文档库 最新最全的文档下载
当前位置:文档库 › 锂电池电解液概述

锂电池电解液概述

锂电池电解液概述
锂电池电解液概述

锂离子电池电解液概述

一、锂离子电池电解液

电解液是锂离子电池四大关键材料之一,号称锂离子电池的血液,是锂离子电池获得高压、高比能等优点的保证。电解液主要由高纯度有机溶剂、电解质锂盐、必要添加剂等原料,在一定条件下,按一定比例配制而成。

1.1有机溶剂

有机溶剂一般用高介电常数溶剂于低粘度溶剂混合使用。常用的电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质。

锂离子电池电解液中常用的有机溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、丙烯酸乙酯(EA)、丙烯酸甲酯(MA)等。有机溶剂在使用前必须严格控制质量,溶剂的纯度于稳定电压之间有密切联系,有机溶剂的水分,对于配制合格电解液起着决定作用。水分降低至10-6之下,能降低六氟磷酸锂的分解、减缓SEI膜的分解、防止气涨等。利用分子筛吸附、常压或减压蒸馏、通入惰性气体的方法,可以使水分含量达到要求。为了获得具有高离子导电性的溶液,以便锂离子在其中快速移动,溶剂一般采用混合材料,如碳酸乙烯酯(EC)+碳酸二甲酯(DMC),碳酸乙烯酯(EC)+碳酸二乙酯(DEC)。

1.2电解质锂盐

电解质锂盐占电解液成本最大,约占到电解液成本的40%左右。LiPF6是最常用的电解质锂盐,其对负极稳定,电导率高,放电容量大,内阻小,充放电速度快。但对水分和HF及其敏感,易发生反应,其操作应在干燥气氛(如手套箱)中进行,不耐高温,80℃~100℃发生分解反应,生成五氟化磷和氟化锂。从成本、安全性等多方面考虑,六氟磷酸锂具有突出的离子电导率、较优的氧化稳定性和较低的环境污染等优点,是目前首选的锂离子电池电解质,也是商业化锂离子电池采用的主要电解质。除此之外还有LiBF4、LiPF6、LiBOB、LiFSI、LiPF2、LiTDI等一系列安全性高、循环性能好的锂盐电解质体系得到关注。

1.2.1六氟磷酸锂

目前对LiPF6制备工艺的相关研究主要分为两大类:HF溶剂法和离子交换法。 HF 溶剂法是制备LiPF6最传统的方法,其过程是将LiF溶解于HF溶剂中,然后直接通入含磷、含氟的物质,经过反应后蒸发或冷却结晶,得到最终产品。该方法是工业化制备的主要方法,其制备的LiPF6纯度高、品质好,适合高端锂电池生产需求。然而,其制备过程对设备和操作的要求往往较高,且残余在LiPF6中的HF对电池性能的发挥影响巨大。

LiPF6的另一大类生产方法是离子交换法。指的是将六氟磷酸盐与含锂化合物在有机溶剂中发生离子交换得到LiPF6的方法。离子交换法的主要特点是简单易行,但LiPF6纯度问题限制了其广泛应用。

1.2.2新型锂盐

目前已有一系列安全性高、循环性能好的锂盐电解质体系得到关注,与传统的电解质锂盐LiPF6相比,虽然综合能力尚不能与LiPF6相抗衡,但它们在不同方面具有的明显优势,比如,LiBOB 具有良好的电化学稳定性和热稳定性,能与特定溶剂反应形成稳定的SEI 膜,可以经过多次循环能量不衰减。LiFSI 是一种性能优良的锂电池电解质,具有优越的导电性和与电极材料良好的相容性,LiBF4相比LiPF6具有更好的化学稳定性和热稳定性,安全性能更加显著。但是大量的实验数据证明使用单一锂盐总存在一些不可避免的缺点,比如LiFSI 容易引起铝腐蚀,LiBF4由于其阴离子半径相对较小,与锂离子的相互作用较强,导电性较弱,使其单独作为电解质锂盐用于锂离子电池的性能较差。因此将不同性质不同结构的锂盐进行复合,使复合电解液体现出一些单纯电解质所不具备的优异性能,从而多方面提高电解液性能。

1.2.3各种锂盐的优缺点

LiBF4:低温性能比较好,但是价格昂贵和溶解度比较低;

