文档库 最新最全的文档下载
当前位置:文档库 › (完整版)纵横向拉开档次法的MATLAB实现

(完整版)纵横向拉开档次法的MATLAB实现

(完整版)纵横向拉开档次法的MATLAB实现
(完整版)纵横向拉开档次法的MATLAB实现

简介:本文档为《纵横向拉开档次法的MATLAB实现》,可适用于工程科技领域,主题内容包含globalxystdszxystdxy定义全局变量loadshuju原始数据xystd=zscore(shuju)数据无量纲处理xystdrow,符等。

global xystdsz xystd x y %定义全局变量

load shuju %原始数据

xystd= zscore (shuju); %数据无量纲处理

[xystdrow,xystdcol]=size(xystd);

%----------区域知识创造能力评价----------

for tt=1:xystdcol

xystdsz{tt}(:,:)=xystd{tt}(:,1:10); %提取区域知识创造能力指标无量纲值

end

[xystdszrow,xystdszcol]=size(xystdsz);

[xyrow,xycol]=size(xystdsz{1});

w0=zeros(1,xycol);

for i=1:xycol

w0(1,i)=1/xycol; % 优化初始值

end

Aeq=[]; beq=[];

lb=zeros(1,xycol);ub=ones(1,xycol); %zeros生成零矩阵;ones生成全1阵。

options =optimset('largescale','off'); %优化函数,largescale大规模算法

[w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options ); %优化求权重;fmincon用来求解非线性多元函数最小值。

wqz1=w./sum(w); %权重归一化

for tt=1:xystdszcol

z{tt}(:,1)=xystd{tt}(:,1:10)*wqz1'; % 求评价值

pxacz(:,tt)=px(z{tt}(:,1)) ; % 对评价值排序

end

clear w0 w lb ub faval ;

clear global xystdsz;

%--------区域知识流动能力评价------------

for tt=1:xystdszcol

xystdsz{tt}(:,:)=xystd{tt}(:,11:16); %提取区域知识流动能力指标无量纲值

end

global xystdsz;

[xystdszrow,xystdszcol]=size(xystdsz);

[xyrow,xycol]=size(xystdsz{1});

w0=zeros(1,xycol);

for i=1:xycol

w0(1,i)=1/xycol; % 优化w初始值

end

Aeq=[]; beq=[];

lb=zeros(1,xycol);ub=ones(1,xycol);

options =optimset('largescale','off');

[w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options );

for tt=1:xystdszcol

z{tt}(:,2)=xystd{tt}(:,11:16)*wqz2'; % 求评价值

pxald(:,tt)=px(z{tt}(:,2)) ; % 对评价值排序

end

clear w0 w lb ub faval ;

clear global xystdsz;

%-----------企业技术创新能力评价------------

for tt=1:xystdszcol

xystdsz{tt}(:,:)=xystd{tt}(:,17:28); %提取企业技术创新能力指标无量纲值end

global xystdsz;

[xystdszrow,xystdszcol]=size(xystdsz);

[xyrow,xycol]=size(xystdsz{1});

w0=zeros(1,xycol);

for i=1:xycol

w0(1,i)=1/xycol; % 优化w初始值

end

Aeq=[];beq=[];

lb=zeros(1,xycol);ub=ones(1,xycol);

options =optimset('largescale','off');

[w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options );

wqz3=w./sum(w); %权重归一化

for tt=1:xystdszcol

z{tt}(:,3)=xystd{tt}(:,17:28)*wqz3'; % 求评价值

pxaqy(:,tt)=px(z{tt}(:,3)) ; % 对评价值排序

end

clear w0 w lb ub faval ;

clear global xystdsz;

%-----------创新环境能力评价--------------

for tt=1:xystdszcol

xystdsz{tt}(:,:)=xystd{tt}(:,29:35); %提取创新环境能力指标无量纲值end

global xystdsz;

[xystdszrow,xystdszcol]=size(xystdsz);

[xyrow,xycol]=size(xystdsz{1});

w0=zeros(1,xycol);

for i=1:xycol

w0(1,i)=1/xycol; % 优化w初始值

end

Aeq=[]; beq=[];

lb=zeros(1,xycol);ub=ones(1,xycol);

options =optimset('largescale','off');

[w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options );

for tt=1:xystdszcol

z{tt}(:,4)=xystd{tt}(:,29:35)*wqz4'; % 求评价值

pxahj(:,tt)=px(z{tt}(:,4)) ; % 对评价值排序

end

clear w0 w lb ub faval ;

clear global xystdsz;

%-------------创新经济绩效能力评价--------------

for tt=1:xystdszcol

xystdsz{tt}(:,:)=xystd{tt}(:,36:42); %提取创新绩效能力指标无量纲值end

global xystdsz;

[xystdszrow,xystdszcol]=size(xystdsz);

