文档库 最新最全的文档下载
当前位置:文档库 › 生化名词解释

生化名词解释

生化名词解释
生化名词解释

生化名词解释(整理)

1、增色效应:在DNA变性解链过程中,由于碱基之中的共轭双键被暴露出来,使DNA在260nm 处的吸光值增加,称为增色效应。

2、核酶:具有催化活性的RNA称为核酶。其在rRNA转录后加工过程中起自身剪接的

作用,催化部位具有特殊的锤头结构。

3、底物水平磷酸化:底物高能磷酸基团直接转移给ADP生成ATP,这种ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应称为底物水平磷酸化。

4、Tm:DNA的变性从开始解链到完全解链,是在一个相当窄的温度内完成的,在这个范围内,紫外光吸收值达到最大值50%时的温度称为DNA的解链温度(Tm)。一种DNA的Tm值的大小与其所含的碱基中的G+C比例相关,G+C比例越高,Tm值越高。

5、Klenow片段:利用特异的蛋白酶将DNA聚合酶Ⅰ水解为大、小两个片段,其中C端的大片段具有DNA聚合酶活性和5ˊ→3ˊ核酸外切酶活性,称为Klenow片段。它是分子生物学研究中常用的工具酶。

6、顺式作用元件:指可影响自身基因表达活性的DNA序列。按功能特性分为启动子、增强

子及沉默子。

7、框移突变:基因编码区域插入或缺失碱基,DNA分子三联体密码的阅读方式改变,使转录翻译出的氨基酸排列顺序发生改变,称为框移突变。

8、酶的比活力:即酶纯度的量度,指单位重量的蛋白质中所具有酶的活力单位数,一般用IU/mg蛋白质来表示。一般而言,酶的比活力越高,酶纯度越高。

9、SD序列:原核生物mRNA上起始密码子上游,普遍存在AGGA序列,因其发现者是Shin- Dalgarno而称为SD序列。此序列能与核糖体小亚基上的16S rRNA近3ˊ端的UCCU序列互补结合,与翻译起始复合物的形成有关。

10、信号肽:即Signal Peptide,它是一段由3-60个氨基酸组成的短肽序列,常指新合成多肽链中用于指导蛋白质跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端),至少含有一个带正电荷的氨基酸,中部有一高度疏水区以通过细胞膜。

11、内含子:内含子(intron)是真核生物细胞DNA中的间插序列。这些序列被转录在前体RNA中,经过剪接被去除,最终不存在于成熟RNA分子中,常被称作“间插序列”。内含子和外显子的交替排列构成了断裂基因。

12、冈崎片段:日本学者冈崎(Okazaki)等人最早提出了DNA的半连续复制模型。指出

滞后链复制过程中随着复制叉的出现,不断合成长约2-3kb的片段,被称之为冈崎片段。

13、操纵子:指包含结构基因、操纵基因以及启动基因的一些相邻基因组成的DNA片段,其中结构基因的表达受到操纵基因的调控。主要见于原核生物,但在真核生物中也存在。14、结构域:分子量较大的蛋白质,多肽链以超二级结构为单元组成两个或两个以上相对独立的区域,再形成三级结构。这些相对独立的区域称为结构域。结构域的形成与构建蛋白质功能中心密切相关。

15、端粒酶:端粒酶由3部分组成:端粒酶RNA、端粒酶协同蛋白和端粒酶反转录酶。在端

粒的合成过程中,端粒酶以其自身携带的RNA为模板合成互补链,该酶具有特殊的催化反转录的功能。爬行模型的机制来维持染色体的完整。

16、酮体:乙酰乙酸、β-羟丁酸酮体及丙酮三者称为酮体。是脂酸分解氧化的特有中间产

物,是肝脏输出能源的一种形式。

17、脂肪动员:储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸及甘油并释放入血以供其它组织氧化利用,该过程称为脂肪组织。

18、第二信使:将Ca2+、DAG、IP3、cAMP、cGMP等在细胞内传递信息的小分子化合物称为第二信使。第二信使在传递信号时绝大部分通过酶促级联反应进行。它们最终通过改变细胞内有关酶的活性、开启或关闭细胞膜离子通道及细胞核基因的转录,达到调节细胞代谢和控制细胞生长、繁殖和分化的作用。

19、反密码子:tRNA分子的反密码环上的三联体核苷酸残基序列。在翻译期间,反密码与mRNA中的互补密码结合。

20、拓扑异构酶:指细胞内催化DNA链断裂和结合,以控制DNA拓扑状态,参与超螺旋结构模板的调节。这类酶存在两种亚型,分别采取水解DNA一条或两条链中的磷酸二酯键,再重新缠绕和封口来更正DNA连环数。

21、限制性内切酶:一种在特殊核苷酸序列处水解双链DNA的内切酶。I型限制性内切酶既催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而II型限制性内切酶只催化非甲基化的DNA的水解。

22、氧化磷酸化:代谢物脱下的氢经呼吸链传递给氧生成水的过程中,释放的能量使ADP 磷酸化生成ATP,这种物质的氧化与磷酸化是偶联进行的,称为氧化磷酸化。

23、β-氧化途径:是脂肪酸氧化分解的主要途径,脂肪酸被连续地在β碳氧化降解生成乙酰CoA,同时生成NADH和FADH2,因此可产生大量的ATP。该途径因脱氢和裂解均发生在β