LiPF6:综合性能比较好,缺点是易吸水水解;

LiBOB:高温性能比较好,尤其能抑制溶剂对负极的插入破坏,但溶解度太低;

LiFSI:不仅具有环境友好型,而且具有较好的热稳定性、对水分的敏感性、导电性;

LiPF2:提高锂电池的高温循环性能与储存性能、低温输出性能以及过充保护与均衡容量性能;

LiTFSI:良好的电化学稳定性,离子电导率高,具有良好的热稳定性,不易水解;

LiTDI:具有非常高的锂离子迁移数,减少锂盐用量而降低电池成本。

1.3.1添加剂

添加剂的种类繁多,不同的锂离子电池生产厂家对电池的用途、性能要求不一,所选择的添加剂的侧重点也存在差异。一般来说,所用的添加剂主要有以下几方面的作用:

(1)成膜添加剂

无机成膜添加剂:SO2、CO2、CO等小分子可以促使钝化膜的形成,加入卤化物如LiI,LiBr等也可以改善钝化膜。

有机成膜添加剂:氟代、氯代和溴代有机化合物如苯甲醚或其卤代衍生物等,能够改善电池的循环性能,减少电池的不可逆容量损失。其中碳酸亚乙烯酯(VC)是非常好的成膜添加剂。

(2)降低电解液中的微量水和HF酸添加剂

碳化二亚胺类化合物能阻止LiPF6水解成酸,另外,一些金属氧化物如Al2O1、MgO、BaO、Li2CO1、CaCO1等被用来除去HF。

(1)防止过充电、过放电添加剂

有机胺和亚胺类、联苯类、咔唑类等化合物被用做防止过充电、过放电添加剂。

(4)阻燃添加剂

有机磷化合物如四丙氧基硅烷(TPOS)、四甲氧基硅烷(TMOS),有机氟化合物、及卤代烷基磷酸酯等高沸点高闪点不易燃化合物被用做阻燃添加剂。

(5)改善低温性能添加剂

N,N-二甲基三氟乙酰胺、机硼化物、含氟碳酸酯等低粘度,高闪点有利于电池低温性能的提高。

(6)多功能添加剂

12-冠-4加入PC溶剂后,电极界面SEI膜得到优化,减少了电极首次不可

逆容量损失。氟化有机溶剂、卤代磷酸酯如BTE和TTFP等加入电解液后,不仅有助于形成优良的SEI 膜,同时对电解液具有一定的甚至明显的阻燃作用,改善了电池多方面性能。

二、电解液行业及市场简析

六氟磷酸锂现状分析

六氟磷酸锂作为电解液生产过程中的主要溶质材料,因此其重要性不言而喻。一般来讲六氟磷酸锂产能释放周期约为1-2年,近两年来新能源汽车行业快速发展,导致六氟磷酸锂出现短缺的现象,随着相关企业的大幅扩产,这一现象将被终结且六氟磷酸锂价格也将逐渐下滑。

电解液现状分析

在电解液行业发展初期,全球锂离子电池电解液市场主要集中于宇部兴产、三菱化学、富山药品等少数国外企业。但随着行业的发展,尤其是中国1C消费领域以及新能源汽车行业的发展,中国电解液企业在国际市场的份额及地位逐渐凸显,通过近几年的数据可以看出,中国市场份额逐渐加大,而日韩企业的市场份额逐渐缩小。国产电解液的市场集中度较高,天赐材料、新宙邦、杉杉股份、江苏国泰等主流的电解液公司占据了大部分市场份额。

2014年以来随着新能源汽车产业的爆发式增长,动力电池对电解液需求激增,作为锂电池的必备材料之一电解液,预计未来几年将随着新能源汽车行业的快速发展,需求量进一步增长。