[xyrow,xycol]=size(xystdsz{1});

w0=zeros(1,xycol);

for i=1:xycol

w0(1,i)=1/xycol; % 优化w初始值

end

Aeq=[];beq=[];

lb=zeros(1,xycol);ub=ones(1,xycol);

options =optimset('largescale','off');

[w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options );

wqz5=w./sum(w); %权重归一化

for tt=1:xystdszcol

z{tt}(:,5)=xystd{tt}(:,36:42)*wqz5'; % 求评价值

pxajx(:,tt)=px(z{tt}(:,5)) ; % 对评价值排序

end

% --------求整体综合能力评价排序-----------------

clear w0 w lb ub faval ;

clear global xystdsz;

xystdsz=z;

global xystdsz;

[xystdszrow,xystdszcol]=size(xystdsz);

[xyrow,xycol]=size(xystdsz {1});

w0=zeros(1,xycol);

Aeq=[];beq=[];

lb=zeros(1,xycol);ub=ones(1,xycol);

options =optimset('largescale','off');

[w,faval]=fmincon(@YHQU,w0,[],[],Aeq,beq,lb,ub,@fun,options );

wqz6=w./sum(w); %权重归一化

for kk=1:zcol

z(:,kk)=z{kk}*wqz6'; % 求评价值

pxazz=px(zz) ; % 对评价值排序

end

%---------- zzfxcapcity表示各项能力得分-结果-----------

for i=1:7

for j=1:5

zzfxcapcity{j}(:,i)=z{i}(:,j);

end

end

zzfxcapcity{6}(:,:)=zz;

%---------- pxafxcapcity表示各项能力排序结果------------

pxafxcapcity{1}=pxacz;

pxafxcapcity{2}=pxald;

pxafxcapcity{3}=pxaqy;

pxafxcapcity{4}=pxahj;

pxafxcapcity{5}=pxajx;

pxafxcapcity{6}=pxazz;

%-------优化程序YHQU.m

function xysum=YHQU(w,xystdsz)

global xystdsz

[xystdrow,xystdcol]=size(xystdsz);

[xystdrow1,xystdcol1]=size(xystdsz{1});

for i=1:xystdcol

for j=1:xystdrow1

xyvalue(j,i)=xystdsz{i}(j,:)*w';

end

end

xymean=mean(mean(xyvalue));

for i=1:xystdrow1 %xystdrow1=30

for j=1:xystdcol %xystdcol=7

xyvar(i,j)=(xyvalue(i,j)-xymean).^2;

end

end

xysum=-sum(sum(xyvar));

%-------排序px..m

function pxa=px(gyhjg) % px排序.pxa是排序结果,gyhjg是要进行排序的评价值列向量jga=gyhjg;

[m,n]=size(jga);

for col=1:n

for i=1:m-1

for j=i+1:m

if jga(i,col)

temp=jga(i,col);

jga(i,col)=jga(j,col);

jga(j,col)=temp;

end

end

end

for col=1:n

for i=1:m

for j=1:m

if gyhjg(i,col)==jga(j,col)

pxa(i,col)=j;

% comtinue

end

end

end

end

%-----约束条件fun.m

function [c,ceq]=fun(w)

ceq=w*w'-1;

c=[];

%----------改进归一法bzycl.m----------

function xystd=bzycl(x,y)

% bzycl改进的归一方法,是本系统默认采用的对指标值进行标准化处理的方法,

% x是逆向指标值矩阵,通过xmax+xmin-x转化为正向指标;y是正向指标值矩阵;

% 如果存在负数指标值通过xy-min(xy)进行转化;最后利用列和归一化处理,考虑待评价数m很大时,xystd值很小,所以乘以m.

% xystd是标准化处理后的指标值

[yrow,ycol]=size(y);

[m1,n1]=size(x{1}); % m1表示x的行数,n1表示x的列数,逆向指标个数

[m2,n2]=size(y{1}); % n2表示正向指标个数

n=n1+n2; %n表示指标数

if n1>0

m=m1; %表示待评价对象数

else if n2>0

m=m2;

end

end

for t=1:ycol

if n2>0

xy{t}(:,1:n2)=y{t};

end

if n1>0

xmin=min(x{t});

xmax=max(x{t});

for i=1:n1

for j=1:m

xy{t}(j,n2+1:n1+n2)=xmax(i)+xmin(i)-x{t}(j,i); %对逆向指标进行处理;

end

end

xyflag=all(xy{t}>=zeros(m,n)); %判断是否存在xy(j,i)<0

xymin=min(xy{t});

for i=1:n

if xyflag(i)==0

for j=1:m

xy{t}(j,i)=xy{t}(j,i)-xymin(i); %对xy(j,i)<0的指标进行平移处理,使所有指标非负

end

end

end

xysum{t}=sum(xy{t}); %列求和

xystd{t}=xy{t}./xysum{t}(ones(m,1),:); %进行列和等于11归一化处理

xystd{t}=m*xystd{t}; %避免由于待评价对象m很大时,xystd值很小,所以乘以m end

matlab实验十七__牛顿迭代法(可打印修改)