位碳原子而得名。每一轮脂肪酸β氧化都是由4步反应组成:氧化、水化、再氧化和硫解。

24、转录因子:在转录起始复合体的组装过程中,与启动子区结合并与RNA聚合酶相互作用的一种蛋白质。某些转录因子在RNA延伸时一直维持着结合状态。

25、回补反应:补充生成某些成分以利于重要代谢通路的进行。如三羧酸循环中通过多种方式生成草酰乙酸,以利于乙酰辅酶A进入三羧酸循环降解。

26、呼吸电子传递链/(氧化)呼吸链:需氧细胞内代谢物被脱氢酶脱氢,经一系列电子传递体(递氢体+递电子体)传递作用,最终将质子和电子传递给被激活的氧原子,从而生成H2O,并放出能量的全过程。

27、遗传学中心法则:描述从一个基因到相应蛋白质的信息流的途径。遗传信息贮存在DNA 中,DNA被复制传给子代细胞,信息被拷贝或由DNA转录成RNA,然后RNA翻译成多肽。不过,由于逆转录酶的反应,也可以以RNA为模板合成DNA。

28、启动子:指位于结构基因上游调控序列,即RNA聚合酶特异性识别和结合的DNA序列,控制基因表达(转录)的起始时间和表达的程度。

29、脂肪动员:储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸及甘油并释放入血以供其它组织氧化利用,该过程称为脂肪组织。

30、多酶体系:在完整细胞内的某一代谢过程中,由几种不同功能的酶彼此聚合形成的多种酶的复合体系,以协同催化一组连续且密切相关的反应。

31、阻遏蛋白(阻遏物):原核生物体内的某种调节基因表达的调控蛋白,具有抑制特定基因(群)产生特征蛋白质的作用。由于它能识别特定的操纵基因(即操纵子是阻遏蛋白的结合位点),当操纵序列结合阻遏蛋白时会阻碍RNA聚合酶与启动序列的结合,或使RNA聚合酶不能沿DNA向前移动,阻遏转录,介导负性调节,因而可抑制与这个操纵基因相联系的基因群,也就是操纵子的mRNA合成。

32、变构调节(别构调节):体内的蛋白质可以和某些小分子物质可逆的结合,引起蛋白质构象的改变进而影响其生理活性,这种现象称为变构效应。

X、反式作用因子:也称为真核基因转录调节蛋白或转录因子。反式作用因子与DNA分子中的顺式作用元件相互作用,而反式激活另一基因的转录。反式作用因子为蛋白质分子,至少包括两个结构域,即DNA结合结构域与转录激活结构域。

33、抑癌基因:又称肿瘤抑制基因或抗癌基因,是指存在于正常细胞内的一大类可抑制细胞生长并具有潜在抑癌作用的基因。

34、断裂基因:真核生物结构基因,由若干编码区和非编码区互相隔开,但有连续镶嵌而成,

去除非编码区在连接后,可译出由连续氨基酸组成的完整的蛋白质,这些基因称断裂基因。

35、超二级结构:也称之基元(motif)。在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成的有规则、在空间上能辨认的二级结构组合体。

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

生化名词解释

五. 名词解释 1. 氨基酸的等电点(pI):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH叫氨基酸的等电点(pI)。 2. 蛋白质的一级结构:在蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序称为蛋白质的一级结构。 3. 蛋白质的二级结构:是指蛋白质分子中,某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。 4. 模体(或膜序):在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在一级结构上总有其特征性的氨基酸序列,在空间结构上可形成特殊的构象,并发挥其特殊的功能,此结构被称为模体。 5. 蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。 6. 结构域:分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠的较为紧密,各行其功能,称为结构域。 7. 蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。 8. 蛋白质的等电点:在某一pH的溶液中,蛋白质解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH叫蛋白质的等电点(pI)。 9. 蛋白质的变性:在某些理化因素的作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质变性。 10. 盐溶:加入少量盐时,很易离解成带电离子,对稳定蛋白质所带的电荷有利,从而增加了蛋白质的溶解度。 11. 盐析:是将盐(中性)加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定性因素去除而沉淀。 12. 透析:利用半透膜原理把大分子蛋白质与小分子化合物分开的方法叫透析。 13. 超滤法:应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜,达到浓缩蛋白质溶液的目的,称为超滤法。 14. 电泳:蛋白质在高于或低于其pI的溶液中为带电的颗粒,由于不同的蛋白质带电的性质、数量、分子量和形状等的不同,在电场的作用下而达到分离各种蛋白质的技术,称为电泳。 15. 等电聚焦电泳:用一个连续而稳定的线性pH梯度的聚丙烯酰胺凝胶进行电泳,从而根据蛋白质不同的pI而在电场中加以分离,这种电泳称为等电聚焦电泳。 五.名词解释 1.核苷:戊糖与碱基靠糖苷键缩合而成的化合物。 2.核苷酸:核苷分子中戊糖的羟基与一分子磷酸以磷酸酯键相连而成的化合物。 3.核酸:许多单核苷酸通过磷酸二酯键连接而成的高分子化合物。 4.核酸的变性:在某些理化因素作用下,核酸分子中的氢键断裂,双螺旋结构松散分开,理化性质改变,失去原有的生物学活性。 5.DNA复性或退火:变性DNA在适当条件下,两条互补链可重新配对,恢复天然的双螺旋构象,这一现象称为复性。热变性的DNA经缓慢冷却后即可复性,这一过程称为退火。 6.DNA的一级结构:组成DNA的脱氧多核苷酸链中单核苷酸的种类、数量、排列顺序及连接方式称DNA的一级结构。也可认为是脱氧多核苷酸链中碱基的排列顺序。 7.解链温度、熔解温度或Tm:DNA的变性从开始解链到完全解链,是在一个相当窄的温度内完成的。在这一范围内,紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度。由于这一现象和结晶体的融解过程类似,又称融解温度。 8.稀有碱基:是指除A、G、C、U外的一些碱基,包括双氢尿嘧啶(DHU)、假尿嘧啶和甲基化的嘌呤等微

