文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线定点定值最值范围问题学案

圆锥曲线定点定值最值范围问题学案

圆锥曲线定点定值最值范围问题学案
圆锥曲线定点定值最值范围问题学案

教学过程

一、复习预习

【高考考情解读】纵观近几年高考,解析几何是重要内容之一,所占分值在30分以上,大题小题同时有,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题.1.填空题主要考查圆锥曲线的几何性质,三种圆锥曲线都有可能涉及.2.在解答题中主要考查圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定点、定值及最值、范围问题.

二、知识讲解

考点/易错点1

1.直线与圆锥曲线的位置关系

(1)直线与椭圆的位置关系的判定方法:

将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.

(2)直线与双曲线的位置关系的判定方法:

将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).

①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0

时,直线与双曲线相离.

②若a=0时,直线与渐近线平行,与双曲线有一个交点.

(3)直线与抛物线的位置关系的判定方法:

将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).

①当a≠0时,用Δ判定,方法同上.

②当a=0时,直线与抛物线的对称轴平行,只有一个交点.

考点/易错点2有关弦长问题

有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.

(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长P1P2=1+k2

|x2-x1|或P1P2=1+1

k2

|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:

|x 2-x1|=x1+x22-4x1x2,

|y 2-y 1|=y 1+y 2

2-4y

1y 2.

(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). 考点/易错点3 弦的中点问题

有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 考点/易错点4 轨迹方程问题

(1)求轨迹方程的基本步骤:

①建立适当的平面直角坐标系,设出轨迹上任一点的坐标——解析法(坐标法). ②寻找动点与已知点满足的关系式——几何关系. ③将动点与已知点的坐标代入——几何关系代数化. ④化简整理方程——简化.

⑤证明所得方程为所求的轨迹方程——完成其充要性. (2)求轨迹方程的常用方法:

①直接法:将几何关系直接翻译成代数方程;

②定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程; ③代入法:把所求动点的坐标与已知动点的坐标建立联系;

④交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹;

(3)注意①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是代数表达式.步骤②⑤省略后,验证时常用途径:化简是否同解变形,是否满足题意,验证特殊点是否成立等.

三、例题精析

【例题1】曲线方程的求法及其简单应用

【题干】如图,在平面直角坐标系xOy 中,已知圆B :16)1(2

2

=+-y x 与点A(-1,0),P 为圆B 上的动点,线段PA 的垂直平分线交直线PB 于点R ,点R 的轨迹记为曲线C.

(1)求曲线C 的方程;

(2)曲线C 与x 轴正半轴交点记为Q ,过原点O 且不与x 轴重合的直线与曲线C 的交点

记为M ,N ,连结QM ,QN ,分别交直线x =t(t 为常数,且t≠2)于点E ,F ,设E ,F 的纵坐标分别为2121,,y y y y ?求的值(用t 表示). 【答案】

(1)连结RA ,由题意得RA =RP ,RP +RB =4,

所以RA +RB =4>AB =2,由椭圆定义,得点R 的轨迹方程为x 24+y 2

3=1.

(2)设M(x 0,y 0),则N(-x 0,-y 0),QM ,QN 的斜率分别为k QM ,k QN , 则k QM =y 0

x 0-2,k NQ =y 0

x 0+2

所以直线QM 的方程为y =

y 0

x 0-2(x -2),直线QN 的方程为y =y 0

x 0+2(x -2).

令x =t(t≠2),则y 1=

y 0x 0-2(t -2),y 2=y 0

x 0+2

(t -2), 又点M(x 0,y 0)在椭圆x 24+y 23=1上,所以y 20=3-3

4

x 20.

所以y 1·y 2=y 20

x 20-4

(t -2)2=

? ??

?

?

3-34x 20t -22

x 20-4

=-3

4(t -2)2,其中t 为常数且t≠2.

【解析】

(1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为圆锥曲线,则可考虑用定义法或待定系数法求解.

(2)当曲线上动点的坐标受到另外一些点的坐标制约时,可以用相关点法,利用相关点法求解曲线方程需要注意两个方面:一是准确定位,即确定联动点,动点的轨迹可能与多个动点相关,但要抓住与其一起联动的点;二是找准关系,即根据已知准确求出动点与其联动点的坐标之间的关系,然后代入联动点所在曲线方程求解. 【例题2】

【题干】设F(1,0),点M 在x 轴上,点P 在y 轴上,且MN →=2MP →,PM →⊥PF →

.

(1)当点P 在y 轴上运动时,求点N 的轨迹C 的方程;

(2)设A(x 1,y 1),B(x 2,y 2),D(x 3,y 3)是曲线C 上的点,且|AF →|,|BF →|,|DF →

|成等差数列,当AD 的垂直平分线与x 轴交于点E(3,0)时,求B 点坐标. 【答案】(1)y 2=4x(x≠0)(2)B(1,±2).

【解析】(1)设N(x ,y),则由MN →=2MP →

,得P 为MN 的中点,所以M(-x,0),P(0,y 2

).

又PM →⊥PF →得PM →·PF →=0,PM →

=(-x ,-y 2),

PF →

=(1,-y 2

),所以y 2=4x(x≠0).

(2)由(1)知F(1,0)为曲线C 的焦点,由抛物线定义知,抛物线上任一点P 0(x 0,y 0)到F 的距离等于其到准线的距离,即P 0F =x 0+p

2,

所以|AF →

|=x 1+p 2,|BF →|=x 2+p 2,|DF →|=x 3+p 2,

根据|AF →|,|BF →|,|DF →

|成等差数列,得x 1+x 3=2x 2, 直线AD 的斜率为y 3-y 1x 3-x 1=y 3-y 1y 234-y 21

4=4

y 1+y 3,

所以AD 中垂线方程为y =-y 1+y 3

4

(x -3),

又AD 中点(x 1+x 32,y 1+y 32)在直线上,代入上式得x 1+x 3

2=1,

即x 2=1,所以点B(1,±2).