实验十七牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习、掌握MATLAB软件的有关命令。 【实验内容】 用牛顿迭代法求方程的近似根,误差不超过。 3210 ++-=3 10- x x x 【实验准备】 1.牛顿迭代法原理 2.牛顿迭代法的几何解析 3.牛顿迭代法的收敛性 4.牛顿迭代法的收敛速度 5.迭代过程的加速 6.迭代的MATLAB命令 MATLAB中主要用for,while等控制流命令实现迭代。 【实验重点】 1.牛顿迭代法的算法实现 2.牛顿迭代法收敛性和收敛速度 【实验难点】 1.牛顿迭代法收敛性和收敛速度 【实验方法与步骤】 练习1用牛顿迭代法求方程在x=0.5附近的近似 3210 ++-= x x x

根,误差不超过。 310-牛顿迭代法的迭代函数为 322()1()()321 f x x x x g x x x f x x x ++-=-=-'++相应的MATLAB 代码为 >>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算的迭代数列的前3项0.5455,0.5437,0.5437。经三次迭代,就大大超过了精度要求。 练习2 用牛顿迭代法求方程的近似正实根,由此建2(0)x a a =>立一种求平方根的计算方法。 由计算可知,迭代格式为,在实验12的练习4中1()()2a g x x x =+已经进行了讨论。 【练习与思考】 1.用牛顿迭代法求方程的近似根。 ln 1x x =2.为求出方程的根,在区间[1,2]内使用迭代函数进行310x x --=迭代,纪录迭代数据,问迭代是否收敛?对迭代进行加速,对比加速前的数据,比较加速效果。 3.使用在不动点的泰勒公式,证明牛顿迭代法收敛原理。*x

三次样条插值---matlab实现

计算方法实验—三次样条插值 机电学院075094-19 苏建加 20091002764 题目:求压紧三次样条曲线,经过点(-3,2),(-2,0),(1,3),(4,1),而且一阶导 数边界条件S'(-3)=-1;S'(4)=1。 解:首先计算下面的值: 记 1--=j j j x x h ; 1++=j j j j h h h u ;1=+j j u λ ; ?? ????????---+=-++++-j j j j j j j j j j j h y y h y y h h x x x f 1111 111],,[ ;M j =)(''j x s ;],,[611+-=j j j j x x x f d ; h1=-2-(-3)=1;h2=1-(-2)=3;h3=4-1=3; u1=1/4;u2=3/6; d1=6/4*(3/3-(-2)/1)=4.5;d2=6/6*(-2/3-3/3)=-5/3; 由于边界条件S'(-3)=-1;S'(4)=1,得到如下 式子: d0=6/1*(-2/1-(-1))=-6; d3=6/3*(1-(-2)/3)=10/3; 所以得到4个含参数m0~m3 的线性代数方程组为: 2.0000 1.0000 0 0 m0 0.2500 2.0000 0.7500 0 m1 0 0.5000 2.0000 0.5000 m2 0 0 1.0000 2.0000 m3 利用matlab 求解方程得: m = -4.9032 3.8065 -2.5161 2.9247 所以 S1(x)=-0.8172*(-2-x)^3+ 0.6344*(x+3)^3+2.8172*(-2-x)-0.6344*(x+3) x ∈[-3,-2] S2(x)=0.2115*(1-x)^3 -0.1398*(x+2)^3- 1.9032*(1-x)+ 2.2581*(x+2) x ∈[-2,1] S3(x)=-0.1398*(4-x)^3+0.1625(x-1)^3+ 2.2581*(4-x)-1.1290*(x-1) x ∈[1,4] 化简后得:S1(x)=1.4516*x^3 + 10.6128*x^2 + 23.4836*x + 16.1288 x ∈[-3,-2] S2(x)=-0.3513x^3-0.2043x^2+1.8492x+1.7061 x ∈[-2,1] S3(x)=0.3023x^3-2.1651x^2+3.8108x+1.0517 x ∈[1,4] 画图验证:

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

运用matlab建立三次样条插值函数

(1)编写三条样条插值函数程序如下: x=[1 4 9 16 25 36 49 64 81]; y=[1 2 3 4 5 6 7 8 9]; n=length(x); lamda(1)=1; miu(n)=1; h=diff(x); df=diff(y)./diff(x); d(1)=6*(df(1)-1/2)/h(1); d(n)=6*(0.5*81^-0.5-df(n-1))/h(n-1); for j=2:n-1 lamda(j)=h(j)/(h(j-1)+h(j)); miu(j)=h(j-1)/(h(j-1)+h(j)); d(j)=6*(df(j)-df(j-1))/(h(j-1)+h(j)); end miu=miu(2:end); u=diag(miu,-1);r=diag(lamda,1);a=diag(2*ones(1,n)); A=u+r+a; %求出矩阵形式的线性方程组 M=inv(A)*d'; %求出M值 syms g for j=1:n-1 s(j)=M(j)*(x(j+1)-g)^3/(6*h(j))+M(j+1)*((g-x(j))^3/(6*h(j)))+(y(j)-M( j)*h(j)^2/6)*(x(j+1)-g)/h(j)+(y(j+1)-M(j+1)*h(j)^2/6)*(g-x(j))/h(j); end format rat for j=1:n-1 S(j,:)=sym2poly(s(j)); %三条样条插值函数 end %生成三次样条插值函数图象 for j=1:n-1 x1=x(j):0.01:x(j+1); y1=polyval(S(j,:),x1); plot(x1,y1,x,y,'o'); title('spline 三次样条插值函数图象'); xlabel('x'); ylabel('y'); grid on; hold on; end

