文档库 最新最全的文档下载
当前位置:文档库 › 控制阀附件选型

控制阀附件选型

控制阀附件选型
控制阀附件选型

定位器 (2)

电磁阀 (3)

电磁阀 (5)

限位开关 (6)

三通气控阀 (6)

中继放大器 (6)

空气锁定阀 (6)

快速排气阀 (8)

NF8327B102 VCEFCM8551G321MO

调节阀的特性及选择

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

调节阀选型计算

?调节阀计算与选型指导(一) ?2010-12-09 来源:互联网作者:未知点击数:588 ?热门关键词:行业资讯 【全球调节阀网】 人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的。 调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。 控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。 (8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。

调节阀的选型计算

二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适

用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。(8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。 三、调节阀的流量特性及其选择 调节阀流量特性分固有特性和工作特性两种。固有特性又称调节阀的结构特性,是由生产厂制造时决定的。调节阀在管路中工作,管路系

浅谈调节阀的安装和调试

浅谈调节阀的安装和调试 调节阀又名控制阀,在工业自动化过程控制领域中,通过接受调节控制单元输出的控制信号,借助动力操作去改变介质流量、压力、温度、液位等工艺参数的最终控制元件。 一般由执行机构和阀门组成。如果按行程特点,调节阀可分为直行程和角行程;按其所配执行机构使用的动力,调节阀可以分为气动调节阀、电动调节阀、液动调节阀三种。按其功能和特性分为线性特性,等百分比特性及抛物线特性三种。调节阀适用于空气、水、蒸汽、各种腐蚀性介质、泥浆、油品等介质。英文名:control valve,位号通常FV 开头。调节阀常用分类:气动调节阀,电动调节阀,液动调节阀,自力式调节阀。 对执行机构输出力确定后,根据工艺使用环境要求,选择相应的执行机构。对于现 场有防爆要求时,应选用气动执行机构。从节能方面考虑,应尽量选用电动执行机构。 若调节精度高,可选择液动执行机构。如发电厂透明机的速度调节、炼油厂的催化装置反应器的温度调节控制等。 调节阀的作用方式只是在选用气动执行机构时才有,其作用方式通过执行机构正反 作用和阀门的正反作用组合形成。组合形式有4种即正正(气关型)、正反(气开型)、反 正(气开型)、反反(气关型),通过这四种组合形成的调节阀作用方式有气开和气关两种。 对于调节阀作用方式的选择,主要从三方面考虑:a)工艺生产安全;b )介质的特 性;c)保证产品质量,经济损失最小。 引言 随着科学技术的进步,生产过程自动化中用来控制流体流量的调节阀已普遍应用于各个行业。对于热力、化工控制系统,作为最终控制过程介质各项质量及安全生产指标的调节阀,在稳定生产、优化控制、维护及检修成本控制等方面起着举足轻重的作用。在调节阀的应用中,计算与选型是前提,安装与调试是关键, 使用与维护是目的。调节阀如果安装不当,或者调试不好,就起不到调节的作用, 甚至会成为系统的累赘。 1、调节阀的安装 1.1安装的基本原则 调节阀的安装应遵循国家有关标准,按照设计图纸和设计文件的规定严格执行。例如,建筑安装工程质量检验评定标准、工业自动化仪表施工及验收规范、电气设备安装工程施工及验收规范等;安装所需的设备、辅助设备及主要材料应符合现行国家标准的有关规定。 1.2安装前的检验 调节阀及附件从出厂到安装前,在运输途中受到运输工具所激发的随机振动和装卸