【例题3】圆锥曲线中的定值、定点问题

【题干】 已知椭圆C :x 2a 2+y 2

b

2=1经过点(0,

3),离心率为1

2

,直线l 经过椭圆C 的右

焦点F 交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为D 、K 、E. (1)求椭圆C 的方程;

(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →

,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值;否则,说明理由;

(3)连结AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

【解析】(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y 后可得点

A ,

B 的横坐标的关系式,然后根据向量关系式MA →=λAF →,MB →=μBF →

把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值;(3)先根据直线l 的斜率不存在时的特殊情况,看两条直线AE ,BD 的交点坐标,如果直线AE ,BD 相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE ,BD 都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点.

【答案】 (1)依题意得b =

3,e =c

a =1

2

,a 2=b 2+c 2,

∴a =2,c =1,∴椭圆C 的方程为x 24+y 2

3

=1.

(2)因直线l 与y 轴相交,故斜率存在,设直线l 方程为 y =k(x -1),求得l 与y 轴交于M(0,-k),

又F 坐标为(1,0),设l 交椭圆于A(x 1,y 1),B(x 2,y 2),

由?????

y =k x -1,

x 2

4+y

2

3

=1,

消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0, ∴x 1+x 2=8k 2

3+4k 2,x 1x 2=4k 2-12

3+4k 2

又由MA →=λAF →

,∴(x 1,y 1+k)=λ(1-x 1,-y 1), ∴λ=

x 1

1-x 1,同理μ=x 2

1-x 2, ∴λ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 2

1-x 1+x 2+x 1x 2

8k 2

3+4k 2

24k 2-

12

3+4k 2

1-8k 2

3+4k 2+

4k 2-123+4k 2

=-83

.

所以当直线l 的倾斜角变化时,直线λ+μ的值为定值-8

3

.

(3)当直线l 斜率不存在时,直线l⊥x 轴,则ABED 为矩形,由对称性知,AE 与BD 相

交于FK 的中点N ? ??

??

52,0,

猜想,当直线l 的倾斜角变化时,

AE 与BD 相交于定点N ? ??

??

52,0,

证明:由(2)知A(x 1,y 1),B(x 2,y 2),

∴D(4,y 1),E(4,y 2),当直线l 的倾斜角变化时,首先证直线

AE 过定点? ??

??

52,0,

∵l AE :y -y 2=y 2-y 1

4-x 1(x -4),

当x =52时,y =y 2+y 2-y 14-x 1·? ??

??-32

24-x 1·y 2-3y 2-y 1

24-x

1

24-x 1

·k x 2-1-3k x 2-x 1

24-x

1

-8k -2kx 1x 2+5k x 1+x 2

24-x

1

-8k 3+4k 2-2k 4k 2-12+5k·8k 2

24-x

1

·3+4k 2

=0.

∴点N ? ??

??

52,0在直线l AE 上.

同理可证,点N ? ??

??

52,0也在直线l BD 上.

∴当直线l 的倾斜角变化时,直线AE 与BD 相交于定点? ??

??

52,0.

【例题3】

【题干】(2013·陕西)已知动圆过定点A(4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;

(2)已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.

【答案】如图,设动圆圆心为O 1(x ,y),由题意,得O 1A =O 1M ,

当O 1不在y 轴上时,过O 1作O 1H⊥MN 交MN 于H ,则H 是MN 的中

点, ∴O 1M =x 2+42, 又O 1A =x -4

2+y 2,

x -4

2+y 2=

x 2+42,

化简得y 2=8x(x≠0).

又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x.

(2)证明 由题意,设直线l 的方程为y =kx +b(k≠0), P(x 1,y 1),Q(x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.

由根与系数的关系得,x 1+x 2=8-2bk

k 2

x 1x 2=b 2

k

2,

因为x 轴是∠PBQ 的角平分线,所以y 1

x 1+1=-y 2

x 2+1,

即y 1(x 2+1)+y 2(x 1+1)=0,

(kx 1+b)(x 2+1)+(kx 2+b)(x 1+1)=0,2kx 1x 2+(b +k)(x 1+x 2)+2b =0

将①,②代入③得2kb 2+(k +b)(8-2bk)+2k 2b =0, ∴k =-b ,此时Δ>0,

∴直线l 的方程为y =k(x -1),即直线l 过定点(1,0). 【解析】

(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k(x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m).

【例题3】圆锥曲线中的最值范围问题

【题干】 (2013·浙江)如图,点P(0,-1)是椭圆C 1:x 2a 2+y 2

b 2=1(a>b>0)的一个顶点,

C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.

(1)求椭圆C 1的方程;

(2)求△ABD 面积取最大值时直线l 1的方程.

【答案】 (1)由题意得?????

b =1,

a =2.

所以椭圆C 1的方程为x 24+y 2=1.(2)设A(x 1,y 1),B(x 2,

y 2),D(x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.

又圆C 2

:x 2+y 2=4,故点

O 到直线l 1的距离d =

1k 2+1

所以AB =2

4-d 2=2

4k 2+3k 2+1

.又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.

由?

????

x +ky +k =0,

x 2+4y 2=4.消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k 4+k 2. 所以PD =

8

k 2+14+k 2

.设△ABD 的面积为S ,则S =12·AB·PD =84k 2+3

4+k 2

所以S =

32

4k 2+3+

134k 2+3

≤322

4k 2+

3

·

13

4k 2+3

=1613

13

当且仅当k =±102时取等号.所以所求直线l 1的方程为y =±10

2

x -1.