MATLAB样例之雅克比迭代法

要求: 下面分别使用雅克比迭代法和高斯-赛德尔迭代法求一个方程组的近似解用的线性方程组是按实验要求给的: 7*x1+x2+2*x3=10 x1+8*x2+2*x3=8 2*x1+2*x2+9*x3=6 雅克比迭代法的matlab代码:(老师写的) A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(any(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); while 1 x1=B*x0+f K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end 高斯-赛德尔迭代法matlab代码:(自己改的)

A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(all(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); x00=x0; while 1 x11=B*x0+f; x00(1,1)=x11(1,1); x12=B*x00+f; x00(2,1)=x12(2,1); x13=B*x00+f; x00(3,1)=x13(3,1); x1=x00 K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end

实验五 欧拉法Matlab实验报告

北京理工大学珠海学院实验报告 ZHUHAI CAMPAUS OF BEIJING INSTITUTE OF TECHNOLOGY 班级2012电气2班学号120109021010姓名陈冲指导教师张凯成绩 实验题目(实验五)欧拉法实验地点及时间JD501 2014/1/2(6-7节) 一、实验目的 1.掌握用程序语言来编辑函数。 2.学会用MATLAB编写Euler.m以及TranEuler.m函数。 二、实验环境 Matlab软件 三、实验内容 1、以书中第124页题目11为例编辑程序来实现计算结果。 2、使用MATLAB进行编写: 第一步:编写Euler.m函数,代码如下 编写TranEuler.m函数,代码如下 第二步:利用上述函数编辑命令:(可见实验结果中的截图)

在此之前先建立一个名为f.m 的M 文件,代码如下 function z=f(x); z=8-3y; 再编辑代码: 得到了欧拉法的结果:y (0.4)=2.47838030901267 编辑另一段命令: 得到改进欧拉法的结果:y (0.4)=2.46543714659780 在此基础上,我还编辑龙格库达的命令窗口代码,如下: 四、实验题目 用欧拉法和改进欧拉法求解初值问题'83,(0)2y y y =-=,试取步长0.2h =计算(0.4)y 的近似值。 五、实验结果

六、总结 通过这次实验我掌握了将得到的解进一步精确,而且要学会比较这几种方法的精确性,显然,四阶龙格库达比改进欧拉发精确,改进欧拉发比欧拉法精确。 实验难度不大,要比较n的取值不同,产生的影响不同。

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序

一、实验目的及题目 1.1 实验目的: (1)学会用高斯列主元消去法,LU 分解法,Jacobi 迭代法和Gauss-Seidel 迭代法解线性方程组。 (2)学会用Matlab 编写各种方法求解线性方程组的程序。 1.2 实验题目: 1. 用列主元消去法解方程组: 1241234 123412343421233234x x x x x x x x x x x x x x x ++=??+-+=??--+=-??-++-=? 2. 用LU 分解法解方程组,Ax b =其中 4824012242412120620266216A --?? ?- ?= ? ?-??,4422b ?? ? ?= ?- ?-?? 3. 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组: 123234 1231234102118311210631125x x x x x x x x x x x x x -+=-??-+=-??-+=??-+-+ =? 二、实验原理、程序框图、程序代码等 2.1实验原理 2.1.1高斯列主元消去法的原理 Gauss 消去法的基本思想是一次用前面的方程消去后面的未知数,从而将方程组化为等价形式: 1111221122222n n n n nn n n b x b x b x g b x b x g b x g +++=??++=????= ? 这个过程就是消元,然后再回代就好了。具体过程如下: 对于1,2, ,1k n =-,若() 0,k kk a ≠依次计算