生化名词解释

生化名词解释 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage) 12.发夹结构(hairpin structure)13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity)3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy)14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1.生物氧化(biological oxidation) 2.呼吸链(respiratory chain) 3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O) 5.底物水平磷酸化(substrate level phosphorylation) 6.能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生化名词解释 (4)

. . 名词解释 1、呼吸链:呼吸链又叫电子传递链,是由位于线粒体内膜(真核)中的一系列电子传递体按标准 氧化还原电位,由低到高顺序排列组成的一种能量转换体系。 2、生物氧化:能源物质在活细胞中氧化分解,释放化学能并转化为生物能的生化过程,称 为生物氧化,又叫细胞氧化或细胞呼吸。 3、联合脱氨基作用:将转氨基作用与谷氨酸氧化脱氨基作用联合进行,促进各种氨基酸脱去氨基 生成α-酮酸和氨的过程称氨基酸的联合脱氨基作用。例如:丙氨酸的联合脱氨基作用。 4、DNA 内切酶:具有识别双链DNA 分子中特定核苷酸序列,并由此切割DNA 双链的核酸内切 酶统称为限制性核酸内切酶。 5、酵解与发酵:.酵解 葡萄糖经1,6-二磷酸果糖和3-磷酸甘油酸降解,生成丙酮酸并产生A TP 的代谢过程。 6、分子杂交:不同来源的变性DNA ,若彼此之间有部分互补的核苷酸顺序,当它们在同一溶液中 进行热变性和退火处理时,可以得到分子间部分配对的缔合双链,此过程叫分子杂交。 7、增色效应:伴随着变性,核酸的紫外吸收值增加,此现象为增色现象。 减色效应:复制过程中,紫外吸收值降低,次现象为减色现象。 8、逆转录:以RNA 为模板,依靠逆转录酶的作用,以四种脱氧核苷三磷酸(dNTP)为底物,产生 DNA 链。 9、等电点:分子所带正负电荷相等,净电荷为零的环境PH 成为等电点。 10、活性中心:酶分子上直接参与底物的结合并对其进行催化的区域。 11、酶的活性中心:酶分子上由与催化功能有关的原子或基团构成的特殊的空间结构,称为酶的活 性中心 C CH COOH CH 2COOH C O CH 2CH 2COOH CH COOH NH 2CH 2谷氨NH 2CH 3CH 3O 丙氨酸丙酮酸谷丙转或或NADPH H +++H +NH 3酸脱氢酶α-酮戊二酸