【解析】

求最值及参数范围的方法有两种:①根据题目给出的已知条件列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域. 【例题3】 【题干】

已知椭圆C 1与抛物线C 2的焦点均在x 轴上且C 1的中心和C 2的顶点均为坐标原点O ,从每条曲线上的各取两个点,其坐标如下表所示:

(1)求C 1,C 2(2)过点A(m,0)作倾斜角为π

6的直线l 交椭圆C 1于C ,D 两点,且椭圆C 1的左焦点F 在

以线段CD 为直径的圆的外部,求m 的取值范围.

【答案】(1)椭圆C 1的方程为x 26+y 2

2

=1,抛物线C 2的方程为y 2=9x.

(2)m 的取值范围是(-2

3,-3)∪(0,2

3)

【解析】 (1)先判断出(-

6,0)在椭圆上,进而断定点(1,-3)和(4,-6)在抛物线上,故(

3,1)

在椭圆上,所以椭圆C 1的方程为x 26+y 2

2

=1,抛物线C 2的方程为y 2=9x.

(2)设C(x 1,y 1),D(x 2,y 2),直线l 的方程为y =3

3

(x -m),

由?????

y =3

3x -m x 2

6+y 2

2=1,

消去y 整理得2x 2-2mx +m 2-6=0,

由Δ>0得Δ=4m 2-8(m 2-6)>0,即-2

3

而x 1x 2=m 2-62,x 1+x 2=m ,故y 1y 2=33(x 1-m)·33(x 2-m)=13

[x 1x 2-m(x 1+x 2)+m 2]

=m 2-66.欲使左焦点F 在以线段CD 为直径的圆的外部,则FC →·FD →

>0,

又F(-2,0),即FC →·FD →

=(x 1+2,y 1)·(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+y 1y 2+4>0. 整理得m(m +3)>0,即m<-3或m>0.②由①②可得 m 的取值范围是(-2

3,-3)∪(0,2

3).

四、课堂运用

【基础】 1. 已知方程x 2k +1

y 23-k

=1(k∈R)表示焦点在x 轴上的椭圆,则k 的取值范围是

________.

2. △ABC 的顶点A(-5,0)、B(5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹

方程是________________.

3. 若点O 和点F 分别为椭圆x 24+y 2

3

=1的中

心和左焦点,点P 为椭圆

上的任意一点,则OP →·FP →

的最大值为

________.

【巩固】

1. 直线y =kx +1与椭圆x 25+y 2

m =1恒有公共点,则m 的取值范围是________.

2. 设F 1、F 2为椭圆x 2

4

+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,

当四边形PF 1QF 2面积最大时,PF →1·PF →

2的值等于________. 【拔高】

1. 已知椭圆C :x 2

a 2+y 2

b 2=1(a>b>0)的离心率为2

2,其左、右焦点分别是F 1、F 2,

过点F 1的直线l 交椭圆C 于E 、G 两点,且△EGF 2的周长为4 2.

(1)求椭圆C 的方程;

(2)若过点M(2,0)的直线与椭圆C 相交于两点A 、B ,设P 为椭圆上一点,且满足OA →+OB →

=tOP →(O 为坐标原点),当|PA →-PB →|<25

3

时,求实数t 的取值范围.

课程小结

1. 求轨迹与轨迹方程的注意事项

(1)求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足

的等量关系,因此要学会动中求静,变中求不变.

(2)求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某

些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示).检验方法:研究运动中的特殊情形或极端情形.

2.定点、定值问题的处理方法

定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果.

3.圆锥曲线的最值与范围问题的常见求法

(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解

决;

(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,

再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑:

①利用判别式来构造不等关系,从而确定参数的取值范围;

②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等

量关系;

③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;

④利用基本不等式求出参数的取值范围;

⑤利用函数的值域的求法,确定参数的取值范围.

课后作业

【基础】

1.直线3x-4y+4=0与抛物线x2=4y和圆x2+(y-1)2=1从左到右的交点依次为A,

B,C,D,则AB

CD的值为________.

2.已知双曲线x 2-y 2

3

=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物

线y 2=18x 上,则实数m 的值为________. 【巩固】

1. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线

在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若PF 1=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1·e 2的取值范围是________.

2.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的

距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为________.

【拔高】

1. 已知直线x -2y +2=0经过椭圆C :x 2

a 2+y 2

b

2=1(a >b >0)的左顶点A 和上顶点D ,椭

圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :x =

10

3

分别交于M ,N 两点. (1)求椭圆C 的方程;

(2)求线段MN 的长度的最小值.

2.在平面直角坐标系中,点P(x ,y)为动点,已知点A(

2,0),B(-

2,0),直线PA 与

PB 的斜率之积为-1

2

.

(1)求动点P 的轨迹E 的方程;

(2)过点F(1,0)的直线l 交曲线E 于M ,N 两点,设点N 关于x 轴的对称点为Q(M 、Q 不重合),求证:直线MQ 过x 轴上一定点.

3.设椭圆C:x2

a2+y2

b2=1(a>b>0)的离心率e=

3

2,左顶点M到直线

x

a+

y

b=1的距离d=

45

5,O为坐标原点.

(1)求椭圆C的方程;

(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;

(3)在(2)的条件下,试求△AOB的面积S的最小值.

圆锥曲线中的定值定点问题教学提纲

圆锥曲线中的定值定 点问题

2019届高二文科数学新课改试验学案(10) ---圆锥曲线中的定值定点问题 1.已知椭圆()2222:10x y C a b a b +=>> 的离心率为2, 点(在C 上. (I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M , 证明:直线OM 的斜率与直线l 的斜率乘积为定值. 2.已知椭圆C :过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率; (Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N , 求证:四边形ABNM 的面积为定值. 22 221x y a b +=

3.椭圆()2222:10x y C a b a b +=>>的离心率为12 ,其左焦点到点()2,1P (I )求椭圆C 的标准方程 (Ⅱ)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆 过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标.