()() (1)()()(1)()()/,,1, ,k k ik ik kk k k k ij ij ik kj k k k i i ik k m a a a a m a b b m b i j k n ++==-=-=+ 然后将其回代得到: ()() ()()()1/()/,1,2,,1 n n n n nn n k k k k k kj j kk j k x b a x b a x a k n n =+?=??=-=--? ? ∑ 以上是高斯消去。 但是高斯消去法在消元的过程中有可能会出现() 0k kk a =的情况,这时消元就无法进行了,即使主元数() 0,k kk a ≠但是很小时,其做除数,也会导致其他元素数量级的严重增长和舍入误差的扩散。因此,为了减少误差,每次消元选取系数矩阵的某列中绝对值最大的元素作为主元素。然后换行使之变到主元位置上,再进行销元计算。即高斯列主元消去法。 2.1.2直接三角分解法(LU 分解)的原理 先将矩阵A 直接分解为A LU =则求解方程组的问题就等价于求解两个三角形方程组。 直接利用矩阵乘法,得到矩阵的三角分解计算公式为: 1111111 11 1,1,2,,/,2,,,,,1,,,2,3, ()/,1,2, ,i i i i k kj kj km mj m k ik ik im mk kk m u a i n l a u i n u a l u j k k n k n l a l u u i k k n k n -=-===?? ==?? =-=+??=??=-=++≠?? ∑∑且 由上面的式子得到矩阵A 的LU 分解后,求解Ux=y 的计算公式为 11 111,2,3,/()/,1,2, ,1 i i i ij j j n n nn n i i ij j ii j i y b y b l y i n x y u x y u x u i n n -==+=??? =-=?? =??? =-=--?? ∑∑ 以上为LU 分解法。

matlab 欧拉算法 附截图

设系统方程为:y t y y /2)1(-=,1)0(=y ,用改进欧拉法求解各离散点y 的数值解,步长 10,1.0≤≤=t h ,解析解为t y 21+= 。 解:改进欧拉法 ),(1n n n p n y t hf y y +=+ )],(),([5.0111p n n n n n c n y t f y t f h y y +++++= 已知 n n n n n y t y y t f /2),(-= n n n n n n n p n y ht y h y t y h y y /2)1()/2(1-+=-+=+ 1 111111/5.0/)5.01()]/2()/2[(5.0+++++++-+-+=-+-+=n n n n n n n n n n n n n c n y ht hy y ht y h y t y y t y h y y 程序: h=0.1; t=0:h:1; N=length(t); y=ones(1,N); ey=ones(1,N); zy=ones(1,N); for k=1:N-1 y(1,k+1)=(1+h)*y(1,k)-(2*h*(k-1)/(N-1))./y(1,k);%预估公式 ey(1,k+1)=(1+h)*ey(1,k)-(2*h*(k-1)/(N-1))./ey(1,k);%欧拉公式 y(1,k+1)=(1+0.5*h)*y(1,k)-(h*(k-1)/(N-1))./y(1,k)+0.5*h*y(1,k+1)-(h*k/(N-1))./y(1,k+1);%改进欧拉 zy(1,k+1)=(1+2*k/(N-1)).^0.5;%解析解 end plot(t,zy,'-xk',t,y,':ob',t,ey,'-.*r','linewidth',1.0); xlabel('t'); ylabel('y'); 截图:

Euler法解微分方程-Matlab程序

%主程序main.m-----OK! clear; T=0.0; Y=zeros(3,1); Y(1)=1.0;Y(2)=1.0;Y(3)=1.0; H1=0.05;M=3;EPS=1.0e-05;%EPS精度要求M方程个数H1拟定的输出步长 for i=1:10 [X,Y]=euler1(T,H1,Y,M,EPS) T=T+H1; End %变步长euler方法 function [X,Y1]=euler1(T,H1,Y,M,EPS) %M-方程个数,EPS-精度,Y0-右端初值,T-自变量前一点值,H-步长 N=1;P=1+EPS;X=T;G=zeros(M,1); H=H1;%H-在程序中要改变的步长H1-主程序中确定的输出步长 for i=1:M C(i)=Y(i); end K1=zeros(M,1);K2=zeros(M,1);K3=zeros(M,1);K4=zeros(M,1); while P>=EPS %变步长积分一步(H1) for i=1:M G(i)=Y(i); Y(i)=C(i); end DT=H/N; T=X; %--变步长积分过程 for j=1:N K1=F(Y); K2=F(Y+H/2*K1'); K3=F(Y+H/2*K2'); K4=F(Y+H*K3'); for i=1:M Y(i)=Y(i)+H/6*(K1(i)+2*K2(i)+2*K3(i)+K4(i)); T=T+DT; end end %--------------------- P=0.0; for i=1:M Q=abs(Y(i)-G(i)); if Q>P

P=Q; end end H=H/2.0; N=N+N; end T=X; X=T+H1; Y1=Y; %右端函数值function D=F(y) D(1)=y(2); D(2)=-1*y(1); D(3)=y(3);