各类阀门选型步骤与依据方法

各类阀门选型步骤与依据方法 1、阀门的定义: 阀门是流体管路的控制装置,在石油化工生产过程中发挥着重要作用。主要具备几大作用:接通和截断介质;防止介质倒流;调节介质压力、流量;分离、混合或分配介质;防止介质压力超过规定数值,保证管道或设备安全运行。 2、阀门的分类: 按用途和作用分类: 截断类:主要用于截断或接通介质流。如闸阀、截止阀、球阀、碟阀、旋塞阀、隔膜阀止回类:用于阻止介质倒流。包括各种结构的止回阀。 调节类:调节介质的压力和流量如减压阀、调压阀、节流阀 安全类:在介质压力超过规定值时,用来排放多余的介质,保证管路系统及设备安全。 分配类:改变介质流向、分配介质,如三通旋塞、分配阀、滑阀等 特殊用途:如疏水阀、放空阀、排污阀等 按压力分类: 真空阀——工作压力低于标准大气压的阀门。 低压阀——公称压力PN 小于1.6MPa的阀门。 中压阀——公称压力PN 2.5~6.4MPa的阀门。 高压阀——公称压力PN10.0~80.0MPa的阀门。 超高压阀——公称压力PN大于100MPa的阀门。 按介质工作温度分类: 高温阀——t 大于450℃的阀门。 中温阀——120 ℃小于t 小于450 ℃的阀门。 常温阀——-40 ℃小于t 小于120 ℃的阀门。 低温阀——-100 ℃小于t 小于-40 ℃的阀门。 超低温阀——t 小于-100 ℃的阀门。 按阀体材料分类: 非金属阀门:如陶瓷阀门、玻璃钢阀门、塑料阀门 金属材料阀门:如铸铁阀门、碳钢阀门、铸钢阀门、低合金钢阀门、高合金钢阀门及铜合金阀门等。 按公称通径分 小口径阀门:公称通径DN<40mm的阀门。 中口径阀门:公称通径DN50~300mm的阀门。 大口径阀门:公称通径DN350~1200mm的阀门。 特大口径阀门:公称通径DN≥1400mm的阀门 按与管道连接方式分可分为: 法兰连接阀门:阀体带有法兰,与管道采用法兰连接的阀门。

调节阀选型方法总结

调节阀选型 自动控制系统是通过执行器对被控对象进行作用的。调节阀是生产过程自动化控制系统中最常见的一种执行器。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程对于自动控制系统的稳定性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,使得自动控制系统产生震荡甚至不能正常运行。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑的重要环节。 1调节阀结构形式的选择 常用的调节阀结构形式有直通单座阀、直通双座阀、套筒阀、偏心旋转阀、蝶阀、全功能超轻型调节阀、球阀,应当根据不同的使用情况,结合不同结构形式阀门各自的特点,从调节性能、适用温度、适用口径、耐压、适用介质条件、切断差压、泄流量、压力损失、重量、外观、成本等方面对调节阀的结构形式进行选择。

球阀V形球阀的流量特性曲线近似对数 型,流量调节性能较好,小开度下 调节性能较好,可实现小流量下的 微调功能; O型球阀可调比R的范围为: 100-200 V型球阀可调比R的范围为 200-300球阀一般适用于低温 介质,在温度小于 160℃的情况下使用 球阀的公称通径范 围可从8mm到 1200mm 球阀适用于压力较高的 场合,从真空到40MPa 都可以选用球阀 对于粘度较大的介 质,适宜使用球阀。 球阀是石油和天然气 的理想阀门,并可用 于带固体颗粒的介 质,是自洁性能最好 的阀门 球阀全开时具有最小的 流体阻力,且密封性能良 好 球阀可以承受较高的截断差压, 适用于高压截断的情况,泄流量 小,密封性能较好 可靠性差、体积较大、结 构笨重、成本较高 套筒阀调节稳定性好,调节精度较高,可 调比R值在50左右;其可选公称通径从 15mm到250mm 套筒式调节阀可承受的 最大介质压力从到 40Mpa左右 对于不干净介质和易 结晶、结巴、结垢介 质不应选用此阀 套筒调节阀可承受较大的阀门前 后差压值,相同配置的条件下, 其承受差压值为为单座调节阀的 2倍;但套筒式调节阀的泄流量 较大 体积较大,结构笨重 直通单座阀直通单座阀的调节精度较高,其公称通径可在 20mm到200mm的范 围内进行选择,高 压差、大口径的应 用场合,不宜采用单座调节阀的使用压力 范围一般在到之间 不适用于含固体颗 粒、含纤维介质和高 黏度流体的控制 直通单座阀可承受的阀前后差压 值较小,DN100单座调节阀的允 许压差仅120kPa,但密闭性较好, 泄流量小,标准泄漏量为%C 体积大、结构笨重