附表1 国内电解液主要生产企业

表1 国内电解液主要生产企业

企业名称年产能/吨市场占有率备注

国泰华荣20000 15% 江苏国泰下属子公司,主要面对中高端客户天赐材料18000 10% 主要面对中端客户

新宙邦18000 10% 新宙邦成立于2002年,源于深圳市宙邦化工有限公司

天津金牛10000 10% 主要面对中低端客户

杉杉股份7000 10% 杉杉股份于2005年投资,主要面向中端客户珠海赛纬6000 10% 主要面向高端客户

金光高科4000 5% 主要面对中端客户

北京化学试剂研究所7000 5%

创亚恒业1500 2~1% 成立于2004年,除了生产电解液,还年产负极材料1500吨

3、产业发展前景

电解液作为锂电池的四大原材料之一,随着新能源汽车需求端的快速发展也得到了一个迅猛的发展。根据《十三五国家战略性新兴产业发展规划》中明确提出,2020 年实现新能源汽车产销200万辆以上,保有量达500万辆。目前我国新能源汽车累计产销100万辆左右,距离2020年500万辆目标还有4倍的增长空间。动力电池行业高景气仍将持续,对于电解液的需求也将持续增长,带动电解质六氟磷酸锂的需求量持续增长。

在未来几年随着新能源汽车对于锂电池容量、能量密度要求的提高,使用六氟磷酸锂作为电解液的溶质已经不再能满足要求,新型锂盐逐步替代六氟磷酸锂已经成为不可逆转的趋势。

锂离子电池电解液

锂电池电解液特性 锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。 基本信息 中文名称锂电池电解液 组成锂盐和有机溶剂 含义离子传输的载体 分类电池 锂电池电解液主要成分介绍 1.碳酸乙烯酯:分子式: C3H4O3 透明无色液体(>35℃),室温时为结晶固体。沸点:248℃/760mmHg , 243-244℃/740mmHg;闪点:160℃;密度:1.3218;折光率:1.4158(50℃);熔点:35-38℃;本品是聚丙烯腈、聚氯乙烯的良好溶剂。可用作纺织上的抽丝液;也可直接作为脱除酸性气体的溶剂及混凝土的添加剂;在医药上可用作制药的组分和原料;还可用作塑料发泡剂及合成润滑油的稳定剂;在电池工业上,可作为锂电池电解液的优良溶剂 2.碳酸丙烯酯分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 本品应储存于阴凉、通风、干燥处,远离火源,按一般低毒化学品规定储运。 3.碳酸二乙酯分子式:CH3OCOOCH3 无色液体,稍有气味;蒸汽压1.33kPa/23.8℃;闪点25℃(可燃液体能挥发变成蒸气,跑入空气中。温度升高,挥发加快。当挥发的蒸气和空气的混合物与火源接触能

够闪出火花时,把这种短暂的燃烧过程叫做闪燃,把发生闪燃的最低温度叫做闪点。闪点越低,引起火灾的危险性越大。);熔点-43℃;沸点125.8℃;溶解性:不溶于水,可混溶于醇、酮、酯等多数有机溶剂;密度:相对密度(水=1)1.0;相对密度(空气=1)4.07;稳定性:稳定;危险标记7(易燃液体);主要用途:用作溶剂及用于有机合成 ①健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:本品为轻度刺激剂和麻醉剂。吸入后引起头痛、头昏、虚弱、恶心、呼吸困难等。液体或高浓度蒸气有刺激性。口服刺激胃肠道。皮肤长期反复接触有刺激性。 ②毒理学资料及环境行为 毒性:估计能通过胃肠道、皮肤和呼吸道进入机体表现为中等度毒性。刺激性比碳酸二甲酯大。 急性毒性:LD501570mg/kg(大鼠经口);人吸入20mg/L(蒸气)×10分钟,流泪及鼻粘膜刺激。 生殖毒性:仓鼠腹腔11.4mg/kg(孕鼠),有明显致畸胎作用。 危险特性:易燃,遇明火、高热有引起燃烧的危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。 燃烧(分解)产物:一氧化碳、二氧化碳。 ③泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 ④防护措施 呼吸系统防护:空气中浓度较高时,建议佩戴自吸过滤式防毒面具(半面罩)。 眼睛防护:戴安全防护眼镜。 身体防护:穿防静电工作服。

锂电池电解液基础知识

锂离子电池电解液 1 锂离子电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。目前锂离子电池电解液产品技术也正处于进一步发展中。在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。 国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂离子电池电解液材料及生产工艺详解

锂离子电池电解液材料及生产工艺详解液体电解液生产工艺---流程图 电解液生产工艺---精馏和脱水 –对于使用的有机原料分别采取精馏或脱水处理以达到锂电池电解液使用标准。 –在精馏或脱水阶段,需要对有机溶剂检测的项目有:纯度、水分、总醇含量。