MATLAB三次样条插值之三转角法

非常类似前面的三弯矩法,这里的sanzhj函数和intersanzhj作用相当于前面的sanwanj和intersanwj,追赶法程序通用,代码如下。 %%%%%%%%%%%%%%%%%%% function [newu,w,newv,d]=sanzhj(x,y,x0,y0,y1a,y1b) % 三转角样条插值 % 将插值点分两次输入,x0 y0 单独输入 % 边值条件a的一阶导数 y1a 和b的一阶导数 y1b n=length(x);m=length(y); if m~=n error('x or y 输入有误,再来'); end v=ones(n-1,1); u=ones(n-1,1); d=zeros(n-1,1); w=2*ones(n-1,1); h0=x(1)-x0; h=zeros(n-1,1); for k=1:n-1 h(k)=x(k+1)-x(k); end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=3*(v(1)*(y(2)-y(1))/h(1)+u(1)*((y(1)-y0))/h0); % for k=2:n-1 v(k)=h(k-1)/(h(k-1)+h(k)); u(k)=1-v(k); d(k)=3*(v(k)*(y(k+1)-y(k))/h(k)+u(k)*(y(k)-y(k-1))/h(k-1)); end d(1)=d(1)-u(1)*y1a; d(n-1)=d(n-1)-v(n-1)*y1b; newv=v(1:n-2,:); newu=u(2:n-1,:); %%%%%%%%%%%% function intersanzhj(x,y,x0,y0,y1a,y1b) % 三转角样条插值

MATLAB改进欧拉法与四阶龙格-库塔求解一阶常微分方程

姓名:樊元君学号:2012200902 日期:2012.11.06 一、实验目的 掌握MATLAB语言、C/C++语言编写计算程序的方法、掌握改进欧拉法与四阶龙格-库塔求解一阶常微分方程的初值问题。掌握使用MATLAB程序求解常微分方程问题的方法。 二、实验内容 1、分别写出改进欧拉法与四阶龙格-库塔求解的算法,编写程序上机调试出结果,要求所编程序适用于任何一阶常微分方程的数值解问题,即能解决这一类问题,而不是某一个问题。 实验中以下列数据验证程序的正确性。 求,步长h=0.25。 2、实验注意事项 的精确解为,通过调整步长,观察结果的精度的变化

三、程序流程图: ●改进欧拉格式流程图:

●四阶龙格库塔流程图: 四、源程序: ●改进后欧拉格式程序源代码:

format long h=input('h='); x0=input('x0='); y0=input('y0='); disp('输入的范围是:'); X=input('X=');Y=input('Y='); n=round((Y-X)/h); i=1;x1=0;yp=0;yc=0; for i=1:1:n x1=x0+h; yp=y0+h*(-x0*(y0)^2);%yp=y0+h*(y0-2*x0/y0);% yc=y0+h*(-x1*(yp)^2);%yc=y0+h*(yp-2*x1/yp);% y1=(yp+yc)/2; x0=x1;y0=y1; y=2/(1+x0^2);%y=sqrt(1+2*x0);% fprintf('结果=%.3f,%.8f,%.8f\n',x1,y1,y); end end ●四阶龙格库塔程序源代码:

二分法、简单迭代法的matlab代码实现

实验一非线性方程的数值解法(一) 信息与计算科学金融崔振威201002034031一、实验目的: 熟悉二分法和简单迭代法的算法实现。 二、实验内容: 教材P40 2.1.5 三、实验要求 1根据实验内容编写二分法和简单迭代法的算法实现 2简单比较分析两种算法的误差 3试构造不同的迭代格式,分析比较其收敛性 (一)、二分法程序: function ef=bisect(fx,xa,xb ,n, delta) % fx是由方程转化的关于x的函数,有fx=0。 % xa解区间上限 % xb解区间下限 % n最多循环步数,防止死循环。 %delta为允许误差 x=xa;fa=eval(fx); x=xb;fb=eval(fx); disp(' [ n xa xb xc fc ]'); for i=1: n xc=(xa+xb)/2;x=xc;fc=eval(fx); X=[i,xa,xb,xc,fc]; disp(X), if fc*fa<0 xb=xc; else xa=xc; end if (xb-xa)

k=0; while abs(x-xO)>eps & k> fplot('[x A5-3*x A3-2*x A2+2]',[-3,3]);grid 得下图: 由上图可得知:方程在[-3,3]区间有根。 (2 )、二分法输出结果 >> f='xA5-3*xA3-2*xA2+2' f = X A5-3*X A3-2*X A2+2 >> bisect(f,-3,3,20,10A(-12)) 2.0000 - 3.0000 0 -1.5000 0.0313

MATLAB Euler法解常微分方程

Euler 法解常微分方程 Euler 法解常微分方程算法: Step 1 分别取积分上限、积分下限、步长 Step 2计算h n n +=判断b n ≤是否成立,成立转到Step 3,否则继续进行Step 4 Step 3 计算),(1n n n n y x hf y y +=+ Step 4 ),(1n n n n y x hf y y +=+ Euler 法解常微分方程算程序: function euler2(fun,y0,A,h) %fun--y' %y0---初值 %A----x 取值范围 %a----x 左区间端点值 %b----x 右区间端点值 %h----给定步长 x=min(A); b=max(A); y=y0; while x