调节阀基本选型原则

调节阀基本选型原则 一、调节阀结构形式选择及选择时应注意的问题 1、根据工艺要求、调节功能、泄露等级及切断压差、耐压及耐温、冲蚀、气蚀及腐蚀、流体介质、使用生命周期、维护及备件、性价比等,建议选择顺序是:单双座(Globe)、笼式单双座(Cage)、偏心旋转阀、蝶阀、角阀、球阀(V.O)、三通阀、特殊调节阀等。 2、调节阀结构形式选择时注意的问题 a、严密关闭阀(TSO) 选择顺序为:球阀、单座阀、偏心阀、蝶阀、角型阀等。 阀芯阀座密封型式: ——阀芯硬密封/阀座应密封,用于不干净介质、高温、高压、高压差场合,泄露等级5级; ——阀芯硬密封/阀座软密封,用于一般场合,泄露等级5级或6级; ——必须提出最大切断压差,是选择阀的关键条件之一; ——必要时提出紧急切断动作时间。 b、高温高压、高差压阀 选择顺序为:角型阀、单座阀、套筒阀。 ——特别注意“空化(cavitation,气蚀、空蚀)”、“阻塞流(闪点)”导致阀芯。阀座损坏,带来噪音和振动的危害;锅炉主给水调节阀、给水旁路阀调节。给水再循环调节阀。减温水调节阀、凝结水再循环调节阀。锅炉连续排污调节阀、减温水调节阀。凝结水再循环调节阀、锅炉连续排污调节阀、高压蒸汽压力调节、合成氨高压差调节阀等; ——高压、高压差调节阀阀体选用锻钢件; ——高压、高压差调节阀应选用带多级套筒式、多级阀芯式、多级叠板式等防空化组件; 二、调节阀的作用方式选择 a、根据工艺生产安全确定气开阀(FC-气源故障时阀关),气关阀(FO-气源故障时阀开),由工艺专业确定并在PID表示。 b、执行机构作用方式的选择 正作用:信号增加,推杆向下运动; 反作用:信号增加,推杆向上运动; ——建议单导向(FO)配正作用执行机构; 单导向(FC)配反作用执行机构; 双导向(FC/FO)配正作用执行机构。 三、调节阀执行机构选择 根据可靠性、经济性、动作平稳、足够的输出力、结构简单、维护方便、重量轻等因素,建议选择顺序:气动薄膜执行机构(直行程用)、气缸执行机构(单气缸弹簧复位、双气缸)直行程、角行程均适用、电动执行机构(包括马达驱动阀MOV)、液动执行机构。 四、调节阀的材料选择 ——流体介质温度、压力 碳钢(CS):Tmax450℃,Pmax14.4MPa(随着压力升高,温度降低。P=32MPa