生化名词解释

核酸的增色效应:核酸变性后,在260nm处的吸收值上升的现象。 核酸的减色效应:当变性的DNA经复性以重新形成双螺旋结构时,其溶液的A260值则减小,这一现象称为减色效应。 核酸的TM值:加热变性使DNA双螺旋结构丧失一半时的温度。 DNA的双螺旋:DNA的两条链围着同一中心轴旋绕而成的一种空间结构。 核酸分子杂交:两条来源不同但有核苷酸互补关系的DNA单链分子之间,或DNA 单链分子与RNA分子之间,在去掉变性条件后,互补的区段能够复性形成双链DNA分子或DNA/RNA异质双链分子。 核小体:真核生物染色质的基本结构单位,是DNA绕组蛋白核心盘旋所形成的串珠结构。 退火:热变性的DNA在缓慢冷却得条件下,两条单链再重新结合恢复双螺旋结构,这种复性叫退火。 核酸变性:天然核酸双螺旋区的氢键断裂,变成单链,但并不涉及共价键断裂的现象。 核酸复性:变性的DNA在适当的条件下,可使两条彼此分开的链重新缔合成为双螺旋结构,使其物理.化学性质及生活活性得到恢复的过程。 必需氨基酸:人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。 氨基酸的等电点:使氨基酸静电荷为零时溶液的PH值。 蛋白质的变性:蛋白质受到某些理化因素的影响,其空间结构发生改变,蛋白质的理化性质和生物学功能随之改变或丧失,但未导致蛋白质一级结构改变的现象。 蛋白质的复性:高级结构松散了的变性蛋白质通常在除去变性因素后,可缓慢地重新自发折叠形成原来的构象,恢复原有的理化性质和生物活性的现象。 盐析:加入大量的中性盐使蛋白质沉淀析出的现象。 盐溶: 球蛋白溶于稀得中性盐溶液,其溶解度随稀盐溶液浓度增加而增大的现象。 同源蛋白质:不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。 蛋白质的一级结构:多肽链内氨基酸残基从N末端到C末端的排列顺序,是蛋白质最基本的结构。 蛋白质的二级结构:多肽链主链的折叠产生由氢键维系的有规律的构象。 蛋白质的三级结构:由二级结构元件构建成的总三维结构。 蛋白质的四级结构:由两条或两条以上具有三级结构的多肽链聚合而成,有特定三维结构的蛋白质构象。 蛋白质的超二级结构:蛋白质中相邻的二级结构单位组合在一起,形成有规律的在空间上能辨认的二级结构的组合体。 结构域:多肽链在二级结构或超二级结构的基础上形成三级结构局部折叠区,是相对独立的紧密球状实体。 辅酶:与酶蛋白结合较松弛。用透析法能够除去的小分子有机物。 辅基:与酶蛋白结合较紧密,常以共价键结合,透析不能除去的小分子有机物及金属离子。 酶活力:在一定条件下所催化的某一化学反应速度的快慢,即酶促反应的能力。酶的活性中心:指必需基团在一级结构上可能相距遥远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。米氏常数:酶反应速度为最大速度一半时的底物浓度。 激活剂:能提高酶活性的物质 抑制剂:引起抑制作用的物质。 不可逆抑制:抑制剂与酶的必需基团以共价键结合而引起酶活力丧失,不能用透析,超滤等物理方法除去抑制剂而恢复酶活性。 可逆抑制剂:酶与抑制剂非共价地可逆结合,当用透析,超滤等方法除去抑制剂剂后酶的活性可以恢复。 别构酶:具有别构效应的酶 同工酶:催化相同的化学反应,但其蛋白质分子结构,理化性质和免疫能力等方面都存在明显差异的一组酶。 酶原激活:酶原转变为有活性的酶的过程。 单体酶:一般仅有一条多肽链。 寡聚酶:酶蛋白是寡聚蛋白质,由几个至几十个亚基组成,以非共价键连接。多酶复合体:由几个酶靠非共价键嵌合而成 诱导契合:当酶分子与底物分子接近时,酶分子受底物分子诱导,其构象发生有利于与底物结合的变化,酶与底物在此基础上互补契合进行反应。 糖酵解:是将葡萄糖降解为丙酮酸并伴随ATP生成的一系列反应。 底物水平磷酸化:产生ATP等高能分子的方式。 回补反应:酶催化的,补充柠檬酸循环中代谢产物供给的反应。 激酶:从高能供体分子转移到特定靶分子的酶。 糖的异生作用:由非糖前体合成葡萄糖的过程。 呼吸链:一系列的氢和电子传递体称为呼吸链。 氧化磷酸化:氧化与磷酸化的偶联作用称为氧化磷酸化。 生物氧化:有机分子在生物细胞内氧化分解,最终生成二氧化碳和水,并释放能量的过程。 能荷:在总腺苷酸系统中所负荷的高能磷酸基的数量。 磷氧比:消耗的无机磷酸的磷原子数与消耗分子氧的氧原子数之比。 解偶联剂:抑制偶联磷酸化的化合物。 高能磷酸化合物:分子中含有磷酸基团,被水解下来时释放出大量的自由能,这类高能化合物加高能磷酸化合物。 电子传递抑制剂:能够阻断呼吸链中某部位电子传递的物质。 必需脂肪酸:机体生命活动必不可少,但机体自身又不能合成,必需由食物供给的多不饱和脂肪酸。β—氧化:脂肪酸在体内氧化时在羧基端的β碳原子上进行氧化,碳链逐次断裂,每次断下一个二碳单位。 α—氧化:在α碳原子上发生氧化作用,分解出二氧化碳,生成缩短了一个碳原子的脂肪酸。 ω—氧化:脂肪酸的ω端甲基发生氧化,先转变为羟甲基,继而在氧化成羧基,从而形成α,ω—二羧酸的过程。 酮体:在肝脏中,脂肪酸氧化分解的中间产物乙酰乙酸,β—羟基丁酸及丙酮三者统称为酮体。 生物固氮:是微生物,藻类和与高等生物共生的微生物通过自身的固氮酶复合物把分子氮变成氨的过程。 氨的同化:把生物固氮和硝酸盐还原形成的无机态NH3,进一步同化转变成含氮有机物的过程。 一碳单位:在代谢过程中,某些化合物可以分解产生具有一个碳原子的基团。生糖氨基酸:能通过代谢转变成葡萄糖的氨基酸。 生酮氨基酸:分解代谢过程中能转变成乙酰乙酰辅酶A的氨基酸。 联合脱氨基作用:转氨基作用与氧化脱氨基作用配合进行的脱氨基作用。 复制:以亲代DNA分子的双链为模板,按照碱基互补配对原则,合成出与亲代DNA分子完全相同的两个双链DNA分子的过程。 转录:以DNA分子中一条链为模板,按碱基互补配对原则,合成出一条与模板DNA链互补的RNA分子的过程。 翻译:在mRNA指令下,按照三个核苷酸决定一个氨基酸的原则,把mRNA上的遗传信息转化成蛋白质中特定的氨基酸序列的过程。 半保留复制:每个子代DNA分子中有一条链来自亲代DNA,另一条链是新合成的。这样的复制方式叫半保留复制。 Klenow片段:保留5’→3’聚合酶和3’→5’外切酶活力的片段。 复制子:独立复制的单位叫复制子。 前导链:以3’→5’走向的亲代链为模板,子代链就能连续合成,这条链叫前导链。 后随链:以5’→3’走向的亲代链为模板,子代链按5’→3’的方向不连贯的合成许多小片段,然后由DNA聚合酶Ⅰ切除小片段上的RNA引物,填补片段之间的空缺,最后由连接酶把它们连接成一条完整的子代链,这条链叫后随链。半不连续复制:在复制叉上新生的DNA链一条按5’→3’的方向连续合成;另一条按5’→3’的方向不连续合成,因此叫半不连续复制。 冈崎片段:后随链合成的较小的DNA片段叫冈崎片段。 逆转录:以RNA为模板合成DNA的过程。 转化:一个嘌呤碱基被另一个嘌呤碱基置换或一个嘧啶碱基被另一个嘧啶碱基置换。 颠换:一个嘌呤碱基被嘧啶碱基置换或一个嘧啶碱基被嘌呤碱基置换。 启动子:转录起始的特殊序列。 终止子:控制转录终止的部位。 基因工程:在分子水平上利用人工方法对DNA进行重组的技术。 模板连(反义链,负链):在一个转录单位中,双链DNA分子中作为模板被转录的一条链。 编码链(有义链,正链):与模板链互补的DNA链。 遗传密码:DNA中或(mRNA)中的核苷酸序列与蛋白质中氨基酸序列之间的对应关系。 密码子:mRNA上每3个相邻的核苷酸编码蛋白质多肽链的一个氨基酸,这三个核苷酸就称为一个密码子。 简并性:同一种氨基酸有两个或更多密码子的现象。 同义密码子:对应同一种氨基酸的不同密码子。 多核糖体:由一个mRNA分子与一定数目的单个核糖体结合而成的念珠状的结构。氨基酸的活化:氨基酸与tRNA相连,形成氨酰-tRNA的过程。 SD序列:原核生物mRNA起始的AUG序列上有10个左右的位置通常含有一段富含嘌呤碱基的序列,与原核生物16SrRNA的3’端的嘧啶碱基进行互补配对,以帮助从起始AUG处开始翻译。 关键酶(标兵酶):催化限速步骤的酶。 反馈抑制:在系列反应中对反应序列前头的标兵酶发生的抑制作用,从而调节整个系列反应速度。 前馈激活:在一系列,前面的代谢物可对后面的酶起激活作用。 单价反馈抑制;指一个单一代谢途径的末端产物对催化关键步骤的酶活性,通常是第一步反应酶活性的抑制作用。 二价反馈抑制:在分支代谢途径中,催化共同途径第一步反应的酶活性可以被两个或两个以上的末端产物抑制的现象。 顺序反馈抑制:分支代谢途径中的两个末端产物,不能直接抑制代谢途径中的第一个酶,而是分别抑制分支点后的反应步骤,造成分支点上中间产物的积累,这种高浓度的中间产物再反馈抑制第一个酶的活性。 协同反馈抑制:在分支代谢途径中,几种末端产物同时都过量,才对途径中的第一个酶具有抑制作用。若某一末端产物单独过量则对途径中的第一个酶无抑制作用。 累积反馈抑制:在分支代谢途径中,任何一种末端产物过量时都能对共同途径中的第一个酶起抑制作用,而且各种末端产物的抑制作用互不干扰。 同工酶反馈抑制:第一个限速步骤由一组同工酶催化,分支代谢的几个最终产物往往分别对其中一个同工酶发生抑制作用,从而起到与累积的反馈抑制相同的效应。 操纵子:在细菌基因组中,编码一组在功能上相关的蛋白质的几个结构基因,与共同的控制位点组成的一个基因表达的协同单位。 衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导mRNA通过构象变化终止或减弱转录。

