TH113

0引言

大型旋转机械如风机、压缩机和汽轮机等设备,是石油、化工、冶金和电力等现代企业中的关键生产工具,对这些设备开展状态监测与故障诊断工作,保障设备安全可靠的运行,可以取得巨大的经济效益和社会效益。大型旋转机械的故障常在振动状况方面体现出来,因此,根据振动信号进行监测与诊断目前仍是设备维护管理的主要手段,经过多年的发展与完善,旋转机械振动故障诊断已经形成了比较完备的理论与技术体系。近年来,随着非线性理论的发展,尤其是信号处理、知识工程和计算智能等理论技术与故障诊断的融合渗透,使旋转机械振动故障诊断的内容得到了进一步的丰富与充实。

1故障机理研究

旋转机械在发生故障时,往往在振动状况方面得到体现。许多专家学者应用转子动力学理论对旋转机械的故障机理进行了研究,为旋转机械振动故障诊断奠定了基础。

发生故障的旋转机械在运行中一般处于非线性振动状态,陈予恕等[1]应用非线性动力学理论,针对发电机组轴系存在的关键振动问题,建立了转子非线性动力学模型,从理论、试验和数值计算等方面,对各种故障因素影响下的动力学行为进行了综合分析,提出了对轴系振动故障进行综合治理的方案。

高金吉[2]对高速涡轮机械振动故障机理进行了研究,探讨了振动主导频率与产生振动的直接原因之间的关系,编制了亚异步、同频、超异步振动故障原因、机理及识别特征表格,给出了在设计制造、安装维修、运行操作、机器劣化等方面产生故障的主要问题及防治方法。

文献[3]阐述了旋转机械常见故障,如不平衡、不对中、弯曲、裂纹、松动、碰摩、喘振、油膜涡动、油膜振荡、旋转失速等故障的产生机理,以表格的形式总结出了各种故障与振动特征、敏感参数和故障原因之间的对应关系,给出了相应的治理措施。

2故障征兆提取

旋转机械的振动信号反映了设备的运行状况,其时域、频域和幅值域分析结果均可以作为故障征兆。由于以快速Fourier变换(FFT)为基础的数字信号处理技术在机械动力学中应用广泛,测试分析方法已经达到了比较完善的程度,而且,旋转机械的振动信号在频域内的能量分布具有比较明显的特点,因此,目前的旋转机械故障诊断仍以振动信号的频域特征作为主要的故障征兆。

2.1功率谱估计

旋转机械振动信号在频域内具有明显的分布特征,因此,各种功率谱估计技术在故障征兆的提取中得到了广泛应用。其中,经典功率谱估计方法(如周期图法、自相关法)在工程实践中应用最为广泛,但是,该方法存在着方差性能差,分辨率低等局限。现代功率谱估计中的最大熵谱估计和参数模型功率估计(如AR、MA、ARMA和Prony模型)提高了频率分辨率,在振动信号的分析中也得到了应用。对于平稳信号而言,其频域的能量分布不随时间变化,上述功率谱估计方法可以满足精度要求。

2.2时频分析

旋转机械在升降速过程中的振动信号为非平稳信号,为了获得信号相对于频率和时间的变化规律,提高分析结果的精度,需要采用时频分析技术,如短时Fourier变换(SFFT)、Wigner_Ville分布(W VD)和小波(Wavelet)分析等。其中,短时Fourier变换用窗函数将

*收稿日期:2001-04-19

第一作者冯志鹏男,博士研究生,1973年生

信号截短,将每小段信号视为平稳过程来进行谱估计,从而得到功率谱随时间变化的大致规律,转速谱阵即是该方法的一种变化形式;Wigner_Ville分布真正将一维的时间或频率函数映射为时间-频率的二维函数,比较准确地反映了信号能量随时间和频率的分布情况,但是该方法存在频率干涉现象,难以将含有多成分的信号表示清楚;小波分析是适应信号处理的实际需要而发展起来的一种时频分析方法,与传统的信号处理方法相比,小波变换在时域和频域同时具有良好的局部化特征,目前,基于小波包和多分辨分析的小波分析方法已经在旋转机械的故障征兆提取中得到了研究和应用[4,5]。

2.3其它方法

为了尽可能全面地获得设备的运行状态信息,提取故障征兆,针对旋转机械还有一些其它的分析技术。

(1)轴心轨迹

轴心轨迹是旋转机械状态监测的重要参数,该参数不但能够显示转子轴径相对滑动轴承位移,反映轴承的预负荷,而且还可以提供转子的涡动频率和进动方向。

(2)全息谱

全息谱[6]能够反映转子弯曲和扭转振动的形式,是针对旋转机械故障征兆提取而提出的一种方法。该技术在FFT算法的基础上,通过内插技术,精确求得按自由方式采集的振动信号的幅值、频率和相位值,然后将转子截面水平和垂直方向振动信号的幅值、频率和相位信息进行集成,用合成的一系列椭圆来刻划不同频率分量下的转子振动行为。全息谱包括二维全息谱、三维全息谱和全息谱阵。全息谱技术与传统的谱分析方法不同,构造了多支承转子系统的单一截面和整机振动分析方法,利用转子在相互垂直的两个方向振动之间的相互关系,可以了解转子的振动全貌,体现了诊断信息的全面利用,综合分析的思想。