0.4613 指导教师: 年 月 日 改进Euelr 法解常微分方程 改进Euler 法解常微分方程算法: Step 1 分别取积分上限、积分下限、步长 Step 2 取一个以h 为步长,a ,b 分别为左右端点的矩阵 Step 3 (1)做显性Euler 预测),( 1n n i i y x hf y y +=+ (2)将1+i y 带入,(),([2h 11++++=i i i i i x f y x f y y Step 4计算h n n +=判断b n ≤是否成立,成立返回Step 5 )],(),([2h 111+++++=i i i i i i y x f y x f y y 改进Euler 法解常微分方程算程序: function gaijineuler2(fun,y0,A,h) %fun--y' %y0---初值 %A----x 取值范围 %a----x 左区间端点值 %b----x 右区间端点值 %h----给定步长 a=min(A); b=max(A); x=a:h:b; y(1)=y0; for i=1:length(x)-1 w1=feval(fun,x(i),y(i)); y(i+1)=y(i)+h*w1; w2=feval(fun,x(i+1),y(i+1)); y(i+1)=y(i)+h*(w1+w2)/2; end x=x'

三次样条插值的Matlab实现(自然边界和第一边界条件)(精)

(第一边界条件源代码: function y=yt1(x0,y0,f_0,f_n,x _____________(1 %第一类边界条件下三次样条插值; %xi 所求点; %yi所求点函数值; %x 已知插值点; %y 已知插值点函数值; %f_0左端点一次导数值; %f_n右端点一次导数值; n = length(x0; z = length(y0; h = zeros(n-1,1; k=zeros(n-2,1; l=zeros(n-2,1; S=2*eye(n; fori=1:n-1 h(i= x0(i+1-x0(i; end fori=1:n-2

k(i= h(i+1/(h(i+1+h(i; l(i= 1-k(i; end %对于第一种边界条件: k = [1;k]; _______________________(2 l = [l;1]; _______________________(3 %构建系数矩阵 S : fori = 1:n-1 S(i,i+1 = k(i; S(i+1,i = l(i; end %建立均差表: F=zeros(n-1,2; fori = 1:n-1 F(i,1 = (y0(i+1-y0(i/(x0(i+1-x0(i; end D = zeros(n-2,1; fori = 1:n-2 F(i,2 = (F(i+1,1-F(i,1/(x0(i+2-x0(i; D(i,1 = 6 * F(i,2;

end %构建函数 D : d0 = 6*(F(1,2-f_0/h(1; ___________(4 dn = 6*(f_n-F(n-1,2/h(n-1; ___________(5 D = [d0;D;dn]; ______________(6 m= S\D; %寻找 x 所在位置,并求出对应插值: fori = 1:length(x for j = 1:n-1 if (x(i<=x0(j+1&(x(i>=x0(j y(i =( m(j*(x0(j+1-x(i^3/(6*h(j+... (m(j+1*(x(i-x0(j^3/(6*h(j+... (y0(j-(m(j*h(j^2/6*(x0(j+1-x(i/h(j+... (y0(j+1-(m(j+1*h(j^2/6*(x(i-x0(j/h(j ; break; else continue; end end end (2 (自然边界条件源代码: 仅仅需要对上面部分标注的位置做如下修改 :

matlab 迭代法[精品]

matlab 迭代法[精品] 1. 矩阵 122,211,,,,,,,,,A,111A,222, 11,,,,,,,,221,,112,,,, 证明:求解以为系数矩阵线性方程组的Jacobi迭代式收敛的,而A1 Gauss-Seidel方法是发散的;求解以为系数矩阵线性方程组的A2实验名称Gauss-Seidel是收敛的,而Jacobi方法是发散的. 2. 矩阵 1aa,,,,Aaa,1 ,,,,aa1,, (a) 参数取什么值时,矩阵是正定的. a (b) 取什么值时,求以为系数矩阵线性方程组的Jacobi迭代式收aa 敛的. 1、根据迭代收敛性的充分必要条件来判断Jacobi迭代式与Gauss-Seide 迭代式的收敛性,迭代收敛性仅与方程组系数矩阵有关,与右端无关;而且不依赖于初值的选取。实验目的 2、根据矩阵的判断定理求得矩阵元素a的取值,同时根据矩阵线性方程组的Jacobi迭代式收敛的充分条件(严格对角占优)来求a得取值。 1、(1)检验线性方程组的Jacobi迭代式的收敛性: function jacobi(A) D=zeros(3); for i=1:3 D(i,i)=A(i,i); 实验内容end (算法、程B=D^(-1)*(D-A); 序、步骤和k=max(abs(eig(B))) 方法) if k<1