<圆锥曲线中的定值定点问题>答案 1.【答案】(I )22 22184 x y +=(II )见试题解析 试题解析: 【名师点睛】本题第一问求椭圆方程的关键是列出关于22,a b 的两个方程,通过解方程组求出22,a b ,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题. 2.

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型 例题、已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:22 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +-+-。(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。

专题3:圆锥曲线中的定值定点问题(解析版)

专题3:圆锥曲线中的定值定点问题(解析版) 1.已知椭圆2222:1(0)x y C a b a b +=>> 的离心率为2 ,短轴一个端点到右焦点F 的 . (1)求椭圆C 的标准方程 ; (2)过点 F 的直线l 交椭圆于A 、B 两点,交y 轴 于P 点,设 12,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由. 【答案】(1)2 212 x y +=;(2)是定值-4,理由见解析. 【解析】 【分析】 (1)由题意可得a , c ,b ,可求得椭的圆方程. (2)设直线l 的方程为()1y k x =-,与椭圆的方程联立整理得: ()2 2 22124220k x k x k +-+-=,设()11,A x y ,()22,B x y , 由一元二次方程的根与 系数的关系可得2122 212241222 12k x x k k x x k ?+=??+?-?=?+? ,再根据向量的坐标运算表示出1111x x λ=-, 2 22 1x x λ= -, 代入计算可求得定值. 【详解】 (1 )由题可得a = ,又2 c e a = = ,所以1c = ,1b ==, 因此椭圆方程为2 212 x y +=, (2)由题可得直线斜率存在,设直线l 的方程为()1y k x =-, 由()22 112 y k x x y ?=-??+=??消去y ,整理得:()2222124220k x k x k +-+-=,

设()11,A x y ,()22,B x y , 则2122 2 1224122212k x x k k x x k ?+=??+?-?=?+? , 又()1,0F ,()0,P k -,则()11,PA x y k =+,()111,AF x y =--, 由1PA AF λ=可得()1111x x λ=-,所以1111x x λ=-,同理可得2 22 1x x λ=-, 所以 12121211x x x x λλ+= +--()()()12 121212121212 22111x x x x x x x x x x x x x x +-+-==---++2222 22 22 422 2121242211212k k k k k k k k --?++=--+ ++4=-, 所以,12λλ+为定值-4. 【点睛】 本题考查直线与椭圆的定值问题,关键在于联立方程组,得出交点的坐标的关系,将目标条件转化到交点的坐标上去,属于中档题. 2.已知椭圆C :()22 2210x y a b a b +=>>的离心率为12,且经过点31,2??-- ???, (1)求椭圆C 的标准方程; (2)过点()1,0作直线l 与椭圆相较于A ,B 两点,试问在x 轴上是否存在定点Q ,使得两条不同直线QA ,QB 恰好关于x 轴对称,若存在,求出点Q 的坐标,若不存在,请说明理由. 【答案】(1)22 143 x y +=; (2)存在(4,0)Q ,使得两条不同直线QA ,QB 恰好关于x 轴对称. 【解析】 【分析】 (1)将点坐标代入方程,结合离心率公式及222a b c =+ ,即可求出2,a b ==,进而可求得椭圆C 的标准方程; (2)设直线l 的方程为1x my =+,与椭圆联立,可得12y y +,12y y 的表达式,根据

圆锥曲线中的定点定值问题(教师版)

第四讲 圆锥曲线中的定点定值问题 一、直线恒过定点问题 例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2 :4C x y =的切线,EA EB , 切点为 A 、 B , 求证:直线AB 恒过一定点,并求出该定点的坐标; 解:设),2,(-a E )4,(),4,(2 22211x x B x x A ,x y x y 2 1 4'2=∴= , )(21 41121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(2 1 421121x a x x -=--∴整理得:082121=--ax x 同理可得:2 22280x ax --= 8 ,2082,2121221-=?=+∴=--∴x x a x x ax x x x 的两根是方程 )2 4,(2+a a AB 中点为可得,又22 12 121212124442 AB x x y y x x a k x x x x - -+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2 a y x AB =+∴即过定点0,2. 例2、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012 x x y y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒 过一定点G ,求点G 的坐标。 解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n 则0000001 212022x n m y x n m y x y ?=-?+??-??--=??,解得3200020432 0000 2002344424482(4)x x x m x x x x x n y x ?+--=?-??+--?=?-? ∴ 直线PN 的斜率为4320000032 00004288 2(34) n y x x x x k m x y x x -++--==---+

高考数学专题复习-圆锥曲线定值定点问题

圆锥曲线问题的解题规律可以概括为: “联立方程求交点,韦达定理求弦长,根的分布范围,曲线定义不能忘,引参、用参巧解题,分清关系思路畅、数形结合关系明,选好,选准突破口,一点破译全局活。 定点、定直线、定值专题 已知直线l : y=x+,圆O :x 2+y 2=5,椭圆E :过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值. 2.过点作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断∠MAN 的大小是否为定值,并说明理由. 3.设A (x 1,y 1),B (x 2,y 2 )是椭圆,(a >b >0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2,O 为坐标原点: (Ⅰ)求椭圆的方程;

(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k 的值; (Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 4.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的倍,且椭圆 C经过点M. (1)求椭圆C的标准方程; (2)过圆O:上的任意一点作圆的一条切线l与椭圆C交于A、B两点.求证:为定值. 5.已知平面上的动点P(x,y)及两定点A(﹣2,0),B(2,0),直线PA,PB的斜率分别是k1,k2且. (1)求动点P的轨迹C的方程; (2)设直线l:y=kx+m与曲线C交于不同的两点M,N. ①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值 ②若直线BM,BN的斜率都存在并满足,证明直线l过定点,并求出这个定点.