(3)角域分析

该方法适用于旋转机械的非平稳状态分析,实现的必要技术是对数据采集进行反馈控制,使采样频率跟踪转速变化,将相对频率非平稳的信号转变成相对转子转角为平稳的信号,在信号幅值相对时间变化平稳的假设前提下,对数据进行谱分析,阶次跟踪分析的依据就是这种原理[6]。

(4)分形维数

分形是非线性理论中的概念,它是事物的形状、形态、结构和组织的分解、分割、分裂与分析,分形是事物从整体向局部、从宏观向微观转化的过程。机械设备发生故障时,振动信号通常变得更为复杂、不规则,分形维数能够描述信号的复杂性和不规则性,研究表明,可以将其作为故障征兆来识别设备的状态。何正嘉等[7]结合小波分析对汽轮发电机组轴承发生松动故障前后振动信号的分形维数进行了计算,得到了不同的结果。吕志民等[8]在应用分形维数作为征兆参数对滚动轴承进行故障诊断研究之后得出结论,滚动轴承在不同的运动状态下具有不同的分形维数,分形维数可以作为识别轴承故障的特征量。

对于旋转机械中常见零部件(如滚动轴承、齿轮)的故障,还有专门的振动信号处理技术,如包络解调和倒谱分析等方法。为了从被噪声严重污染的信号中提取有用信息,时域滤波技术(如Kalman滤波和自适应滤波等)也在旋转机械的故障征兆提取中得到了应用。

3诊断推理

目前,诊断推理过程中采用的方法较多,按照它们隶属的学科体系,可以将故障诊断分为三类:(1)基于控制模型故障诊断;(2)基于模式识别故障诊断;

(3)基于人工智能故障诊断。

3.1基于控制模型的故障诊断

对于动态系统,若通过理论或实验方法能够建立模型,则系统参数或状态的变化可以直接反映设备物理系统或物理过程变化,为故障诊断提供依据。基于控制模型的故障诊断涉及模型建立、参数估计、状态估计和观测器应用等技术,其中,参数与状态估计技术是该方法的关键,需要系统的精确模型,在实际的生产环境中,对于复杂的设备而言,该方法不是经济可行的。

3.2基于模式识别的故障诊断

模式识别是对一系列过程或事件进行分类或描述,主要分为统计法和语言结构法两大类。设备的故障诊断即可以视为模式识别过程[9]:测量并记录设备的运行状态参数,从中提取故障征兆参数,对于不同的故障状态,相应的征兆参数形成不同的模式,将系统的状态模式与故障字典中的故障样本模式进行匹配,从而识别出设备的故障。当系统的模型未知或者非常复杂时,该方法为解决故障诊断问题提供了一种简便有效的手段。

3.3基于人工智能的故障诊断

基于人工智能故障诊断的研究主要成分为两类[10]:1)基于知识(符号推理)的故障诊断;2)基于神经网络(数值计算)的故障诊断。

(1)基于知识的故障诊断

基于知识故障诊断大致经历了两个发展阶段:基

37

第4期冯志鹏等:旋转机械振动故障诊断理论与技术进展综述

于浅知识(规则)的专家系统和基于深知识(模型知识)的专家系统。专家系统是一种人工智能软件系统,利用领域专家的经验知识,根据用户给出的关于问题的信息数据,按照一定的推理机制,从知识库中选择对于问题的最合理的解释。

基于知识的故障诊断专家系统具有如下优点:1)适合于模拟人的逻辑思维过程,解决需要进行逻辑推理的复杂诊断问题;2)知识可以用符号表示,在已知基本规则的情况下,无需大量的细节知识;3)便于模块化,个别事实变化时易于修改;4)便于与传统的符号数据库接口;5)能够解释推理过程。基于知识的故障诊断专家系统已经出现了许多成熟的商业软件,并且在工程实践中得到了应用,但仍存在一些问题:1)领域专家的知识主要依靠知识工程师人工移植,/知识瓶颈0问题难于解决;2)系统只能局限在相当窄的领域内,依靠的主要是浅知识,缺乏常识,即/知识窄台阶0问题;3)推理方式与策略不灵活,缺乏适应性,易产生/组合爆炸0、/无穷递归0等问题;4)智能水平低,缺乏自组织、自学习、联想记忆和类比推理等功能;5)对结构性很差的知识难以表达和处理;6)实时在线诊断性能差。

(2)基于神经网络的故障诊断

神经网络是试图模拟生物神经系统而建立起来的自适应非线性动力学系统,具有可学习性和并行计算能力,可以实现分类、自组织、联想记忆和非线性优化等功能。神经网络用于故障诊断领域,可以解决趋势预测和诊断推理问题。其中,诊断推理可以理解为根据特定的映射关系由故障征兆域到故障原因域的计算求解问题。对于复杂的机械系统而言,这种映射关系一般为非线性的,由于神经网络可以对各种映射进行有效的逼近,因此,可以用其解决诊断推理问题。将神经网络用于诊断推理,一般需要领域专家提供一系列范例(如标准的故障诊断实例)作为学习样本,若学习样本中只有输入状态而没有输出状态,系统可以通过自组织方式学习、分类。学习过程中,专家知识如启发性知识与推理方式等,均以非自然语言、非显式逻辑和非语言形式化的方式分布于网络互连与权值之中。经过大量标准样本学习的故障诊断系统,当输入特定的设备状态模式,网络将通过各神经元之间的互连与权值构成的大规模非线性并行处理模式进行计算,来实现隐含的专家知识的应用,最后生成诊断推理结果。