'该线性方程组的Jacobi迭代式是收敛的' else k>=1 '该线性方程组的Jacobi迭代式是发散的' end (2)检验线性方程组的Gauss-Seide迭代式的收敛性: function Gauss(A) D=zeros(3); L=zeros(3); U=zeros(3); for i=1:3 D(i,i)=A(i,i); end L(2:3,1)=A(2:3,1); L(3,2)=A(3,2); U(1,2:3)=A(1,2:3); U(2,3)=A(2,3); B=-(D+L)^(-1)*U; k=max(abs(eig(B))) if k<1 '该线性方程组的Gauss-Seidel迭代式是收敛的' else k>=1 '该线性方程组的Gauss-Seidel迭代式是发散的' end 2、(1)参数取什么值时,矩阵是正定的.(矩阵的特征值全为正) a >> syms a >> A=[1 a a;a 1 a;a a 1]; >> eig(A) ans = 2*a+1 1-a

matlab_牛顿插值法_三次样条插值法

(){} 2 1 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x = -≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两 种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

【良心出品】不动点迭代法matlab程序

实验四 姓名:木拉丁。尼则木丁班级:信计08-2 学号:20080803405 实验地点:新大机房 实验目的:通过本实验学习利用MATLAB不动点迭代法,抛物线法,斯特芬森迭代法解非线性方程组,及其编程实现,培养编程与上机调试能力。 实验要求:①上机前充分准备,复习有关内容,写出计算步骤,查对程序; ②完成实验后写出完整的实验报告,内容应该包括:所用的算法语言, 算法步骤陈述,变量说明,程序清单,输出计算结果,结果分析等等; ③用编好的程序在Matlab环境中执行。 迭代法 MATLAB程序: function pwxff(f,x0,x1,x2,d,n) f=inline(f); x(1)=x0; x(2)=x1; x(3)=x2; w1=(f(x(2))-f(x(3)))/(x(2)-x(3)); t1=(f(x(1))-f(x(3)))/(x(1)-x(3)); t2=(f(x(1))-f(x(2)))/(x(1)-x(2)); w2=1/(x(1)-x(2))*(t1-t2); w=w1+w2*(x(3)-x(2));

for k=3:n x(k+1)=x(k)-2*f(x(k))/(w+sqrt(w^2-4*f(x(k))*w2)); if abs(x(k+1)-x(k))

线性方程组的迭代解法(Matlab)

第六章线性方程组的迭代解法 2015年12月27日17:12 迭代法是目前求解大规模稀疏线性方程组的主要方法之一。包括定常迭代法和不定常迭代法,定常迭代法的迭代矩阵通常保持不变,包括有雅可比迭代法(Jacobi)、高斯-塞德尔迭代法(Gauss-Seidel)、超松弛迭代法(SOR) 1.雅可比迭代法(Jacobi) A表示线性方程组的系数矩阵,D表示A的主对角部分,L表示下三角部分,U表示上三角部分。 A=D+L+U 要解的方程变为Dx+Lx+Ux=b x=D^(-1)(b-(L+U)x) 所以Jocabi方法如下: Matlab程序 function [x,iter] =jacobi(A,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=zeros(size(b)); for iter=1:500 x=D\(b+L*x+U*x); error=norm(b-A*x)/norm(b); if(error

解微分方程欧拉法-R-K法及其MATLAB实例

欧拉方法(Euler method)用以对给定初值的常微分方程(即初值问题)求解 分为前进EULER法、后退EULER法、改进的EULER法。 缺点: 欧拉法简单地取切线的端点作为下一步的起点进行计算,当步数增多时,误差会因积累而越来越大。因此欧拉格式一般不用于实际计算。 改进欧拉格式: 为提高精度,需要在欧拉格式的基础上进行改进。采用区间两端的斜率的平均值作为直线方程的斜率。改进欧拉法的精度为二阶。 算法为: 微分方程的本质特征是方程中含有导数项,数值解法的第一步就是设法消除其导数值。 对于常微分方程: x∈[a,b] y(a) = y0 可以将区间[a,b]分成n段,那么方程在第xi点有y'(xi) = f(xi,y(xi)),再用向前差商近似代替导数则为: 在这里,h是步长,即相邻两个结点间的距离。因此可以根据xi点和yi点的数值计算出yi+1来: i=0,1,2,L 这就是向前欧拉格式。 改进的欧拉公式: 将向前欧拉公式中的导数f(xi,yi)改为微元两端导数的平均,即 上式便是梯形的欧拉公式。 可见,上式是隐式格式,需要迭代求解。为了便于求解,使用改进的欧拉公式:

数值分析中,龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。 实际上,龙格-库塔法是欧拉方法的一种推广,向前欧拉公式将导数项简单取为f(xn,yn),而改进的欧拉公式将导数项取为两端导数的平均。 龙格-库塔方法的基本思想: 在区间[xn,xn+1]内多取几个点,将他们的斜率加权平均,作为导数的近似。 龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。 令初值问题表述如下。 则,对于该问题的RK4由如下方程给出: 其中 这样,下一个值(y n+1)由现在的值(y n)加上时间间隔(h)和一个估算的斜率的乘积决定。该斜率是以下斜率的加权平均: k1是时间段开始时的斜率;

相关文档
相关文档 最新文档