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值、范围和最值问题 会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建 . 一、主要知识及主要方法: 1. 形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值. 二、精选例题分析 【举例1】 (05广东改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同 动点A 、B 满足AO BO ⊥. (Ⅰ)求AOB △得重心G 的轨迹方程; (Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值; 若不存在,请说明理由. 【举例2】已知椭圆2 2142x y +=上的两个动点,P Q 及定点1,2M ? ?? ,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ; ()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标. 【举例3】(06全国Ⅱ改编)已知抛物线2 4x y =的焦点为F ,A 、B 是抛物线上的两动点,且 AF FB λ=u u u r u u u r (0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为 M 。 (Ⅰ)证明FM AB ?u u u u r u u u r 为定值;

圆锥曲线中的定点和定值问题的解题方法

寒假文科强化(四):圆锥曲线中的定点和定值问题的解答方法 【基础知识】 1、对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决. 2、在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效. 题型一 :定点问题 法一:特殊探求,一般证明; 法二:设该直线(曲线)上两点的坐标,利用点在直线(曲线)上,建立坐标满足的方程(组),求出相应的直线(曲线),然后再利用直线(曲线)过定点的知识加以解决。 例1 设点A 和B 是抛物线?Skip Record If...?上原点以外的两个动点,且?Skip Record If...?,求证直线?Skip Record If...?过定点。 解:取?Skip Record If...?写出直线?Skip Record If...?的方程; 再取?Skip Record If...?写出直线?Skip Record If...?的方程;最后求出两条直线 的交点,得交点为?Skip Record If...?。 设?Skip Record If...?,直线?Skip Record If...?的方程为?Skip Record If...?, 由题意得?Skip Record If...?两式相减得 ?Skip Record If...?,即?Skip Record If...?, ?Skip Record If...?直线?Skip Record If...?的方程为?Skip Record If...?,整理得?Skip Record If...? ① 又?Skip Record If...??Skip Record If...?,?Skip Record If...??Skip Record If...?,?Skip Record If...?,?Skip Record If...? O A B

圆锥曲线中的定点定值问题的四种模型

2017届高三第一轮复习专题训练之 圆锥曲线中的定点定值问题的四种模型 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型 例题、(07山东)已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222 (34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:22 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +-+-。(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。(参考优酷视频资料尼尔森数学第一季第13节) 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。 ◆迁移训练 练习1:过抛物线M:px y 22 =上一点P (1,2)作倾斜角互补的直线PA 与PB ,交M 于A 、B 两点,求证:直线AB 过定点。(注:本题结论也适用于抛物线与双曲线)

圆锥曲线定点、定直线、定值问题

定点、定直线、定值专题 1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 【标准答案】(I)由题意设椭圆的标准方程为22 221(0)x y a b a b +=>> 3,1a c a c +=-=,2 2,1,3a c b ===22 1.43 x y ∴+ = (II)设1122(,),(,)A x y B x y ,由2214 3y kx m x y =+?? ?+=??得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +->. 2121222 84(3) ,.3434mk m x x x x k k -?+=-?=++222 2 121212122 3(4) ()()().34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ?=-,1212122 y y x x ∴ ?=---, (最好是用向量点乘来)1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mk k k k --+++=+++, 2271640m mk k ++=,解得1222,7 k m k m =-=- ,且满足22 340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2 (,0).7 综上可知,直线l 过定点,定点坐标为2 (,0).7 2、已知椭圆C 的离心率e = ()1A 2,0-,()2A 2,0。(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S 。试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。

(完整版)专题——圆锥曲线定值问题

高三二轮一一圆锥曲线中的“定值”问题 概念与用法 圆锥曲线中的定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难 点.解决这个难点的基本思想是函数思想, 可以用变量表示问题中的直线方程、数量积、 比例关系等,这些直线方程、数量积、比例关系等不受变量所影响的一个值,就是要求 的定值?具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去 变量即得定值. 基本解题数学思想与方法 在圆锥曲线中,某些几何量在特定的关系结构中, 不受相关变元的制约而恒定不变, 则称该变量具有定值特征. 解答此类问题的基本策略有以下两种: 1、 把相关几何量的变元特殊化,在特例中求出几何量 的定值,再证明结论与特定状态 无关. 2、 把相关几何量用曲线系里的参变量表示,再证明结论与求参数无关. 题型示例 一?证明某一代数式为定值: 1、如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. 解:由已知条件,得 F(0, 1), Z>O ?设 A(x 1, y 1), B(x 2, y 2).由 AF =入FB , 即得 (一x 1, 1 — y) = ?(X 2, y 2 — 1),所以 —X1=入2 ① 1 — y1 =心2— 1)② 若M 为定点,证明:直线 EF 的斜率为定值; 解:设M (y 0 ,y o ),直线 ME 的斜率为 k(l>0),直线 MF 的斜率为—k , 直线 ME 方程为y y o k(x y (). ???由 y o k (x yo) ,消 x 得 ky 2 y o (i ky o ) o 解得 y F 1 ky o X F 2 (1 ky o ) 厂; 同理 1 ky ,X F 1 ky 2 y E y F X E X F 1 k (1 ky 。) ky o 1 ky o 2 (1 ky °) 2 k 4ky o 2y o (定值) k 2 所以直线EF 的斜率为定值 k 2 ▲利用消元法 2、已知抛物线x 2= 4y 的焦点为 F , A 、B 是抛物线上的两动点, 且AF =入FB B 两点分别作抛物线的切线,设其交点为 M .证明FM -AB 为定值

圆锥曲线中的定值定点问题

圆锥曲线中的定值定点 问题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

2019届高二文科数学新课改试验学案(10) ---圆锥曲线中的定值定点问题 1.已知椭圆()2222:10x y C a b a b +=>> 点(在C 上. (I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M , 证明:直线OM 的斜率与直线l 的斜率乘积为定值. 2.已知椭圆C :22 221x y a b +=过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率; (Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N , 求证:四边形ABNM 的面积为定值. 3.椭圆()2222:10x y C a b a b +=>>的离心率为12 ,其左焦点到点()2,1P (I )求椭圆C 的标准方程 (Ⅱ)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆 过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标. <圆锥曲线中的定值定点问题>答案 1.【答案】(I )22 22184 x y +=(II )见试题解析

试题解析: 【名师点睛】本题第一问求椭圆方程的关键是列出关于22,a b 的两个方程,通过解方程组求出22,a b ,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题. 2.