目前,在故障诊断中应用较多的有多层感知器(MLP)网络、自适应共振理论(ART)、自组织特征映射(FM)和双向联想记忆(BAM)等[11]。为了提高神经网络的工作性能,人们对网络的结构类型、学习算法和样本处理等问题进行了研究:应用模块化神经网络解决大规模复杂问题[12];应用剪枝法优化网络连接方式[13];将遗传算法[13]和混沌理论[14]应用于网络的学习训练中,解决局部极小问题;为提高网络的泛化能力、加快网络学习速度,在训练样本中加入噪声,或者对样本数据进行优化处理[15]。

基于神经网络的智能故障诊断具有如下优点:1)具有统一的知识表达形式,知识库组织管理容易,通用性强,便于移植与扩展;2)知识获取容易实现自动化(如自组织自学习);3)可以实现并行联想和自适应推理,对知识的完备性要求低,容错性强;4)能够表示事物之间的复杂关系(如模糊关系);5)可以避免传统专家系统的/组合爆炸0和/无穷递归0等问题;6)没有复杂的推理过程,可以实现实时在线诊断。神经网络应用于故障诊断也存在着一些问题:1)训练样本获取困难;2)忽视了领域专家的经验知识;3)连接权重形式的知识表达方式难于理解。

3.4其他方法

由于故障诊断正向智能化方向发展,因此人工智能领域的其他方法在诊断推理及诊断数据处理等方面也得到了应用。

(1)模糊理论

模糊逻辑模拟人类的逻辑思维方式处理具有模糊性的信息,适合于对复杂大系统作定性分析。运行中的设备由于受各种条件因素的影响,其故障与征兆之间的关系很难用精确的数学模型来描述,而且,设备的故障征兆也具有模糊性,因此,与传统的二值逻辑相比,应用模糊理论进行故障诊断更接近于人类的思维及语言表达方式。模糊故障诊断的基本过程如下:根据经验统计数据构造隶属函数L Y(x),建立诊断矩阵R,确定模糊算子/o0;由现场测量数据提取故障征兆X;求解模糊方程Y=XoR,得到诊断结论。(2)模糊神经网络

模糊逻辑主要模仿人脑的逻辑思维,具有较强的结构知识表达能力;神经网络模仿人脑神经元的功能,具有较强的自学习能力和数据处理能力。神经网络与模糊逻辑相结合,可以综合二者的优点,是近年来人工智能领域研究的一个新方向。文献[16]总结了模糊神经网络的结构类型、学习算法和实际应用,指出实用有效的学习算法是目前待解决的主要问题。徐飞云等[17]应用模糊神经网络对旋转机械故障诊断问题进行了探讨,研究表明该方法在处理分类边界模糊的数据时比传统的神经网络和模糊诊断方法具有更大的优越性。

(3)粗糙集理论

粗糙集理论是波兰学者Zdzisla w Pa wlak[18]于1982

38振动与冲击2001年第20卷

年提出的一种用于处理不完整不精确知识的数学方法,该理论不需要关于数据的任何初始或附加信息,直接对不完整不精确数据进行分析处理。该理论从不可分辨性出发,根据已知条件对给定问题的论域进行划分,提取在数据中隐藏的关系和规律,评价各属性对划分的重要性,并依此进行属性约简,从而以最简单的形式对知识进行表达。近年来,粗糙集理论发展迅速,已经在模式识别、机器学习、故障诊断、知识获取与发现、决策分析与支持等领域得到了应用[19,20]。应用粗糙集理论对设备的状态信息数据或者对已有的诊断规则进行分析处理,从而得到更为简明的故障诊断规则,对于实际的工程应用,以及开发智能故障诊断系统而言,均具有重要意义。

4结束语

故障诊断作为单独的学科体系正在不断发展完善,本文只是介绍了旋转机械振动故障诊断在理论和技术方面的一些进展状况,在具体实现方面,对于大型旋转机械设备,借助于计算机以及各种仪器仪表,故障诊断正由以往的人工诊断自动化、智能化以及网络化方向发展。

参考文献

1陈予恕等.非线性动力学理论与大型火电机组振动故障综合治理技术[J],中国机械工程,1999,10(9):1063-1068

2高金吉.高速涡轮机械振动故障机理及诊断方法的研究: [学位论文].北京:清华大学,1993

3徐敏,张瑞林等.设备故障诊断手册[M],西安:西安交通大学出版社,1998:291-434

4何正嘉,艳阳,张周锁,马军星,高强,杨胜军.大型机械设备变工况非平稳动态分析与监测诊断关键技术[J],中国机械工程,1999,10(9):978-981

5虞和济,周永,张省.小波神经网络诊断系统的应用与进展[J],振动、测试与诊断,1998,18(2):85-906屈梁生,史东峰.全息谱十年:回顾与展望[J],振动、测试与诊断,1998,18(4):235-242