调节阀计算选型培训教材

《调节阀计算选型培训教材》 本学习资料由海王仪器仪表技术开发部全体技术人员花费大量精力编制,在编制过程中得到了海王总裁郑云海先生及同行 专家的大力指导和帮助,在此表示感谢! 调节阀又称控制阀,是工业自动化过程控制仪表的执行单元,是工业自动化控制的手和足。正确选择和使用调节阀不仅 直接关系到整个系统的正常运行,同时涉及到人生和系统的安全、环保及经济效益等方面。据了解自控系统不能正常投入 运行,其中有70%?80%的原因是执行单元的影响。 随着我国生产的发展系统对流量、压力、温度等参数的过程控制要求不断提高;耐蚀性能、调节精度、可靠性要求也越 来越高。所以正确选择、合理使用调节阀对控制系统有着举足轻重的作用。 《调节阀计算选型资料》可供设计院、企业自动化控制室及工程部有关人员,在调节阀计算选型时参考;对从事调节阀 生产、销售、使用、维修人员作为调节阀基础知识的培训教材。 一概述 在工业生产中,往往要对被调介质的参数,如温度、压力、流量、液位、物位等进行控制,使其稳定并 达到预定的要求。从而实现生产过程的自动化。其控制过程简化示意如图1-1。 调节阀接受到调节器送来的(偏差)信号时,它是怎样实现对介质的调节的呢?伯努诺方程告诉我们: (1) 就是说流动介质处于任意状态(位置)时,它的能量(总水头)是一个定值(常数)(流体内部摩擦热能散失忽略不计)。它包括三部分:h —位能(位置水头)、一压力能(静压水头)、一动能(动力水头)。在 不同形状、大小的管道内三种能量(水头)只是相互转换而已。如图1-2,过水断面A、B两点的总能量(水头)都是等于Z。 在水平管道中,而A、B两点的h —位能(位置水头)是一个定值,则公式( 1 )可写成: ....................... . (2)

调节阀流量系数计算公式与选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F (15.6℃)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判不式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流

量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 关于只有一个流路的调节阀, 如单座阀、套筒阀,球阀等: 关于有五个平行流路调节阀, 如双座阀、蝶阀、偏心施转阀 等 文字符号讲明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa;Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临 界压力比系数, F R--雷诺数系数,依照ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判不式(气体、蒸气)表1-2 文字符号讲明: X-压差与入口绝对压力之比(△P/P1);X T- 压差比系数; K-比热比; Qg-体积流量,Nm3/h

电磁阀基本知识及选型

电磁阀 一、电磁阀定义 制流体的自动化基础元件,属于执行器,并不限于液压、气动。用在工业 不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不同的电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、安全阀、方向控制阀、速度调节阀等。 二、电磁阀工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔 哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开 断就控制了机械运动。 三、电磁阀分类 1、电磁阀从原理上分为三大类: 1.1直动式电磁阀 工作原理: 电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。

工作特点: 在真空、负压、零压时能正常工作,但通径一般不超过25mm。 1.2分布直动式电磁阀 工作原理: 它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 工作特点: 在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。 1.3先导式电磁阀 工作原理: 通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。 工作特点: 流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件。 2、电磁阀从阀结构和材料上的不同与原理上的区别,分为六个分 支小类: 2.1直动膜片结构。

各种流量调节阀的工作原理及正确选型

各种流量调节阀的工作原理及正确选型

————————————————————————————————作者:————————————————————————————————日期:

各种流量调节阀的工作原理及正确选型? 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。??一、温控阀 ?1、散热器温控阀的构造及工作原理? 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果

电磁阀选型的原则

电磁阀选型的原则 安全性: 1、腐蚀性介质:宜选用塑料王电磁阀和全不锈钢;对于强腐蚀的介质必须选用隔离膜片式。中性介 质,也宜选用铜合金为阀壳材料的电磁阀,否则,阀壳中常有锈屑脱落,尤其是动作不频繁的场合。氨用阀则不能采用铜材。 2、爆炸性环境:必须选用相应防爆等级产品,露天安装或粉尘多场合应选用防水,防尘品种。 3、电磁阀公称压力应超过管内最高工作压力。 适用性: 1、介质特性 1)质气,液态或混合状态分别选用不同品种的电磁阀; 2)介质温度不同规格产品,否则线圈会烧掉,密封件老化,严重影响寿命命; 3)介质粘度,通常在50cSt以下。若超过此值,通径大于15mm时,用多功能电磁阀;通径小于15mm 时,用高粘度电磁阀。 4)介质清洁度不高时都应在电磁阀前配装反冲过滤阀,压力低时,可选用直动膜片式电磁阀; 5)介质若是定向流通,且不允许倒流,需用双向流通; 6)介质温度应选在电磁阀允许范围之内。 2、管道参数 1)根据介质流向要求及管道连接方式选择阀门通口及型号; 2)根据流量和阀门Kv值选定公称通径,也可选同管道内径; 3)工作压差:最低工作压差在0.04Mpa以上是可选用间接先导式;最低工作压差接近或小于零的必须选用直动式或分步直接式。 3、环境条件 1)环境的最高和最低温度应选在允许范围之内; 2)环境中相对湿度高及有水滴雨淋等场合,应选防水电磁阀; 3)环境中经常有振动,颠簸和冲击等场合应选特殊品种,例如船用电磁阀; 4)在有腐蚀性或爆炸性环境中的使用应优先根据安全性要求选用耐发蚀型;