液体电解液生产工艺---产品罐 –在对有机溶剂完成精馏或脱水后,检测合格后经过管道进入产品罐、等待使用。 –根据电解液物料配比,在产品罐处通过电子计量准确称取有机溶剂。 –如果产品罐中的有机溶剂短时间未使用,需要再次对其进行纯度、水分、总醇含量的检测,继而根据生产的需要准确进入反应釜。 体电解液生产工艺---反应釜 –依据物料配比和加入先后顺序,有机溶剂依次加入反应釜充分搅拌、混匀,然后通过锂盐专用加料口或手套箱加入所需的锂盐和电解液添加剂。 –在加入物料开始到结束,应控制反应釜的搅拌速度、釜内温度等。不同的物料配比搅拌混匀的时间不同,但都必须使电解液混合均匀,此时对电解液检测的项目有:水分、电导率、色度、酸度 液体电解液生产工艺---灌装 –经检测合格的液体电解液被灌入合格的包装桶,充入氩气保护,最终进入仓库等待出厂。 –由于电解液自身的物理、化学性质等因素,入库的电解液应在短时间内使用,防止环境等因素导致电解液的变质 液体电解液---使用注意事项 –电解液桶有氩气保护,有一定压力,在使用中切勿拆卸气相阀头和液相阀头,也不允许随意按下快开接头的凸头,以免造成泄漏或其它危险。接管时一定要戴防护眼罩,使用时一定要使用专用快开接头

–检测合格的电解液建议一次性用完,开封的电解液很容易因为没有气氛保护等原因而变质,请客户在使用过程中注意及时充入氩气保护,防止变色电解液不建议使用玻璃器皿盛放,玻璃的主要成分是氧化硅,氧化硅和氢氟酸反应生成腐蚀性、易挥发的气体四氟化硅,此气体有毒会对人造成伤害 –现场可以使用的电解液容器和管道材料包括:不锈钢、塑料PP/PE、四氟乙烯等 –本产品对人体有害,有轻微刺激和麻醉作用。使用过程中避免身体直接接触 液体电解液的组成 –有机溶剂 –锂盐 –添加剂 有机溶剂---有机溶剂的选择标准 –有机溶剂对电极应该是惰性的,在电池的充放电过程中不与正负极发生电化学反应 –较高的介电常数和较小的黏度以使锂盐有足够高的溶解度,从而保证高的电导率 –熔点低、沸点高,从而使工作温度范围较宽 –与电极材料有较好的相容性,即电极能够在电解液中表现出优良的电化学性能 –电池循环效率、成本、环境因素等方面的考虑 液体电解液的组成---有机溶剂 –碳酸酯 –醚 –含硫有机溶剂

锂离子电池电解液简介

锂离子电池电解液简介 一、电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。 二、电解液组成 2.1有机溶剂 有机溶剂是电解液的主体部分,电解液的性能与溶剂的性能密切相关。锂离子电池电解液中常用的溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)等,一般不使用碳酸丙烯酯(PC)、乙二醇二甲醚(DME)等主要用于锂一次电池的溶剂。PC用于二次电池,与锂离子电池的石墨负极相容性很差,充放电过程中,PC 在石墨负极表面发生分解,同时引起石墨层的剥落,造成电池的循环性能下降。但在EC 或EC+DMC复合电解液中能建立起稳定的SEI膜。通常认为,EC与一种链状碳酸酯的混合溶剂是锂离子电池优良的电解液,如EC+DMC、EC+DEC等。相同的电解质锂盐,如LiPF6或者LiC104,PC+DME体系对于中间相炭微球C-MCMB材料总是表现出最差的充放电性能(相对于EC+DEC、EC+DMC体系)。但并不绝对,当PC与相关的添加剂用于锂离子电池,有利于提高电池的低温性能。 2.2 电解质锂盐 LiPF6是最常用的电解质锂盐,是未来锂盐发展的方向。尽管实验室里也有用LiClO4,、LiAsF6等作电解质,但因为使用LiC104 的电池高温性能不好,再加之LiCl04本身受撞击容易爆炸,又是一种强氧化剂,用于电池中安全性不好,不适合锂离子电池的工业化大规模使用。 2.3添加剂 添加剂的种类繁多,不同的锂离子电池生产厂家对电池的用途、性能要求不一,所选择的添加剂的侧重点也存在差异。一般来说,所用的添加剂主要有三方面的作用: (1)改善SEI膜的性能 (2)降低电解液中的微量水和HF酸 (3)防止过充电、过放电 三、锂离子电池电解液种类 3.1液体电解液 电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在