7闻邦春,顾家柳,夏松波,王正等.高等转子动力学[M],北京:机械工业出版社,2000:321-370

8吕志民,徐金梧,翟绪圣.分形维数及其在滚动轴承故障诊断中的应用[J],机械工程学报,1999,35(2):88-91

9杨叔子,史铁林,丁洪.机械设备诊断的理论技术与方法[J],振动工程学报,1992,5(3):193-201

10吴今培,智能故障诊断技术的发展和展望[J],振动、测试与诊断,1999,19(2):79-86

11T i mo Sorsa,Heikki N.Koivo,Application of Artificial Neural Networks in Process Fault Diagnosis[J],Automatica1993,29(4): 843-849

12虞和济,陈长征,张省.基于神经网络的智能诊断[J],振动工程学报,2000,13(2):202-209

13陈长征.旋转机械故障智能诊断方法研究:[学位论文].徐州:中国矿业大学,1998

14William Ditto,Toshi nori Munakata.Principles and Applications of Chaotic Systems[J],Communications of the ACM,1995,38(11): 96-102

15赵振宇,徐用懋.模糊理论和神经网络的基础与应用[M],清华大学出版社,广西科学技术出版社,1996:80-115

16James J.Buckley,Yoichi Hayashi.Fuzzy Neural Networks:A Survey[J],Fuzzy Sets and Systems.1994,66:1-13

17许飞云,贾民平,钟秉林,黄仁.旋转机械振动故障诊断的一种模糊神经网络方法研究[J],振动工程学报,1996,9

(3):213-219

18Zdzislaw Pawlak,Rough Sets[J].In ternational Journal of Comprter and Information Sciences,1982,11(5):341-356

19Zdzislaw Pawlak.Rou gh Set Theory and Its Applications to Data Analysis[J],Cybernetics and Systems:An International Journal, 1998,29:661-688

20Ryszard Nowwicki,Roman Slowinski,Jerzy Stefanowski.Rough Sets Analysis of Diagnosis Capacity of Vibroacoustic Symp toms[J], Computers Mathematics Application,1992,24(7):109-123

(上接第41页)

制定出符合我国国情的线路等级和相应的轨道谱,已是当务之急。

应用非均匀采样信号的跟踪重构技术,不同于传统的一味追求对列车运行速度作同步准确测量的方法,而是利用车轮旋转触发脉冲作为活动的频率标尺,实时调整抽样频率,能真实地反映轨道不平顺状态。这对于建立我国完善的轨道谱,进而研究轨道谱在机车车辆、线路、牵引动力性能研究中的应用,都是十分有意义的。

参考文献

1郑南宁.数字信号处理.西安:西安交通大学出版社,1995

2Tinaut F V,Melgar A,Horr illo A J.Faul ts detection in a reciprocating internal combustion engine form instantaneous

engine speed.CIMAC Congress,1998,Copenhagen

39

第4期冯志鹏等:旋转机械振动故障诊断理论与技术进展综述

96JO UR NAL OF VIBRATION AND SHOCK Vol.20No.42001

Abstract The vortex_impinging edge interaction in ca vity_type bodies is simulated with discrete vortex model.Three typical shapes of impinging edges are examined with the method of conformal transform ation.It is proved that the induced pressure pulses are of very large magnitude when the impinging edge has120b taper shape.On the other hand,the pressure pulses are found to be of insignificant magnitude for the impinging edge with an elliptical shape.Those results are verified by an indirect simple test.

Key words:self_excited oscillation,impinging edge,vortex,confor mal transformation

OPTIMUM DESIGN FOR TWO_STRUCTURES CONNECTION WITH MRFD

SEMI_ACTIVE CONTROL S YSTEM

Zhou Yun

(C olledge of Civil Engineering,Guangzhou University,Guangzhou510405)

Xu Longhe Li Zhongxian

(School of Civil Engineering,Tianjin University,Tianjin300072)

Abstract In the paper,the optimum design is made for two_structures connection with semi_active control system using magnetorheological fluid damper,and a selection of weighting matrix is proposed.The results of the simulated analysis illustrate that while placing magnetorheological fluid damper between two_structures,it will reduce the total dynamic responses of the two_ structures semi_active control syste m induced by earthquake efficiently,and the security and comfort of structure will be improved.

Key words:system of two_structures connection,magnetorheological fluid damper,optimum design

EX PERIMENTS ON ACTIVE NOISE C ONTROL IN AN ENCLOSED

THREE_DIMENSIONAL SOUND FIELD

Wu Yafeng

(Data Processing Centre Northwestern Polytechnical University Xi.an710072)

Abstract In the paper,e xperiments on active control of noise are investigated in an enclosed room.The primary noise field is produced by a multiple frequency signal,and a multi_channel adaptive system is applied to cancel it.A lot of e xperiments are fulfilled and the satisfied results are obtained.