5)环境空间若受限制,需选用多功能电磁阀,因其省去了旁路及三只手动阀且便于在线维修。 4、电源条件 1)根据供电电源种类,分别选用交流和直流电磁阀。一般来说交流电源取用方便; 2)电压规格用尽量优先选用AC220V.DC24V; 3)电源电压波动通常交流选用+%10%.-15%,直流允许±%10左右,如若超差,须采取稳压措施;4)应根据电源容量选择额定电流和消耗功率。须注意交流起动时VA值较高,在容量不足时应优先选用间接导式电磁阀。 5.控制精度 1)普通电磁阀只有开、关两个位置,在控制精度要求高和参数要求平稳时需选用多位电磁阀; 2)动作时间:指电信号接通或切断至主阀动作完成时间; 3)泄漏量:样本上给出的泄漏量数值为常用经济等级。 可靠性: 1、工作寿命,此项不列入出厂试验项目,属于型式试验项目。为确保质量应选正规厂家的名牌产品。 2、工作制式:分长期工作制,反复短时工作制和短时工作制三种。对于长时间阀门开通只有短时关闭的情况,则宜选用常开电磁阀。 3、工作频率:动作频率要求高时,结构应优选直动式电磁阀,电源听优选交流。 4、动作可靠性 严格地来说此项试验尚未正式列入中国电磁阀专业标准,为确保质量应选正规厂家的名牌产品。有些场合动作次数并不多,但对可靠性要求却很高,如消防、紧急保护等,切不可掉以轻心。特别重要的,还应采取两只连用双保险。 经济性: 它选用的尺度之一,但必须是在安全、适用、可靠的基础上的经济。 经济性不单是产品的售价,更要优先考虑其功能和质量以及安装维修及其它附件所需用费用。 更重要的是,一只电磁阀在整个自控系统中在整个自控系统中乃至生产线中所占成本微乎其微,如果贪图小便宜错选而造成损害群是巨大的。