生化名词解释总结

第二章氨基酸 1、构型(configuration)一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。 2、构象(conformation)指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3、旋光异构:两个异构化合物具有相同的理化性质,但因其异构现象而使偏振光的旋转方向不同的现象。 4、等电点(pI,isoelectric point)使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。 第三章蛋白质的结构 1、肽(peptides)两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 2、肽键(peptide bond)一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 3、肽平面:肽链主链上的肽键因具有双键性质,不能自由旋转,使连接在肽键上的6个原子共处的同一平面。 4、蛋白质一级结构:蛋白质一级结构(primary structure) 指蛋白质中共价连接的氨基酸残基的排列顺序。 5、蛋白质二级结构:蛋白质二级结构:肽链中的主链借助氢键,有规则的卷曲折叠成沿一维方向具有周期性结构的构象。 6、超二级结构:若干相邻的二级结构单元(螺旋、折叠、转角)组合在一起,彼此相互作用,形成有规则在空间上能辨认的二级结构组合体、充当三级结构的构件,称为超二级结构(super-secondary structure),折叠花式(folding motif)或折叠单位(folding unit) 7、结构域:在较大的球状蛋白质分子中,多肽链往往形成几个紧密的相对独立的球状实体,彼此分开,以松散的肽链相连,此球状实体就是结构域 8、蛋白质三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠共价键的维系固定所形成的特定空间结构成为蛋白质的三级结构。 9、蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。 10、蛋白质三维结构 11、氢键:氢原子与电负性的原子X共价结合时,共用的电子对强烈地偏向X的一边,使氢原子带有部分正电荷,能再与另一个电负性高而半径较小的原子Y结合,形成的X—H┅Y型的键。 12、疏水作用力:分子中存在非极性基团(例如烃基)时,和水分子(广义地说和任何极性分子或分子中的极性基团)间存在相互排斥的作用,这种排斥作用称为疏水力。 13、Sanger测序 14、Edman降解测序:从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 第四章蛋白质结构与功能 1、协同效应:寡聚蛋白分子中,一个亚基构象和功能的改变影响其他亚基构象和功能状态的改变;有正协同效应和负协同效应的不同。 2、波尔效应: 3、ELISA4: 4、western blot:免疫印迹测定,原理:蛋白质经凝胶电泳分离,通过转移电泳将蛋白质条带转移硝酸纤维素膜上,进行酶联免疫反应。 步骤:SDS电泳→转移电泳→硝酸纤维膜→封闭→一抗→酶标二抗→显色反应