圆锥曲线专题——定值定点问题(附解析)

第1页(共15页) 圆锥曲线专题——定值定点问题 1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为1 2 ,以原点O 为圆心,椭圆的短半轴长为 半径的圆与直线0x y -+=相切. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A 、B 两点,且2 2OA OB b k k a =-,判断AOB ?的面 积是否为定值?若为定值,求出定值;若不为定值,说明理由. 【解答】 解:(1)椭圆的短半轴长为半径的圆与直线0x y -=相切, ∴b == 又222a b c =+,1 2 c e a = =, 解得24a =,23b =, 故椭圆的方程为22 143 x y +=. ()II 设1(A x ,1)y ,2(B x ,2)y ,由22 14 3y kx m x y =+?? ?+=??化为222(34)84(3)0k x mkx m +++-=, △22226416(34)(3)0m k k m =-+->,化为22340k m +->. ∴122 834mk x x k +=-+,21224(3)34m x x k -=+. 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+, 3 4 OA OB k k =-,

第2页(共15页) ∴ 121234y y x x =-,12123 4 y y x x =-, 22222 3(4)34(3)34434m k m k k --=- + +,化为22 243m k - =, ||AB = = 又114d = =- = , 1 ||2 S AB d === 22 === (1)求椭圆E 的标准方程; (2)过F 作直线l 与椭圆交于A 、B 两点,问:在x 轴上是否存在点P ,使PA PB 为定值,若存在,请求出P 点坐标,若不存在,请说明理由. 【解答】解:( 1)由题意知1c =,过F 且与x 轴垂直的弦长为3, 则223b a =,即222() 3a c a -=,则2a =,b ∴椭圆E 的标准方程为22143 x y +=; (2)假设存在点P 满足条件,设其坐标为(,0)t , 设1(A x ,1)y ,2(B x ,2)y ,当l 斜率存在时,设l 方程为(1)y k x =-, 联立22 (1) 3412 y k x x y =-??+=?,整理得:2222(43)84120k x k x k +-+-=,△0>恒成立.

圆锥曲线中的定点,定值问题

圆锥曲线中的定点,定值问题 《学习目标》: 1. 探究直线和椭圆,抛物线中的定点定值问题 2. 体会数形结合,转化与化归的思想 3. 培养学生分析问题,逻辑推理和运算的能力 活动一 根深蒂固: 题根:已知AB 是圆O 的直径,点P 是圆O 上异于A,B 的两点,k 1,k 2是直线PA,PB 的斜率,则k 1k 2= -1. 问题1 这是一个师生都很熟悉的结论,这个结论能否类比推广到其它一些圆锥曲线呢? 问题2 如图,点P 是椭圆x 2 4+y 2 =1上除长轴的两个顶点外的任一点,A,B 是该椭圆长轴的2个端点,则直线PA,PB 的斜率之积为______. 问题 3 椭圆)0(122 22>>=+b a b y a x 长轴的两个顶点与椭圆上除这两个顶点外的任一点连线斜率之积为______ . 问题4 .证明: 设 A 、B 是椭圆22221(0)x y a b a b +=>>上关于原点对称的两点,点P 是该椭圆上不同于A,B 的任一点,直线PA,PB 的斜率为k 1,k 2,则k 1k 2 为2 2b a -

活动二 根深叶茂: 问题5(2012年南通二模卷)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交 点为D.若cos∠F 1BF 2=725,则直线CD 的斜率为__________. 问题6:(2011年全国高考题江苏卷18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆12 42 2=+y x 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k 。 (1)略 (2)略 (3)对任意k>0,求证:PA ⊥PB

圆锥曲线中的定值定点问题

2019届高二文科数学新课改试验学案(10) ---圆锥曲线中的定值定点问题 ??????1?0a?b:C22,C上的离心率为在, 已知椭圆1.. 22yx2 点22ba2C的方程;)求(I lOlCABABM, ,与线段有两个交点,(II)直线中点为不经过原点,且不平行于坐标轴,OMl的斜率乘积为定值证明:直线. 的斜率与直线 22yx??1过点A(2,0),B(0,1)两点已知椭圆2.C:. 22ba)求椭圆C的方程及离心率;(I ,求轴交于点直线轴交于点M,PB与xNyPA上,为第三象限内一点且在椭圆设(Ⅱ)PC直线与. 证:四边形的面积为定值ABNM

????2,1P0a?1b??C:?10,其左焦点到点椭圆3.的距离为的离心率为 22yx1 22ab2C的标准方程I)求椭圆(C A,BA?m,Bl:y?kx AB为直径的圆与椭圆相交于,且以(Ⅱ)若直线不是左右顶点)两点(Cl过定点,并求出该定点的坐标. 过椭圆的右顶点。求证:直线

<圆锥曲线中的定值定点问题>答案22yx 1(II)见试题解析)【答案】(1.I2248 试题解析:

2222b,a,ab,,本题第一问求椭圆方程的关键是列出关于通过解方程组求出的两个方程【名师点睛】解析几何中的证明问题通常有以下几类:解决此类问题要重视方程思想的应用;第二问是证明问题,. 证明点共线或直线过定点;证明垂直;证明定值问题 2. c3??e.2a ????的面积为定值.从而四边形再证明定点、定值、定线,解决定值定点方法一般有两种:(1)