空调冷冻水系统压差调节阀的选择计算

空调冷冻水系统压差调节阀的选择计算在中央空调管路中,对于冷水机组来说冷冻水流量的减小是相当危险的。在蒸发器设计中,通常一个恒定的水流量(或较小范围的波动)对于保证蒸发器管内水流速的均匀是重要的,如果流量减小,必然造成水流速不均匀,尤其是在一些转变(如封头)处更容易使流速减慢甚至殂成不流动的“死水”由于蒸发温度极低在蒸发器不断制冷的过程中,低流速水或“死水”极容易产生冻结的情况,从而对冷水机组造成破坏。因此,冷水机能的流量我们要求基本恒定的。但从另一方面,从末端设备的使用要求来看,用户则要求水系统作变化量运行以改变供冷(热)量的多少。这两者构成了一对矛盾,解决此矛盾最常用的方法是在供回水管上设置压差旁通阀,压差旁通阀工作原理是:在系统处于设计状态下,所有设备都满负荷运行时,压差旁通阀开度为零(无旁通水流量),这时压差控制器两端接口处的压力差(又称用户侧供,回水压差)P0即是控制器的设定压差值。当末端负荷变小后,末端的两通阀关小,供回水压差P0将会提高而超过设定值,在压差控制器的作用下,压差旁通阀将自动打开,由于压差旁通阀与用户侧水系统并联,它的开度加大将使供回水压差P0减小直至达到P0时才停止,部分水从旁通阀流过而直接进入回水管,与用户侧回水混合后进入水泵和冷水机组,这样通过冷水机组的水量是不变化的。水泵的运行有个高工作效率点,流量的变化使电机在高效率点处左右移动,但最终的结果,只要管路特性不变化,水泵会自动调节到高效率工作点,我们可以通过调节管路特性去改变水泵的工作效率点,这样也就是说,在流量的变化的时候,水泵要不断的改变自己的运行状态,这导致了电流不段的变化(变大或者变小),这对电机的运行都是有害的,变频泵的电机容易烧毁也就是这个结果,因此,在一般的情况下,最好能使水泵在一个稳定的状态运行,这就要求我们用旁通,无论上面的负荷怎样变化,水泵都能在稳定的流量下运行,而不会导致电机的电流不段变化,使电机的寿命降低! 为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一、压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二、选择调节阀应考虑的因素

阀门选用标准及要求

阀门选用标准及要求阀门选型一般要求 阀体常用材质 阀门内件常用材质 阀门密封面常用材料及适用温度 闸阀 平板闸阀 锲式闸阀 截止阀 柱塞阀 球阀 节流阀 旋塞阀 蝶阀 止回阀 隔膜阀 蒸汽疏水阀 安全阀 减压阀 一般要求:

根据我集团各产品生产工艺的特点,针对各种介质,作阀门选用的一般要求如下: 第一条:阀门选用的第一原则是阀门的密封性能要符合介质的要求。即内漏要符合标准GB /T13927-1992《通用阀门压力试验》,外漏则是根本不允许的。 第二条:正确选择阀门的类型。阀门类型的正确选择是以选用者对整个生产工艺流程需要的综合估计为先决条件的,在选择阀门类型的同时,选用者应首先了解每种阀门的结构特点和性能。一般阀门的类型选择如中低压蒸汽选用铜密封面的截止阀,DN200以上的蒸汽用闸阀;循环水总管上用蝶阀,支管上用衬胶闸阀;低压空气总管上用蝶阀,支管上用截止阀;一般液态物料用球阀等。 第三条:确定阀门的端部连接。在螺纹连接、法兰连接、焊接端部连接中,前两种最常用,其中螺纹连接形式的价格比法兰连接形式低得多,一般为较小口径阀门,应首先选用。 第四条:阀门主要零件材质的选择。选择阀门主要零件的材质,首先应考虑到工作介质的物理性能(温度、压力)和化学性能(腐蚀性)等。同时还应了解介质的清洁程度(有无固体颗粒)。除此之外,还要参照国家和使用部门的有关规定的要求。正确合理地选择阀门的材料可以获得阀门最经济的使用寿命和最佳的性能。(附表1-1、1-2、1-3) 阀体材料选用顺序大致按照铸铁-碳钢-不锈钢,密封圈材料选用顺序:橡胶-铜-合金钢-F4。 第五条:确定流经阀门的流量。 第六条:压力等级选用按照由低到高顺序。 附表1-1阀门壳体常用材质

多级降压调节阀的选型、设计与计算解读

多级降压调节阀的计算与选型 大连亨利测控仪表工程有限公司于伟 关键词:调节阀、流量系数、降压级数、材料 目前随着石油、化工、冶金、电力工业的迅速发展,工艺水平的日渐提高,对其流体的控制部件调节阀的要求也越来越高;尤其在高压差的场合。为了防止闪蒸、空化,避免汽蚀,增加使用寿命,降低噪音。各大控制阀生产商投入大量的人力、物力研发多级降压高压调节阀并取得相当大的进展。大连亨利测控仪表工程有限公司与国外知名专业控制阀公司合作研发并生产了多层笼式、迷宫式多级降压调节阀,能够有效防止空化、汽蚀。耐腐蚀、抗冲刷,有较长使用寿命。为过程控制提供了优良的控制阀产品。 降压级数:多层笼式可达四级、迷宫式可达二十四级。内件见图一所示,调节阀执行机构有气动薄膜式、气缸式和电子式。下面就具体事例将有关计算与选型略作介绍。