锂电池电解液概述

锂离子电池电解液概述 一、锂离子电池电解液 电解液是锂离子电池四大关键材料之一,号称锂离子电池的血液,是锂离子电池获得高压、高比能等优点的保证。电解液主要由高纯度有机溶剂、电解质锂盐、必要添加剂等原料,在一定条件下,按一定比例配制而成。 1.1有机溶剂 有机溶剂一般用高介电常数溶剂于低粘度溶剂混合使用。常用的电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质。 锂离子电池电解液中常用的有机溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、丙烯酸乙酯(EA)、丙烯酸甲酯(MA)等。有机溶剂在使用前必须严格控制质量,溶剂的纯度于稳定电压之间有密切联系,有机溶剂的水分,对于配制合格电解液起着决定作用。水分降低至10-6之下,能降低六氟磷酸锂的分解、减缓SEI膜的分解、防止气涨等。利用分子筛吸附、常压或减压蒸馏、通入惰性气体的方法,可以使水分含量达到要求。为了获得具有高离子导电性的溶液,以便锂离子在其中快速移动,溶剂一般采用混合材料,如碳酸乙烯酯(EC)+碳酸二甲酯(DMC),碳酸乙烯酯(EC)+碳酸二乙酯(DEC)。 1.2电解质锂盐 电解质锂盐占电解液成本最大,约占到电解液成本的40%左右。LiPF6是最常用的电解质锂盐,其对负极稳定,电导率高,放电容量大,内阻小,充放电速度快。但对水分和HF及其敏感,易发生反应,其操作应在干燥气氛(如手套箱)中进行,不耐高温,80℃~100℃发生分解反应,生成五氟化磷和氟化锂。从成本、安全性等多方面考虑,六氟磷酸锂具有突出的离子电导率、较优的氧化稳定性和较低的环境污染等优点,是目前首选的锂离子电池电解质,也是商业化锂离子电池采用的主要电解质。除此之外还有LiBF4、LiPF6、LiBOB、LiFSI、LiPF2、LiTDI等一系列安全性高、循环性能好的锂盐电解质体系得到关注。

锂离子电池电解液

Q/XZB 锂离子电池电解液 Electrolytes for Lithium-ion Battery 深圳新宙邦科技股份有限公司发布

前言 锂离子电池电解液没有国家标准及行业标准。因此本企业依据《标准化工作导则、指南和编写规则》GB/T1.2-2000和GB/T1.1-2000之规定制定了本标准。 本标准由深圳新宙邦科技股份有限公司提出 本标准由深圳新宙邦科技股份有限公司品管部归口管理 本标准起草单位:深圳新宙邦科技股份有限公司 本标准起草人:周达文、郑仲天、高家勇、梅芬 本标准发布时期:2008年7月

锂离子电池电解液 1 范围 本标准规定了锂离子电池电解液的技术要求、检验方法、检验规则以及标志、包装、运输、贮存和安全要求。 本标准主要适用锂离子电池电解液。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T9282 透明液体—以铂钴等级评定颜色 GB/T 6283 化工产品中水含量测定卡尔.费歇法(通用方法)(eqv ISO760:1978) GB/T 3049 化工产品中铁含量测定通用方法邻菲啰啉分光光度法 GB/T 6682 分析实验室用水规格和试验方法(neq ISO3696:1987) GB/T 2540 石油产品密度测定法比重瓶法 GB/T 9282 透明液体--以铂钴等级评定颜色 GB/T 1250 极限数值的表示方法和判定方法 GB/T 6678 化工产品采样总则 GB/T 6679 固体化工产品采样通则 GB6682 验室用水规格和试验方法(neq ISO3696:1987) 3 技术要求 3.1 外观 锂离子电池电解外观应符合表1的要求 表1外观