从特殊入手,求出定点、【名师点睛】直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线与变量无关;(2)应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的定值、定线.. 运用可有效地简化运算 1c??,0?cF:1:3ce??2??a:b:),设左焦点3.解:(112a 22????1c?10PF???c?20??1?,解得122yx1??3a?2,b???椭圆方程为34??2,0D 1)可知椭圆右顶点(2)由(??????2,0y,y,BDxA,x AB,以设为直径的圆过21210??DB?DA DBDA?DBDA??即 ????y?2,xDA?yx?2,?,DB2211 ???????4?yy?x??x?yy?2????DADBxx2?x2x0①2121211212 y?kx?m?????222??0?8mkx?3?4k43xm?联立直线与椭圆方程: ?22123y?x?4???23m?48mk?x?x??,xx? ??????22mx?mk?kx?mx?k?x?yy?xkx?m 212122?334k4k? 21212211??2234km?22k?mk3m128mk?2???m?,代入到① ??23m4?22k?3m128mkDA?DB??2??4??0 2224k?34k4?3k?3 2224k?34k?34k?32222km12??12?34m16?12?16mk?k??0 ????22?02kkmk?0??7m?m?72?16mk?4 2?34k 2m??2k k???m或72222?????l,0k?l:y?kxx?k?km??恒过当时,????

圆锥曲线中的定点定值问题

第四讲 圆锥曲线中的定点定值问题 、直线恒过定点问题 例1.已知动点E 在直线l : y 2上,过点E 分别作曲线C : x 2 4y 的切线EA, EB , 直线10过P 点与直线I 垂直,点M ( -1 , 0)关于直线10的对称点为 N 直线PN 恒 过一定点G 求点G 的坐标。 x ° (y y °) 2y °(x 沧),即 2y °x x °y ^y 。2 2 解:设 E(a, 2), AX,竺),B%,^), 4 4 2 x y 4 1 y 1 X 2 2 过点A 的抛物线切线方程为y x1 4 1 X 1(X 2 xj, 切线过E 点, 切点为A 、B ,求证:直线 AB 恒过一定点,并求出该定点的坐标; 2 X i 1 2 x 1(a x 1),整理得:x 1 2ax 1 8 0 2 4 同理可得: 2 x 2 2ax 2 8 0 2ax 8 0的两根 X 1 2 a, X 1 x 2 8 可得AB 中点为(a, 4 ),又k AB 上 y X 1 x 2 2 X 1 X 1 X | X 2 a 4 2 2 直线AB 的方程为y e 2) 評a ) ,即y 即2 AB 过定点(0,2 ). 例1改为:已知A 、B 是抛物线y 2 定点(2p,0). 2 px ( p 0)上两点,且OA OB ,证明:直线AB 过 x 2 例2、已知点P (x 0,y °)是椭圆E : 一 2 1上任意一点,直线 x °x 的方程为2 解:直线l 0的方程为 x 1, x 2是方程x 2

设M( 1,0)关于直线I 。的对称点 N 的坐标为N (m, n) 2y o x o 2y o 1 X °n 2x 。3 3x o 2 4x o 4 解得 直线 x °y ° x o 2 4 2x o 4 4x 。3 4x o 2 8x o 2 2y o (4 x o ) PN 的斜率为 y o x o 4 x o 4x 03 2x 02 8x 0 8 3 2 2y o ( x o 3x o 4) 从而直线 PN 的方程为: y o x 04 4x 03 2x 02 8 x 0 8 (x x o ) 3 2 2y o ( X o 3x o 4) 2y o ( X 。3 3x o 2 4) X o 4 4x o 3 2x o 2 8x 。8 从而直线PN 恒过定点G(1,0) 二、恒为定值问题 例3、已知椭圆两焦点 F |、F 2在y 轴上,短轴长为2 2,离心率为 一, 2 P 是椭圆在第 UJU UULU 象限弧上一点,且 PF 1 PF 2 1,过P 作关于直线F 1P 对称的两条直线 PA PB 分别交椭 圆于A 、B 两点。 (1) 求P 点坐标; (2) 求证直线 AB 的斜率为定值; 解:(1) 2 设椭圆方程为占 a 2 x _ 1,由题意可得 b 2 a 2,b ■ 2, c 2 2 ,所以椭圆的方程为 2 y 4 则 F 1(0, 2),F 2(0, 2),设 P(x o ,y o )(x o o, y o 0) uju r UULT l U UUT 则 PF 1 (心」2 y o ), PF 2 x o , y o ), UU LU UUU UUUU … … PF 1 PF 2 x 2 (2 y 2) 1 2 Q 点P(X o , y o )在曲线上,则' 2 2 y o 4 1. 2 X o 2 y o

圆锥曲线定值定

圆锥曲线定值定

————————————————————————————————作者:————————————————————————————————日期:

圆锥曲线问题的解题规律可以概括为: “联立方程求交点,韦达定理求弦长,根的分布范围,曲线定义不能忘,引参、用参巧解题,分清关系思路畅、数形结合关系明,选好, 选准突破口,一点破译全局活。 定点、定直线、定值专题 (2012?菏泽一模)已知直线l:y=x+,圆O:x2+y2=5,椭圆E:过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证两切线斜率之积为定值. 2.(2012?自贡三模);过点作不与y轴垂直的直线l交该椭圆于M、N两点,A为椭圆的左顶点,试判断∠MAN的大小是否为定值,并说明理由. 3.(2013?眉山二模)设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2, O为坐标原点: (Ⅰ)求椭圆的方程; (Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 4.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的倍,且椭圆C经过点M. (1)求椭圆C的标准方程;