Key words:active noise c ontrol,enclosed sound field,experimental investigation

S URVEY OF VIBRATION FAULT DIAGNOSIS OF ROTATIONAL MACHINERY

Feng Zhipeng Song Xigeng Xue Dongxin

(Institute of Internal Combustion Engine,Dalian University of Technology,Dalian116024)

Xie Yu Deng Dongfeng

(Equipment Department,Jinzhou Petrol_C he mical Branch Company,Petrol C hina Co.Ltd.Jinzhou121001)

Abstract In recent years,vibration fault diagnosis of rotational machinery has been improved by the application of nonlinear theory,signal processing,knowledge engineering,and computing intelligence.In the paper,some ne w developments in fault mechanism,signature extraction,and diagnosis method are introduced.

Key words:fault diagnosis,rotational machinery

THE TEC HNOLOGY OF UNEVENLY SAMPLED SIGNAL.S REBUILDING WITH

500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1 500kV 输电线路故障诊断方法综述 魏智娟1 李春明2 付学文1 (1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080) 摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。 关键词:故障诊断;阻抗法;智能算法;小波理论;行波法 The Survey on Fault Diagnosis in the 500kV Power Transmission Lines Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1 (1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080) Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location. Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method 超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重 要。国家电网公司架空送电线路运行规程明确规定 “220kV 及以上架空送电线路必须装设线路故障测 距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样 性致使输电线路工作环境极为恶劣,输电线路发生 故障导致线路跳闸、电网停电,对电力系统安全运 行造成了很大威胁,所以,在线路发生故障后迅速 准确地进行故障诊断,减少因故障引起的停电损失, 降低寻找故障点的劳动强度,尽最大可能降低对整 个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型 进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断 当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

旋转机械中带传动的振动分析

旋转机械中带传动的振动分析 SpectraQuest Inc. 8205 Hermitage Road Richmond, VA 23228 摘要:带传动在各种动力传动中应用广泛。对于传送带不正确的安装和维护将对机器的运行和老化产生巨大的影响。广泛使用振动特征来研究带传动的故障。本文给出了由两个传送带驱动系统的实验结果,包括带张紧状态、运行速度、带轮的偏心度以及未校准等情况。结果表明:偏心带轮将产生调幅和较大的振动,带轮的偏心很容易使传送带达到固有频率。同时,偏心对振动特征的影响并不明显。 实验装置和过程 实验装置 本实验中用到的实验器材包括:SpectraQuest公司的机械故障仿真器(MFS),两个A42 V 的传动带,装有VibraQuest数据采集和分析软件的笔记本,SpectraPad的便携式数据采集器,两个PCB加速度计,Wilcoxon三轴的加速度计。 图1给出了MFS和加速度计以及结构的配置。 图1 实验装置 两个单轴的加速度计分别安装在外侧轴承座上的水平方向和竖直方向。三轴加速度计安装在轴承座基座的顶部,通过轴连接着带轮。图1中的数字代表在数据获得系统上的通道数。带传动的传动比是2.56。 实验过程 首先,记录下不同的转子速度和不同的张力下的基线数据。然后在驱动带轮上加入未校准的补偿量,并且在相同的速度和张力下记录数据。最后,用另一个偏心带轮代替驱动带轮并在相同的速度和张力下记录数据。在偏心带轮测试中,通过慢慢增加转子的速度观察传送带的共振数据。 数据记录的频率上限是2000Hz,每次记录时间是8s。两个被测试的转子的速度分别是20Hz 和40Hz。注意这些数据可以从电机控制器读出,但是由于控制器存在误差,实际速度与读数有所偏差。通过旋转螺钉改变两个带轮的中心距,调节传送带的张力。两个带轮的张力的高低是由手感决定的。

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

旋转机械振动的基本特性 (DEMO)

旋转机械振动的基本特性 一、转子的振动基本特性 大多数情况下,旋转机械的转子轴心线是水平的,转子的两个支承点在同一水平线上。设转子上的圆盘位于转子两支点的中央,当转子静止时.由于圆盘的重量使转子轴弯曲变形产生静挠度,即静变形。此时,由于静变形较小,对转子运动的影响不显著,可以忽略不计,即认为圆盘的几何中心O′与轴线AB上O点相重合,如图7—l所示。转子开始转动后,由于离心力的作用,转子产生动挠度。此时,转子有两种运动:一种是转子的自身转,即圆盘绕其轴线AO′B的转动;另一种是弓形转动,即弯曲的轴心线AO′B与轴承联线AOB组成的平面绕AB轴线的转动。 转子的涡动方向与转子的转动角速度ω同向时,称为正进动;与ω反方向时,称为反进动。 二、临界转速及其影响因素 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转速。Jeffcott用—个对

称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 在正常运转的情况下: (1)ω<n ω时, 振幅A>0,O′点和质心G 点在O 点的同一侧,如图7—3(a)所示; (2)ω>n ω时,A<0,但A>e,G 在O 和O′点之间,如图 7—3(c)所示; 当ω≥n ω时,A e -≈或O O′≈-O′G,圆盘的质心G 近似 地落在固定点O,振动小。转动反而比较平稳。这种情况称为“自动对心”。 (3)当ω=n ω时,A ∞→,是共振情况。实际上由于存在阻尼,振幅A 不是无穷大而是较大的有限值,转轴的振动非常剧烈,以致有可 能断裂。n ω称为转轴的“临界角速度” ;与其对应的每分钟的转数则称为“临阶转速”。 如果机器的工作转速小于临界转速,则称为刚性轴;如果工作转速高于临界转速,则称为柔性轴。由上面分析可知,只有柔性轴的旋转机器运转时较为平稳 但在启动过程中,要经过临界转速。如果缓