锂离子电池对电解液量需求及电解液量对电池性能的影响

锂离子电池对电解液量需求及电解液量对电池性能的影响 2010年06月11日作者:杉杉科技技术支持中心来源:《化学与物理电源系统》第17期编辑:ser 1前言 通用的锂离子电池电解液由无机锂盐电解质和有机碳酸酯组成,作为锂离子迁移和电荷传递的介质,是锂离子电池不可或缺的重要组成部分,是锂离子电池获得高电压、高能量密度、高循环性能等优点的基础。电解液开发和设计过程中,可以通过提高电解液纯度、调节锂盐浓度和溶剂组成、使用功能添加剂来控制和改善电解液的杂质含量、导电率、粘度、温度窗口等理化性能。在电池设计过程中,不可忽略正负极材料与电解液的兼容性,针对不同的正负极体系选择恰当的电解液体系是电池获得优异性能的前提。选择了恰当的正负极与电解液体系,并不能保证电池具备高能量密度、长循环寿命和高安全性等优点,还要确定恰当的电解液量。本文考察了电解液量对锂离子电池容量、循环性能、安全性能的影响以及不同正极材料体系对电解液量的需求差异。 2实验方法 选取523450方型铝壳型号作为实验电芯型号,正极活性物质相应分别采用钴酸锂、镍钴锰酸锂、锰酸锂、磷酸铁锂,设计压实密度分别为3.9g/cm3、3.45g/cm3、2.8g/cm3、2.3g/cm3;负极采用人造石墨,设计压实密度为1.55g/cm3,电解液体系为1MLiPF6/(EC/EMC/DEC/MPC/添加剂),密度为1.23g/cm3。其中钴酸锂电芯1C倍率的标称容量为1000mAh,镍钴锰酸锂电芯1C倍率的标称容量800mAh,锰酸锂电芯1C 倍率的标称容量为600mAh,磷酸铁锂电芯1C倍率的标称容量为600mAh。根据不同正极,按照工艺分别制成523450铝壳方型电芯100只。 相应各取只未注液电芯,采用真密度仪测试封口前后的体积,计算电芯内部的空间体积,此体积乘以电解液的密度,即可得到电芯的最大注液量。根据电芯内部空间测试结果,制定注液梯度,进行对比实验。将剩余电芯平均分配后,按照注液梯度进行注液,再按正常工艺完成化成、封口等工序后称量电芯的重量,电芯老化后留待测试。 3结果与讨论 3.1不同类别电芯的电解液量需求

锂离子电池电解液概况

锂离子电池电解液概况 电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiPF6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。 表1:电解液材料组成 二、锂离子电池电解液种类 1、液体电解液 电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在较高的电位下和较高温度环境中不易发生分解,具有较高的离子导电率(>10- 3 s/cm ),而且对阴阳极材料必须是惰性的、不能侵腐它们。由于锂离子电池充放电电位较高而且阳极材料嵌有化学活性较大的锂,所以电解质必须采用有机化合物而不能含有水。但有机物离子导电率都不好,所以要在有机溶剂中加入可溶解的导电盐以提高离子导电率。目前锂离子电池主要是用液态电解质,其溶剂为无水有机物如EC(ethyl carbonate) 、PC (propylenecarbonate)、DMC(dimethyl carbonate)、DEC(diethyl carbonate),多数采用混合溶剂,如EC2DMC 和PC2DMC 等。导电盐有L iClO4、LiPF6、LiBF6、LiA sF6 和LiOSO2CF3,它们导电率大小依次为LiAsF6> LiPF6> LiClO4>LiBF6> LiOSO 2CF3。LiClO4因具有较高的氧化性容易出现爆炸等安全性问题,一般只局限于实验研究中;LiAsF6离子导电率较高易纯化且稳定性较好,但含有有毒的As,使用受到限制;LiBF6化学及热稳定性不好且导电率不高,LiO SO2CF3导电率差且对电极有腐蚀作用,较少使用;虽然LiPF6会发生分解反应,但具有较高的离子导电率,因此目前锂离子电池基本上是使用LiPF6。目前商用锂离子电池所用的电解液大部分采用LiPF6的EC2DMC,它具有较高的离子导电率与较好的电化学稳定性。