(2)过圆O:上的任意一点作圆的一条切线l与椭圆C交于A、B两点.求证:为定值. 5.已知平面上的动点P(x,y)及两定点A(﹣2,0),B(2,0),直线PA,PB的斜率分别是k1,k2且. (1)求动点P的轨迹C的方程; (2)设直线l:y=kx+m与曲线C交于不同的两点M,N. ①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值 ②若直线BM,BN的斜率都存在并满足,证明直线l过定点,并求出这个定点. 6.(2011?新疆模拟)已知椭圆(a>b>0)的离心率为,以原点为圆心,椭 圆的短半轴为半径的圆与直线相切. (Ⅰ)求椭圆C的方程; (Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q; 7.已知椭圆Ω的离心率为,它的一个焦点和抛物线y2=﹣4x的焦点重合. (1)求椭圆Ω的方程; (2)若椭圆上过点(x0,y0)的切线方程为 . ①过直线l:x=4上点M引椭圆Ω的两条切线,切点分别为A,B,求证:直线AB恒过定点C; ②是否存在实数λ使得|AC|+|BC|=λ?|AC|?|BC|,若存在,求出入的值;若不存在,说明理由.

圆锥曲线中的定点和定值问题(毛玉峰)

圆锥曲线中的定点和定值问题 泰兴市第二高级中学 毛玉峰 圆锥曲线是解析几何的重要内容之一,是高考的重点考查内容.这部分知识综合性较强,对学生逻辑思维能力、计算能力等要求很高,特别是圆锥曲线中的定点与定值问题,此类问题主要涉及到直线、圆、圆锥曲线等方面的知识,渗透了函数、化归、数形结合等思想,是高考的热点题型之一. 【要点梳理】 1.解析几何中,定点、定值问题是高考命题的一个热点,也是一个难点,解决这类问题基本思想是明确的,那就是定点、定值必然是在变化中所表现出来的不变量,所以可运用函数的思想方法,选定适当的参数,结合等式的恒成立求解,也就是说与题中的可变量无关。 2.椭圆中常见的定值结论: 结论1:经过原点的直线l 与椭圆22 221(0)x y a b a b +=>>相交于,M N 两点,P 是椭圆上的动 点,直线,PM PN 的斜率都存在,则PM PN k k 为定值2 2b a -. 结论2:已知,M N 是椭圆22 221(0)x y a b a b +=>>两点,P 是,M N 的中点,直线,MN OP 的 斜率都存在,则MN OP k k 为定值2 2b a -. 结论3:设,,A B C 是椭圆22 221(0)x y a b a b +=>>上的三个不同点,,B C 关于x 轴对称,直线 ,AB AC 分别与x 轴交于,M N 两点,则OM ON 为定值2a . 结论4:过椭圆22 221(0)x y a b a b +=>>上一点00(,)P x y 上任意作两条斜率互为相反数的直线 交椭圆于,M N 两点,则直线MN 的斜率为定值20 20b x a y . 结论5:分别过椭圆22221(0)x y a b a b +=>>上两点00(,)P x y ,'' 00(,)Q x y 作两条斜率互为相反 数的直线交椭圆于,M N 两点,则直线MN 的斜率为定值2' 002' 00() () b x x a y y ++. 3. 定点问题:对圆锥曲线中定点的确定,通常设出适当的参数,求出相应曲线系(直线系)方程,利用定点对参变量方程恒成立的特点,列出方程(组),从而确定出定点或者也可以对参变量取特殊值确定出定点,再进行一般性证明 .

圆锥曲线综合——定点定值问题(带详解)

圆锥曲线中的定点定值问题 前几节课已经学习过圆锥曲线的椭圆、双曲线、抛物线的相关知识点与题型,那么这节课我们来学习圆锥曲线的综合应用之定点定值题型。 圆锥曲线是解析几何的重要内容之一,也是高考重点考查的内容和热点,知识综合性较强,对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.定值问题与定点问题是这类题目的典型代表,为了提高解题效率,特别是高考备考效率,本次课讲解一些典型的定点和定值问题。 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程. 即????? Ax +By +C =0,F (x ,y )=0, 消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交; Δ=0?直线与圆锥曲线C 相切; Δ<0?直线与圆锥曲线C 相离. (2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的

位置关系是平行或重合. [探究] 直线与圆锥曲线只有一个公共点时,是否是直线与圆锥曲线相切? 提示:直线与圆锥曲线只有一个公共点时,未必一定相切,还有其他情况,如抛物线与平行或重合于其对称轴的直线,双曲线与平行于其渐近线的直线,它们都只有一个公共点,但不是相切,而是相交. 2.圆锥曲线的弦长 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 = 1+1k 2·|y 1-y 2 |= 1+1 k 2·(y 1+y 2)2-4y 1y 2. 3.弦中点问题 对于弦中点问题常用“根与系数的关系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件是Δ≥0. (1)在椭圆x 2a 2+y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =-b 2x 0 a 2y 0. (2)在双曲线x 2a 2-y 2b 2=1中,以P (x 0,y 0)为中点的弦所在直线的斜率k =b 2x 0 a 2y 0. (3)在抛物线y 2=2px (p >0)中,以P (x 0,y 0)为中点的弦所在直线的斜率k =p y 0. 斜率为2的直线经过椭圆x 25+y 2 4=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________. 解析 F 1(1,0),直线AB 的方程为y =2(x -1),即2x -y -2=0,由?????2x -y -2=0x 25+y 2 4=1得3x 2-5x =0, 设A (x 1,y 1)B (x 2,y 2),则x 1+x 2=5 3 ,x 1x 2=0, ∴|AB |=(1+k 2AB )[(x 1+x 2)2 -4x 1x 2] = (1+2)2 ????532 -430=55 3 .

相关文档
相关文档 最新文档