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

转动设备常见振动故障频谱特征及其案例解析分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮就是机械设备中常用得部件,而齿轮传动也就是机械传动中最常见得方式之一。在许多情况下,齿轮故障又就是导致设备失效得主要原因。因此对齿轮进行故障诊断具有非常重要得意义。介绍了故障得特点与几种诊断方法,并比较了基于粒子群优化得小波神经网络,基于相关分析与小波变换,基于小波包与BP神经网络与基于小波分析等故障诊断方法得优缺点,并提出了齿轮故障诊断得难点与发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点 (1) 1、1 齿轮故障诊断得发展 (1) 1、 2齿轮故障形式与震动特征 (1) 第二章齿轮传动故障诊断得方法 (2) 2、 1高阶谱分析 (2) 2、1、1参数化双谱估计得原理 (3) 2、1、2试验装置与信号获取 (3) 2、1、3 故障诊断 (4) 2、1、4 应用双谱分析识别齿轮故障 (4) 2、2基于边频分析得齿轮故障诊断 (6) 2、2、1分析原理 (6) 2、2、2铣床振动测试 (6) 2、2、3 边频带分析 (7) 2、2、4 故障诊断 (8) 2、 3时域分析 (10) 2、3、1 时域指标 (10) 2、3、2非线性时间分析 (10)

第一章齿轮故障诊断发展及故障特点 1、1 齿轮故障诊断得发展 齿轮故障诊断始于七十年代初,早期得齿轮故障诊断仅限于在旋转式机械上测量一些简单得振动参数,用一些简单得方法进行诊断。这些简单得参数与诊断方法对齿轮故障诊断反应灵敏度较低,根本无法准确判断发生故障得部位。七十年代末到八十年代中期,旋转式机械中齿轮故障诊断得频域法发展很快,其中R、B、Randall与James1、Taylor等人做好了许多有益得工作,积累了不少故障诊断得成功实例,出现了一些较好得频域分析方法,对齿轮磨损与齿根断裂等故障诊断较为成功。进入九十年代以后,神经网络、模糊推理与网络技术得发展与融合使得齿轮系统故障诊断进入了蓬勃发展得时期。 我国学者在齿轮故障诊断研究方面也做了大量工作。1986年,屈梁生、何正嘉在《机械故障诊断学》中分析了齿轮故障得时频域特点。1988年,颜玉玲、赵淳生对滚动轴承得振动监测及故障诊断进行了分析。1997年,郑州工业大学韩捷等在“齿轮故障得振动频谱机理研究”中对齿轮得故障机理做了探讨。西安交通大学张西宁等在“齿轮状态监测与识别方法得研究”中提出了一种新方法即基于一致度分析。 1、 2齿轮故障形式与震动特征 通常齿轮在运转时,由于制造不良或操作维护不善会产生各种形式得故障。故障形式又随齿轮材料、热处理、运转状态等因素得不同而不同,常见得齿轮故障形式有齿面磨损、齿面胶合与擦伤、齿面接触疲劳与弯曲疲劳与断齿。 在齿轮运转状态下,伴随着内部故障得发生与发展,必然会产生振动上得异常。实践证明,振动分析就是齿轮故障检测中最有效得方法。若齿轮副主轮转速为n1,齿数为z1,频率为f1;从轮转速为n2,齿数为z2,频率为f2,则齿轮啮合频率fC 为:fC=Nf1z1=Nf2z2=Nn160z1=Nn260z2(1) 式中:N=1, 2, 3,…。齿轮处于正常或异常状态下,啮合频率振动成分及其倍频总就是存在得,但两种状态下得振动水平有差异。如果仅仅依靠对齿轮振动信号得啮合频率及其倍频成分得差异来识别齿轮得故障就是不够得,因故障对振动

齿轮故障诊断方法综述

齿轮故障诊断方法综述 摘要齿轮是机械设备中常用的部件,而齿轮传动也是机械传动中最常见的方式之一。在许多情况下,齿轮故障又是导致设备失效的主要原因。因此对齿轮进行故障诊断具有非常重要的意义。介绍了故障的特点和几种诊断方法,并比较了基于粒子群优化的小波神经网络,基于相关分析与小波变换,基于小波包和BP神经网络和基于小波分析等故障诊断方法的优缺点,并提出了齿轮故障诊断的难点和发展方向。 关键字齿轮故障诊断诊断方法分析比较发展