生化名词解释

生化名词解释1 1.氨基酸的等电点:当溶液在某一特定的pH值时,氨基酸以两性离子的形式存在,正电荷数与负电荷数相等,净电荷为零,在直流电场中既不向正极移动也不向负极移动,这时溶液的pH值称为该氨基酸的等电点,用pI表示。 2.肽键:是指键,是一个氨基酸的α–COOH基和另一个氨基酸的α–NH2基所形成的酰胺键。 3.多肽链:由许多氨基酸残基通过肽键彼此连接而成的链状多肽,称为多肽链。 4.肽平面:肽链主链的肽键具有双键的性质,因而不能自由旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽平面。 5.蛋白质的一级结构:多肽链上各种氨基酸残基的排列顺序,即氨基酸序列。 6.肽单位:多肽链上的重复结构,如Cα–CO–NH–Cα称为肽单位,每一个肽单位实际上就是一个肽平面。 7.多肽:含有三个以上的氨基酸的肽统称为多肽。 8.氨基酸残基:多肽链上的每个氨基酸,由于形成肽键而失去了一分子水,成为不完整的分子形式,这种不完整的氨基酸被称为氨基酸残基。 9.蛋白质二级结构:多肽链主链骨架中,某些肽段可以借助氢键形成有规律的构象,如α–螺旋、β–折叠和β–转角;另一些肽段则形成不规则的构象,如无规卷曲。这些多肽链主链骨架中局部的构象,就是二级结构。 10.超二级结构:在球状蛋白质分子的一级结构顺序上,相邻的二级结构常常在三维折叠中相互靠近,彼此作用,从而形成有规则的二级结构的聚合体,就是超二级结构。 11.结构域:在较大的蛋白质分子里,多肽链的三维折叠常常形成两个或多个松散连接的近似球状的三维实体,即是结构域。它是球蛋白分子三级结构的折叠单位。 12.蛋白质三级结构:指一条多肽链在二级结构(超二级结构及结构域)的基础上,进一步的盘绕、折叠,从而产生特定的空间结构。或者说三级结构是指多肽链中所有原子的空间排布。维系三级结构的力有疏水作用力、氢键、范德华力、盐键(静电引力)。另外二硫键在某些蛋白质中也起着非常重要的作用。 13.蛋白质四级结构:由相同或不同的亚基(或分子)按照一定的排布方式聚合而成的聚合体结构。它包括亚基(或分子)的种类、数目、空间排布以及相互作用。 14.二硫键:指两个硫原子之间的共价键,在蛋白质分子中二硫键对稳定蛋白质分子构象起重要作用。 15.二面角:在多肽链中,Cα碳原子刚好位于互相连接的两个肽平面的交线上。Cα碳原子上的Cα–N和Cα–C都是单键,可以绕键轴旋转,其中以

生化部分名词解释

生化名词解释 1、肽键(peptide bond)是由一个氨基酸的-羧基与另一个氨基酸的-氨基脱水缩合而形成的化学键。 2、模体(motif):模体是蛋白质分子中具有特定空间构象和特定功能的结构成分。 3、结构域(domain):三级结构中、分割成折叠较为紧密且稳定的区域,各 行使其功能。结构域也可看作是球状蛋白质的独立折叠单位,有较为独立的 三维空间结构。 锌指结构:由23个氨基酸残基组成,形成1个α-螺旋和2个反平行的β- 折叠的二级结构,形似手指, 每个β-折叠上有1个半胱氨酸残基,而α-螺旋 上有2个组氨酸或半胱氨酸残基,4个氨基酸残基与Zn2+形成配位键。锌指具 有结合DNA的功能。 4、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一 pH 时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的 pH 称为蛋白质的等电点。 5、蛋白质的变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。 6、亚基 (subunit):四级结构中每条具有完整三级结构的多肽链。 7、谷胱甘肽(glutathione,GSH):是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。分子中半胱氨酸的巯基是该化合物的主要功能基团。 8、协同效应(cooperativity) :一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体的结合能力,称为协同效应。若是促进作用则称为正协同效应(positive cooperativit ); 若是抑制作用则称为负协同效应(negative cooperativity). 9、分子病(molecular disease):由蛋白质分子发生变异所导致的疾病,称为分子病。 10、DNA 变性(DNA denaturation):某些理化因素(温度、pH、离子强度等)会导致 DNA 双链互补碱基之间的氢键发生断裂,使 DNA

生化考试名词解释

生化考试名词解释 2. 别构酶:又称为变构酶,是一类重要的调节酶。其分子除了与底物结合、催化底物反应的活性中心外,还有与调节物结合、调节反应速度的别构中心。通过别构剂结合于别构中心影响酶分子本身构象变化来改变酶的活性。 3. 酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、B-羟基丁酸及丙酮统称为酮体。在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。 4. 糖酵解:生物细胞在无氧条件下,将葡萄糖或糖原经过一系列反应转变为乳酸,并产生少量ATP的过程。 5. EMP 途径:又称糖酵解途径。指葡萄糖在无氧条件下经过一定反应历程被分 解为丙酮酸并产生少量ATP和NADH+H+的过程。是绝大多数生物所共有的一条主流代谢途径。 6. 糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA循环彻底氧化,生成C02和水,并产生大量能量的过程。 7. 氧化磷酸化:生物体通过生物氧化产生的能量,除一部分用于维持体温外,大部分通过磷酸化作用转移至高能磷酸化合物ATP 中,这种伴随放能的氧化作用而使ADP 磷酸化生成ATP 的过程称为氧化磷酸化。根据生物氧化的方式可将氧化磷酸化分为底物水平磷酸化和电子传递体系磷酸化。