图一 例一:介质:水,Qmax=25T/h,P1=1.6Mpa,P2=0.18Mpa,T=21.1℃,ρ=956Kg/M3液体的饱和蒸汽压Pv =0.0255Kgf/cm2, 调节阀流量系数的计算 △P = P1-P2 =1.6-0.18 = 1.42 △P′=F L2(P1-F F Pv-----------------------(1

式中: F L ~ 阀门的压力恢复系数,本例取0.9。 F F~ 液体的临界压力比系数; F F = 0.96-0.28 Pv / Pc ------------------ (2 Pc ~~热力学临界压力,水:Pc = 22.5MPa 代入(2得: F F =0.96 -0.28 2.55×10-3/22.5 = 0.957 △P′=0.92(1.6-0.957×2.55×10-3=1.294(MPa ∵△P >△P′为阻塞流情况 G 又∵Cv = 1.17Q ---------------- (3 P1-P2 G ∴Cv = 1.17Q ------------------ (4 △P′ 其中:Q ~ 流量(M3/h , G ~ 比重, P1 ~ 进口压力(Kgf/cm2,P2 ~ 出口压力(Kgf/cm2,本例中:Q = 25/0.956 = 26.2 (M3/h , G = 0。956 代入(4中 0.956 Cv = 1.17×26.2 = 8.33

调节阀流量特性分析及应用选型

调节阀流量特性分析及应用选型 点击次数:102 发布时间:2011-4-5 简介 调节阀是工业生产过程中一种常用的调节机构,它的作用就是按照调节器发出的控制信号的大小和方向,通过执行机构来改变阀门的开度以实现调节流体流量的功能,从而把生产过程中被调参数控制在工艺所要求的范围内,从而实现生产过程的白动化。调节阀是自动化控制系统中一个十分重要且不可或缺的组成部分,正确的选择和使用调节阀,直接关系到整个自动控制系统的控制质量,直接影响生产产品的质量。然而,自动控制系统不能正常投人运行的,有许多是由于调节阀的选型不当造成的,因此,如何正确选择合适的调节阀,必须引起我们每一位自动化控制技术人员的高度重视。调节阀所反应出来的问题大多集中在调节阀的工作特性和结构参数上,如流通能力、公称通径及流量特性等。在这些参数中,流通能力更重要,它的大小直接反映调节阀的容觉,它是设计选型中的主要参数。因此,调节阀的选择主要从以上几个因素进行考虑。本人根据工作中调节阀的选型经验简单介绍一下调节阀的选型原则及注意事项。 2 调节阀的工作原理 在有流体流动的管道中,调节阀是一节流件,假设流体是不可压缩且充满管道,根据伯努利方程式和流体的连续性定律可知:通过阀门的体积流量 Q v与阀门的有效流通截面积 A 和通过阀门前后的压降ΔP(ΔP=P1-P2)的平方根成正比,与流体的密度ρ和阀门的阻力系数ζ的平方根成反比,即: 其中 n——为常数,C——调节阀的流量系数,又叫流通能力。 根据调节阀的流量方程式可得出如下结论: (l)在流体的密度ρ和阀门上的压降ΔP 一定的情况下,调节阀的流量系数 C 与流量 Q v,C 值的大小反映了阀能通过的流量的大小。 (2)流量系数 C 与流通面积 A 成正比,流通能力随流通截面的增减而增减。 (3)流量系数 C 与阀门的阻力系数ζ的平方根成反比,增大阀门的阻力系数ζ就是阀门的流通能力减小,如果阀门的口径相同,则不同结构的阀门阀门的阻力系数ζ就不相同,流通系数 C 也就不同。 3 调节阀结构形式的选择 调节阀结构形式的选择,应根据实际生产中工艺条件(温度、压力、流量等)、工艺介质的性质(如粘度、腐蚀性、有无毒害等)、调节系统的要求(调节范围、泄漏量、噪音)以及防止调节阀产生汽蚀现象等因素综合加以考虑。平常在我们实际使用中,应用最多的是普通单座调节阀、双座调节阀、套筒调节阀、蝶阀等。一般来讲,在流量小、压差小、要求泄漏量小的场合,选择单座调节阀即