目录 第一章齿轮故障诊断发展及故障特点..................... 错误!未定义书签。齿轮故障诊断的发展................................... 错误!未定义书签。 1. 2齿轮故障形式与震动特征 ........................... 错误!未定义书签。第二章齿轮传动故障诊断的方法......................... 错误!未定义书签。 2. 1高阶谱分析........................................ 错误!未定义书签。 参数化双谱估计的原理 .............................. 错误!未定义书签。 试验装置与信号获取 ................................ 错误!未定义书签。 故障诊断 ......................................... 错误!未定义书签。 应用双谱分析识别齿轮故障 ........................ 错误!未定义书签。基于边频分析的齿轮故障诊断............................ 错误!未定义书签。 分析原理 .......................................... 错误!未定义书签。 铣床振动测试 ...................................... 错误!未定义书签。 边频带分析 ...................................... 错误!未定义书签。 故障诊断 ........................................ 错误!未定义书签。 2. 3时域分析.......................................... 错误!未定义书签。

振动分析实例

旋转机械诊断监测管理系统(TDM)在电厂的应用 摘要:介绍了应用旋转机械诊断监测管理系统(TDM)的硬件及软件组成;深入分析了#4汽轮机组9瓦轴振异常的原因,获取包括转速、波德图、频谱、倍频的幅值和相位等故障特征数据,从而为专业的故障诊断人员提供数据及专业的图谱,协助机组诊断维护专家深入分析机组运行状态,并成功处理了9瓦的轴振异常。 关键词:应用旋转机械诊断监测管理系统(TDM),组成,异常振动,分析,解决 The Application of the Turbine Diagnosis Management (TDM) on Shanxi Zhangshan Electric Power co., Ltd Li Gang He Xiao Ming Kou Delin (The College of Power and Mechanical Engineering Wuhan University Wuhan 430072) Abstract: Introduce the hardware and software of the Turbine Diagnosis Management (TDM). Analysis the reasons of #9 bearing’s abnormal vibration of unit 4.Receives the characteristic data of the speed, Bode diagram, frequency phase, mult-frequency’s value and phase.Offers the professional data ,charts to the experts. Helps the experts diagnosis deeply the status of the unit 4. And solve the problem successfully. Key words:Turbine Diagnosis Management (TDM), Composition, abnormal vibration, Analysis, solution 引言 汽轮机轴系监测系统(TSI)可以对汽轮机轴系参数起到基本的监测和安全保护作用,但TSI 缺少对机组振动数据的深入挖掘,使得许多振动方面的问题停留在表面,如在机组冲转、在负荷变化,主、调汽阀门进行切换和单/顺阀切换等工况变化时振动的分析研究。而旋转机械诊断监测管理系统(TDM)则填补了此项功能。它的主要作用在于对机组运行过程中的数据进行深入分析,获取包括转速、振动波形,频谱、倍频的幅值和相位等故障特征数据,从而为专业的故障诊断人员提供波德图、频谱图、瀑布图、级联图、轴心轨迹等专业的数据及图谱,协助机组诊断维护专家深入分析机组轴系运行状态,解决机组在实际运行中遇到的问题。 1. TDM 的硬件及软件的组成 漳山电厂采用北京英华达公司生产的EN8001旋转机械振动监测分析故障诊断专家系统EN8001系统是由硬件系统和软件系统组成,硬件系统主要由下位高速智能数据采集、信息处理、信息数据存储管理系统和服务器、上位机工程师站及附件构成,硬件系统采用积木式模块化的结构,配置灵活,上下位硬件系统通过工业以太网络集成。系统软件由三大部分构成:数据采集软件,数据库软件和分析诊断软件构成。数据采集软件负责数据采集,它能自动识别机组的运行状态,如开停机、升降速及正常或异常状态,并根据机组的状态进行数据采集。在稳定运行状态下,数据硬件采集系统以定时方式进行采集,而在升降速状态下则根据转速的变化进行采集。数据库软件负责数据的存储,它由升降速数据库、历史数据库及事件数据库等组成,它根据机组的不同状态把有关数据存到不同的数据库中,以便于后续分析。分析诊断软件主要用于对各种数据进行在线或离线分析,以判断机组的运行状态并能自动给出机组故障原因和处理 1

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

旋转机械振动的临界转速及其影响因素(一)

旋转机械振动的临界转速及其影响因素(一) 随着机器转动速度的逐步提高,在大量生产实践中人们觉察到,当转子转速达到某一数值后,振动就大得使机组无法继续工作,似乎有一道不可逾越的速度屏障,即所谓临界转 速。 Jeffcott用一个对称的单转子模型在理论上分析了这一现象,证明只要在振幅还未上升到危险程度时,迅速提高转速,越过临界转速点后,转子振幅会降下来。换句话说,转子在高速区存在着一个稳定的、振幅较小的、可以工作的区域。从此,旋转机械的设计、运行进入了一个新时期,效率高、重量轻的高速转子日益普遍。需要说明的是,从严格意义上讲,临界转速的值并不等于转子的固有频率,而且在临界转速时发生的剧烈振动与共振是不同的物理现象。 1.转子的临界转速 如果圆盘的质心G与转轴中心O′不重合,设e为圆盘的偏心距离,即O′G=e,如图1-2所示,当圆盘以角速度ω转动时,质心G的加速度在坐标上的位置为 图1-2 圆盘质心位置 (1-5) 参考式(1-2),则轴心O′的运动微分方程为 (1-6) 令则: (1-7)