8. 三羧酸循环:又称柠檬酸循环、TCA 循环,是糖有氧氧化的第三个阶段,由乙酰辅酶 A 和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成 CO2 和水及大量能量。 9. 糖异生:由非糖物质转变为葡萄糖或糖原的过程。糖异生作用的途径基本上是糖无氧分解的逆过程--- 除了跨越三个能障(丙酮酸转变为磷酸烯醇式丙酮酸、1,6-磷酸果糖转变为6-磷酸果糖,6-磷酸果糖转变为葡萄糖)需用不同的酶及能量之外,其他反应过程完全是糖酵解途径逆过程。 10. 乳酸循环:指糖无氧条件下在骨骼肌中被利用产生乳酸及乳酸在肝中再生为糖而又可以为肌肉所用的循环过程。剧烈运动后,骨骼肌中的糖经无氧分解产生大量的乳酸,乳酸可通过细胞膜弥散入血,通过血液循环运至肝脏,经糖异生作用再转变为葡萄糖,葡萄糖经血液循环又可被运送到肌肉组织利用。 11. 血糖:指血液当中的葡萄糖,主要来源是膳食中消化吸收入血的葡萄糖及肝糖原分解产生的葡萄糖,另外还有糖异生作用由中间代谢物合成的葡萄糖。 19. 比活力:是表示酶制剂纯度的一个指标,指每毫克酶蛋白(或每毫克蛋白氮)所含的酶活力单位数(有时也用每克酶制剂或每毫升酶制剂含多少活力单位来表示),即:比活力=活力单位数/酶蛋白(氮)毫克数。 20. 0.14摩尔法:一种分离提取DNP和RNP的方法,DNP的溶解度在低浓度盐溶液中随盐浓度的增加而增加,在1mol/L的NaCl溶液中溶解度比在纯水中高2倍,

生化~名词解释~简答题

名词解释: A卷 1.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质解离成正负离子的 趋势相等,即成为兼性离子,净电荷为零,此时溶液的PH称为蛋白质的等电点。P25 2.DNA的变性:在某些理化因素(温度、PH、离子强度等)作用下;DNA双链 的互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,成为单链的现象即为DNA的变性。P48 3.糖元的合成:指由葡萄糖合成糖原的过程。课件 4.脂肪动员:储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸及甘油 并释放入血以供其他组织氧化利用,该过程称为脂肪的动员。P110 5.氧化磷酸化:是细胞内ATP形成的主要方式,即在呼吸链电子传递过程中偶 联ADP磷酸化,生成ATP,因此又称为偶联磷酸化。P146 6.营养必须氨基酸:人体内有8种氨基酸不能合成,这些体内需要而又不能自 身合成,必须由食物供应的氨基酸,称为必须氨基酸。P161 7.DNA的半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为 模板按碱基配对规律,合成与模板互补的子链。子代细胞的DNA,一股单链从亲代完整地接受过来,另一股单链则完全重新合成,两个子细胞的DNA都和亲代DNA碱基序列一致,这种复制方式称为半保留复制。P217 8.不对称转录:在庞大的基因组中,按细胞的不同发育时序,生存条件和生理 需要,只有少部分的基因发生转录,转录的这种选择性行为不对称转录p244 9.遗传学的中心法则:p215 中间式子 10.DNA克隆技术:应用酶学的方法,在体外将各种来源的遗传物质――同源的 或异源的、原核的或真核的、天然的或人工的DNA与载体DNA结合成一具有自我复制能力的DNA分子――复制者,继而通过转化或转染宿主细胞、筛选出含有目的基因的转化子细胞,在进行扩增、提取获得大量同一DNA分子,即DNA克隆。P314 B卷:

生化名词解释

第一章核酸化学 一、名词解释 1、核苷:是由一个碱基和戊糖通过糖苷键连接的化合物。 2、核苷酸:是核苷与磷酸通过磷酸酯键结合形成的化合物,核酸的基本结构单位。 3、磷酸二酯键:是两个核苷酸分子核苷酸残基的两个羟基分别与同一磷酸基团形成的共价连接键。 4、核酸:由核苷酸或脱氧核苷酸通过3'-5'磷酸二酯键连接而成的大分子。具有非常重要的生物功能,主要储存遗传物质和传递遗传信息。 5、核酸的一级核苷酸结构:是指DNA分子中各种脱氧核苷酸之间的连接方式和排列顺序。 6、DNA二级结构:是指构成DNA的多聚脱氧核苷酸链之间通过链间氢键卷曲而成的构象。 7、碱基互补规律:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是A(腺嘌呤)一定与T (胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。 8、环化核苷酸:是指单核苷酸中的磷酸基分别与戊糖的3'-OH及5'-OH形成的酯键,这种磷酸内酯的结构成为环化核苷酸。 9、Tm值:是指DNA热变形时,增色效应达到50%是的温度。 10、增色效应:DNA从双螺旋的双链结构变为单链的无规则的卷曲状态时,在260nm处的紫外光吸收值增加。 11、减色效应:是变形的核酸复性时,其在260nm处的紫外光吸收值降低甚至恢复到未变形时的水平。 12、分子杂交:是使单链DNA或RNA分子与具有互补碱基的另一DNA或RNA 片断结合成双链的技术。 第二章蛋白质化学 一、名词解释 1、构象:是指具有相同结构式和相同构型的分子在空间里可能的多种形态。 2、构型:是指具有相同分子式的立体结构体中取代基团在空间的相同取向。 3、肽平面:是指多肽链或蛋白质分子中,组成肽键的C、O、N、H4个原子与两个相邻的α—碳原子共处一个平面。