锂电池电解液成分

锂电池电解液成分 碳酸乙烯酯:分子式: C3H4O3 透明无色液体(>35℃),室温时为结晶固体。沸点:248℃/760mmHg ,243-244℃/740mmHg;闪点:160℃;密度:1.3218;折光率:1.4158(50℃);熔点:35-38℃;本品是聚丙烯腈、聚氯乙烯的良好溶剂。可用作纺织上的抽丝液;也可直接作为脱除酸性气体的溶剂及混凝土的添加剂;在医药上可用作制药的组分和原料;还可用作塑料发泡剂及合成润滑油的稳定剂;在电池工业上,可作为锂电池电解液的优良溶剂 碳酸丙烯酯分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 本品应储存于阴凉、通风、干燥处,远离火源,按一般低毒化学品规定储运。 碳酸二乙酯分子式:CH3OCOOCH3 无色液体,稍有气味;蒸汽压1.33kPa/23.8℃;闪点25℃(可燃液体能挥发变成蒸气,跑入空气中。温度升高,挥发加快。当挥发的蒸气和空气的混合物与火源接触能够闪出火花时,把这种短暂的燃烧过程叫做闪燃,把发生闪燃的最低温度叫做闪点。闪点越低,引起火灾的危险性越大。);熔点-43℃;沸点125.8℃;溶解性:不溶于水,可混溶于醇、酮、酯等多数有机溶剂;密度:相对密度(水=1)1.0;相对密度(空气=1)4.07;稳定性:稳定;危险标记7(易燃液体);主要用途:用作溶剂及用于有机合成

锂电池的电解液

聚乙烯、聚丙烯微孔膜 锂电池的电解液是电池的一个重要组成部分,对电池的性能有很大的影响。在传统电池中,电解液均采用以水为溶剂的电解液体系。但是,由于水的理论分解电压只有1.23V,即使考虑到氢或氧的过电位,以水为溶剂的电解液体系的电池的电压最高也只有2V左右(如铅酸蓄电池)。锂电池电压高达3~4V,传统的水溶液体系显然已不再适应电池的需要,而必须采用非水电解液体系作为锂离子电池的电解液。锂电池电解液主要采用能耐高电压而不分解的有机溶剂和电解质。 锂离子电池采用的电解液是在有机溶剂中溶有电解质锂盐的离子型导体。一般作为实用锂离子电池的有机电解液应该具备以下性能: (1)离子电导率高,一般应达到10-3~2*10-3S/cm;锂离子迁移数应接近于1; (2)电化学稳定的电位范围宽;必须有0~5V的电化学稳定窗口; (3)热稳定好,使用温度范围宽; (4)化学性能稳定,与电池内集流体和恬性物质不发生化学反应; (5)安全低毒,最好能够生物降解。 适合的溶剂需其介电常数高,粘度小,常用的有烷基碳酸盐如PC,EC等极性强,介电常数高,但粘度大,分子间作用力大,锂离于在其中移动速度慢。而线性酯,如DMC(二甲基碳酸盐)、DEC(二乙基碳酸盐)等粘度低,但介电常数也低,因此,为获得具有高离子导电性的溶液,一般都采用PC+DEC,EC+DMC 等混合溶剂。这些有机溶剂有一些味道,但总体来说,都是能符合欧盟的RoHS, REACH要求的,是毒害性很小、环保有好性的材料。 目前开发的无机阴离子导电盐主要有LiBF4,LiPF6,LiAsF6三大类,它们的电导率、热稳定性和耐氧化性次序如下: 电导率:LiAsF6≥LiPF6>LiClO4>LiBF4 热稳定性:LiAsF6>LiBF4>LiPF6 耐氧化性:LiAsF6≥LiPF6≥LiBF4>LiClO4 LiAsF6有非常高的电导率、稳定性和电池充电放电率,但由于砷的毒性限制了它的应用。目前最常用的是LiPF6。 目前常用的锂电池的所有材料,包括电解液都是能符合欧盟的RoHS, REACH要求的,是环保有好性的储能物品。 锂离子电池也存在着一定的缺点,如: 1)电池成本较高。主要表现在正极材料LiCoO2的价格高(Co的资源较少),电解质体系提纯困难。 2)不能大电流放电。由于有机电解质体系等原因,电池内阻相对其他类电池大。故要求较小的放电电流密度,一般放电电流在0.5C以下,只适合于中小电流的电器使用。 3)需要保护线路控制。 A、过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在4.1V-4.2V的恒压下充电; B、过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。锂/锰电池电解液 1,LiClO4的处理

相关文档