式(1-7)中右边是不平衡质量所产生的激振力。令Z=x+iy,则式(1-7)的复变量形式为: (1-8) 其特解 为 (1-9) 代入式(1-8)后,可求得振幅 (1-10) 由于不平衡质量造成圆盘或转轴振动响应的放大因子β为 (1-11) 由式(1-8)和式(1-11)可知,轴心O′的响应频率和偏心质量产生的激振力频率相同,而相位也相同(ω<ω。时)或相差180°(ω>ω。时)。这表明,圆盘转动时,图1-2的O、O′和G三点始终在同一直线上。这直线绕过O点而垂直于OX Y平面的轴以角速度。转动。O′点和G点作同步进动,两者的轨迹是半径不相等的同心圆,这是正常运转的情况。如果在某瞬时,转轴受一横向冲击,则圆盘中心O′同时有自然振动和强迫振动,其合成的运动是比较复杂的。O、O′和G三点不在同一直线上,而且涡动频率与转动角度不相等。实际上由于有外阻力作用,涡动是衰减的。经过一段时间,转子将恢复其正常的同步进动。 在正常运转的情况下,由式(1-10)可知: (1)ω≤ωn时,A>0,O′点和G点在O点的同一侧,如图1-3(a)所示; (2)ω>ωn 时,A<0,但A>e ,G在O和O′点之间,如图1-3(c)所示; 当ω≥ωn 时,A≈-e,或OO′≈-O′G,圆盘的质心G近似地落在固定点O,振动很小,转动反而比较平稳。这种情况称为“自动对心”。

石油化工旋转机械振动标准

第三章.石油化工旋转机械振动标准 (SHS01003-2004) 1总则 1.1主题内容与适用范围 1.1.1本标准规定了石油化工旋转机械振动评定的现场测量方法(包括测量参数、测量仪器、测点布置、测试技术要求、机器分类等)及评定准则。石油化工旋转机械振动分析的现场测量方法应满足本标准的规定但不仅限于此。 1.1.2本标准适用的设备包括电动机、发电机、蒸汽轮机、烟气轮机、燃气轮机、离心压缩机、离心泵和风机等类旋转机械。 按照本标准规定的方法进行测试得到的振动数据,可作为设备状态评定和设备验收的依据。经买卖双方协商认可,亦可采用制造厂标准或其他标准。 1.1.3本标准不适用于主要工作部件为往复运动的原动机及其传动装置。 本标准也不适用于振动环境中的旋转机械的振动测量。振动环境是指环境传输的振动值大于运行振动值1/3的情况。 1.1.4未能纳入本标准范围的其他旋转机械,暂按设备出厂标准进行检验和运行。 1.2编写修订依据 GB/T 6075.1-1999 在非旋转部件上测量和评价机器的机械振动第1部分:总则 GB/T 6075.3-2001 在非旋转部件上测量和评价机器的机械振动第3部分:额定功率大于15kw、额定转速在120~15000r/min之间的现场测量的工业机器 GB 11348.1-1999 旋转机械转轴径向振动的测量和评定第一部分:总则 1.3本标准提供两种振动评定方法,即机壳表面振动及轴振动 的评定方法。 在机壳表面,例如轴承部位测得的振动是机器内部应力或运动状态的一种反映。现场应用的多数机泵设备(电动机、各种油泵、水泵等),由

机壳表面测得的振动速度,可为实际遇到的大多数情况提供与实践经验相一致的可信评定。 汽轮机、离心压缩机等大型旋转机械(如炼油催化三机、化肥五大机组、乙烯三大机组和空分装置的空压机等)通常含有挠性转子轴系,在固定构件上(如轴承座)测得的振动响应不足以表征机器的运转状态,对这类设备必须测量轴振动,根据实际需要,结合固定构件上的振动情况评定设备的振动状态。 2机壳表面振动 2.1本标准适用于转速为10~200r/s(600~12000r/min)旋转机 械振动烈度的现场测量与评定。 2.2测量参数 本标准规定在机壳表面(例如轴承盖处)测得的、频率在10~1000Hz 范围内的振动速度的均方根(Vrms)作为表征机械振动状态的测量参数,在规定点和规定的测量方向上测得的最大值作为机器的振动烈度。 2.3测量点的布置 测点一般布置在每一主轴承或主轴承座上,并在径向和轴向两个方向上进行测量,如图1所示。对于立式或倾斜安装的机器,测量点应布置在能得出最大振动读数的位置或规定的位置上,并将测点位置和测量值一同记录。测点位置应固定,一般应作明显标记。机器护罩、盖板等零件不适宜作测点。 2.4测量仪器 2.4.1一般采用由传感器、滤波放大器、指示器和电源装置等组成的测量仪表。允许采用能取得同样结果的其他仪器。 2.4.2测量登记表滤波放大器的带通频率为10~1000Hz。 2.4.3测量仪表系统误差不超过±10%。 2.4.4传感器振动速度线性响应的最大值至少为感受方向上满量程振动速度的3倍,传感器横向灵敏度应小于10%。 2.4.5直读仪器应能指示或记录振动速度的均方根值。 2.4.6测量登记表尽可能采用电池为电源装置。 2.4.7测量仪表需定期校准,保证它具有可靠的测量结果。 2.5测量技术要求

相关文档
相关文档 最新文档