生化名词解释

名词解释 1、呼吸链:呼吸链又叫电子传递链,是由位于线粒体内膜(真核)中的一系列电子传递体按标准 氧化还原电位,由低到高顺序排列组成的一种能量转换体系。 2、生物氧化:能源物质在活细胞中氧化分解,释放化学能并转化为生物能的生化过程,称 为生物氧化,又叫细胞氧化或细胞呼吸。 3、联合脱氨基作用:将转氨基作用与谷氨酸氧化脱氨基作用联合进行,促进各种氨基酸脱去氨基 生成α-酮酸和氨的过程称氨基酸的联合脱氨基作用。例如:丙氨酸的联合脱氨基作用。 4、DNA 内切酶:具有识别双链DNA 分子中特定核苷酸序列,并由此切割DNA 双链的核酸内切 酶统称为限制性核酸内切酶。 5、酵解与发酵:.酵解 葡萄糖经1,6-二磷酸果糖和3-磷酸甘油酸降解,生成丙酮酸并产生ATP 的代谢过程。 6、分子杂交:不同来源的变性DNA ,若彼此之间有部分互补的核苷酸顺序,当它们在同一溶液中 进行热变性和退火处理时,可以得到分子间部分配对的缔合双链,此过程叫分子杂交。 7、增色效应:伴随着变性,核酸的紫外吸收值增加,此现象为增色现象。 减色效应:复制过程中,紫外吸收值降低,次现象为减色现象。 8、逆转录:以RNA 为模板,依靠逆转录酶的作用,以四种脱氧核苷三磷酸(dNTP)为底物,产生 DNA 链。 9、等电点:分子所带正负电荷相等,净电荷为零的环境PH 成为等电点。 10、活性中心:酶分子上直接参与底物的结合并对其进行催化的区域。 11、酶的活性中心:酶分子上由与催化功能有关的原子或基团构成的特殊的空间结构,称为酶的活 性中心 C COOH CH COOH CH 2COOH C COOH O CH 2CH 2COOH CH COOH NH 2CH 2谷氨酸NH 2CH 3CH 3O 丙氨酸丙酮酸 谷丙转氨酶NA D NA DP 或NA DH 或NA DPH H +++ H +NH 3L-谷氨酸脱氢酶α-酮戊二酸

生化名词解释

第四章糖代(一)名词解释 I. 孚L酸循环(Cori循环):肌肉收缩时生成乳酸,由于肌肉糖异生活性低,所以乳酸通过细胞膜 弥散进入血后,再进入肝,在肝异生为葡萄糖。葡萄糖释进入血液后又可被肌肉摄取,这就构成了一个循环,称为乳酸循环。 2?糖异生:由非糖物质乳酸、丙酮酸、甘油、生糖氨基酸等转变成糖原或葡萄糖的过程称为糖异生,糖异生只在肝脏、肾脏发生。 3?高血糖:临床上将空腹血糖浓度高于7.22?7.78mmol / L,称为高血糖。 4?糖尿:指血糖浓度高于8.89~10.00mmol /L,超过了肾小管对葡萄糖的重吸收能力,尿中出现葡萄糖,称为糖尿。 5. 糖原合成与糖原分解:糖原为体糖的贮存形式,也可被迅速动用。由葡萄糖合成糖原的过 程称为糖原合成,糖原合酶为关键酶。由肝糖原分解为6-磷酸葡萄糖,再水解成葡萄糖释出的过程称为糖原分解,磷酸化酶为关键酶。 6. 血糖:血液中所含的葡萄糖称为血糖。血中葡萄糖水平的正常围是 3.89?6.11mmol / L。 7. 糖酵解和糖酵解途径:在无氧情况下,葡萄糖经丙酮酸分解成乳酸的过程称为糖酵解。自 葡萄糖分解为丙酮酸的反应阶段为糖酵解和糖有氧氧化所共有,称为糖酵解途径。 8. 糖酵解途径:自葡萄糖分解为丙酮酸的反应阶段为糖酵解和有氧氧化所共有,称为糖酵解途径。 9. 钙调蛋白(calmoduline):是细胞的重要调节蛋白。由一条多肽链组成,CaM上有4个Ca2+ 结 合位点,当胞质Ca2+浓度升高,Ca2+与CaM结合,其构象发生改变进而激活Ca2+CaM 激酶。 10. 低血糖:临床上将空腹血糖浓度低于 3.33?3.89mmo1 / L,称为低血糖。 II. 乳酸循环:又称Cori循环,指将肌肉的糖原和葡萄糖通过糖酵解生成乳酸,乳酸进入血中运输至肝脏,在肝乳酸异生成葡萄糖并弥散入血,释入血中的葡萄糖又被肌肉摄取利用,构成的循环过程称为乳酸循环。 12. 三羧酸循环:又称Krebs循环或枸橼酸循环,为乙酰辅酶A氧化的途径,先由乙酰辅酶 A与草酰乙酸缩合生成三羧基酸枸橼酸,再经2次脱羧,4次脱氢等一系列反应,再次生成草酰乙酸,这一循环过程称为三羧酸循环。 13. 糖的有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为糖的有氧氧化。糖 的有氧氧化是糖氧化的主要方式,绝大多数细胞都通过它获得能量。 14. 糖异生途径:从丙酮酸生成葡萄糖的具体反应过程称为糖异生途径。 15. 磷酸戊糖途径:葡萄糖或糖原转变成葡萄糖-6-磷酸后,在6-磷酸葡萄糖脱氢酶等酶的催 化下进行氧化分解,主要生成5-磷酸核糖和NADPH+H+的途径。 16. 丙酮酸脱氢酶复合体:存在于线粒体,催化丙酮酸氧化脱羧生成乙酰CoA,该复合体由丙酮酸脱氢酶,二氢硫辛酰胺转乙酰酶和二氢硫辛酰胺脱氢酶3种酶按一定比例组成,其辅酶为TPP、硫辛酸、FAD、NAD+、CoA。 17. 底物水平磷酸化:直接将底物分子中的能量转移至ADP(或GDP),生成ATP(或GTP)的过 程。 第5章脂类代(一)名词解释 1. 脂肪酸的B氧化:脂酰CoA进入线粒体基质后,在脂肪酸B氧化多酶复合体的催化下从

相关文档