电磁阀的型号选择

电磁阀的型号如何选择 气动阀门附件电磁阀选型原则: 其选型方法应遵循安全,可靠,适用,经济性四大原则,其次是依据现场工况(流体参数、管道参数、电气参数、动作方式、压力参数、特殊要求进行选择)。 下面针对几种不同工况下详细说明电磁阀的选择: 一、流体参数选择电磁阀: 1、高温流体:要选择采用耐高温的电工材料和密封材料制造的电磁阀,而且要选择活塞式结构类型的。 2、流体状态:大至有气态,液态或混合状态,特别是口径大于DN25订货时一定要区分开来。 3、腐蚀性流体:宜选用耐腐蚀电磁阀和全不锈钢;食用超净流体:宜选用食品级不锈钢材质电磁阀。 二、管道参数选择电磁阀: 1、按照现场气动蝶阀管道内径尺寸或流量要求来确定通径(DN)尺寸。 2、接口方式,一般>DN50要选择法兰接口,≤DN50则可根据用户需要自由选择。 三、电气参数选择: 电压规格应尽量优先选用AC220V、DC24较为方便 四、持续工作时间来选择: 1、当电磁阀需要长时间开启,且持续的时间多余关闭的时间应选用常开型。 2、要是开启的时间短或开和关的时间不多时,则选常闭型。 3、但是有些用于安全保护的工况,如炉、窑火焰监测,则不能选常开的,应选可长期通电型 五、压力参数选择电磁阀: 1、公称压力:这个参数与其它通用阀门的含义是一样的,是根据管道公称压力来定 2、工作压力:如果工作压力低则必须选用直动或分步直动式原理;最低工作压差在0.04Mpa 以上时直动式、分步直动式、先导式均可选用。 六、特殊环境要求选择:防爆、止回、手动、防水雾、水淋、潜水 1、爆炸性环境:必须选用相应防爆等级的电磁阀 2、当管内流体有倒流现象时,可选择带止回功能电磁阀。 3、当需要对电磁阀进行现场人工操作时,可选择带手动功能电磁阀。 4、露天安装或粉尘多场合应选用防水,防尘品种。

调节阀的流量计算

调节阀的流量计算 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中: FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=0.96-0.28 PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>0.5P1时 当P2≤0.5P1时 式中: Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>0.5P1时

当P2≤0.5P1时 式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》 3.低雷诺数修正(高粘度液体KV值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量m/h 对于单座阀、套筒阀、角阀等只有一个流路的阀 对于双座阀、蝶阀等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体运动粘度mm/s FR -Rev关系曲线 FR-Rev关系图 4.水蒸气的Kv值的计算 a.饱和蒸汽 当P2>0.5P1时 当P2≤0.5P1时 式中:G―蒸汽流量kg/h,P1、P2含义及单位同前,K-蒸汽修正系数,部分蒸汽的K值如下:水蒸汽:K=19.4;氨蒸汽:K=25;氟里昂11:K=68.5;甲烷、乙烯蒸汽:K=37;丙烷、丙烯蒸汽:K=41.5;丁烷、异丁烷蒸汽:K=43.5。 b.过热水蒸汽 当P2>0.5P1时 当P2≤0.5P1时 式中:△t―水蒸汽过热度℃,Gs、P1、P2含义及单位同前。

相关文档