文档库 最新最全的文档下载
当前位置:文档库 › PCR反应体系

PCR反应体系

PCR反应体系
PCR反应体系

PCR反应体系与反应条件

标准的PCR反应体系:

10×扩增缓冲液 10ul

4种dNTP混合物各200umol/L

引物各10~100pmol

模板DNA 0.1~2ug

Taq DNA聚合酶 2.5u

Mg2+ 1.5mmol/L

加双或三蒸水至 100ul

PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+

引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。

设计引物应遵循以下原则:

①引物长度: 15-30bp,常用为20bp左右。

②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb 的片段。

③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C 过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。

④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。

⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。

⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。

⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。

引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。

酶及其浓度目前有两种Taq DNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。

dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH 调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏

低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。

模板(靶基因)核酸模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。SDS的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。

Mg2+浓度Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L 为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。

PCR反应条件的选择

PCR反应条件为温度、时间和循环次数。

温度与时间的设置:基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法,除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。

①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。

②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度:

Tm值(解链温度)=4(G+C)+2(A+T)

复性温度=Tm值-(5~10℃)

在Tm值允许范围内,选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。

③延伸温度与时间:Taq DNA聚合酶的生物学活性:

70~80℃ 150核苷酸/S/酶分子

70℃ 60核苷酸/S/酶分子

55℃ 24核苷酸/S/酶分子

高于90℃时, DNA合成几乎不能进行。

PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb 以内的DNA片段,延伸时间1min是足够的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。

循环次数循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。PCR反应特点

特异性强PCR反应的特异性决定因素为:

①引物与模板DNA特异正确的结合;

②碱基配对原则;

③Taq DNA聚合酶合成反应的忠实性;

④靶基因的特异性与保守性。

其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。

灵敏度高PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR 的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。

简便、快速PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA 扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。

对标本的纯度要求低不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA 扩增检测。

PCR扩增产物分析

PCR产物是否为特异性扩增,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论。PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法。

凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性。PCR 产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件。

琼脂糖凝胶电泳:通常应用1~2%的琼脂糖凝胶,供检测用。

聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析。

酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究。

分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法。

Southern印迹杂交:在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与

PCR产物杂交。此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研。

斑点杂交:将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析。

核酸序列分析:是检测PCR产物特异性的最可靠方法。

PCR常见问题总结

PCR产物的电泳检测时间一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚致消失。

假阴性,不出现扩增条带

PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及活性④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。

模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。

酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。

引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。

③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。

Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。

反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul后,再做大体积时,一定要模索条件,否则容易失败。

物理原因:变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一。

靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。

假阳性

出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。

引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引物太短,容易出现假阳性。需重新设计引物。

靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。这种假阳性可用以下方法解决:①操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外。②除酶及不能耐高温的物质外,所有试剂或器材均应高压消

毒。所用离心管及样进枪头等均应一次性使用。③必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸。二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除。

出现非特异性扩增带

PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带与非特异性扩增带。非特异性条带的出现,其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶则不出现,酶量过多有时也会出现非特异性扩增。其对策有:①必要时重新设计引物。②减低酶量或调换另一来源的酶。③降低引物量,适当增加模板量,减少循环次数。④适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。

出现片状拖带或涂抹带

PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。其对策有:①减少酶量,或调换另一来源的酶。②减少dNTP的浓度。③适当降低Mg2+浓度。④增加模板量,减少循环次数。

PCR污染与对策

PCR反应的最大特点是具有较大扩增能力与极高的灵敏性,但令人头痛的问题是易污染,极其微量的污染即可造成假阳性的产生。

污染原因

(一)标本间交叉污染:标本污染主要有收集标本的容器被污染,或标本放置时,由于密封不严溢于容器外,或容器外粘有标本而造成相互间交叉污染;标本核酸模板在提取过程中,由于吸样枪污染导致标本间污染;有些微生物标本尤其是病毒可随气溶胶或形成气溶胶而扩散,导致彼此间的污染。

(二)PCR试剂的污染:主要是由于在PCR试剂配制过程中,由于加样枪、容器、双蒸水及其它溶液被PCR核酸模板污染.

(三)PCR扩增产物污染:这是PCR反应中最主要最常见的污染问题,因为PCR产物拷贝量大(一般为1013拷贝/ml),远远高于PCR检测数个拷贝的极限,所以极微量的PCR产物污染,就可造成假阳就可形成假阳性。

还有一种容易忽视,最可能造成PCR产物污染的形式是气溶胶污染;在空气与液体面摩擦时就可形成气溶胶,在操作时比较剧烈地摇动反应管,开盖时、吸样时及污染进样枪的反复吸样都可形成气溶胶而污染.据计算一个气溶胶颗粒可含48000拷贝,因而由其造成的污染是一个值得特别重视的问题.

(四)实验室中克隆质粒的污染:在分子生物学实验室及某些用克隆质粒做阳性对照的检验室,这个问题也比较常见。因为克隆质粒在单位容积内含量相当高,另外在纯化过程中需用较多的用具及试剂,而且在活细胞内的质粒,由于活细胞的生长繁殖的简便性及具有很强的生命力,其污染可能性也很大。

污染的监测

一个好的实验室,要时刻注意污染的监测,考虑有无污染是什么原因造成的污染,以便采取措施,防止和消除污染。

对照试验

1.阳性对照:在建立PCR反应实验室及一般的检验单位都应设有PCR阳性对照,它是PCR 反应是否成功、产物条带位置及大小是否合乎理论要求的一个重要的参考标志。阳性对照要

选择扩增度中等、重复性好,经各种鉴定是该产物的标本,如以重组质粒为阳性对照,其含量宜低不宜高(100个拷贝以下),但阳性对照尤其是重组质粒及高浓度阳性标本,其对检测或扩增样品污染的可能性很大。因而当某一PCR试剂经自己使用稳定,检验人员心中有数时,在以后的实验中可免设阳性对照。

2.阴性对照:每次PCR实验务必做阴性对照。它包括①标本对照:被检的标本是血清就用鉴定后的正常血清作对照;被检的标本是组织细胞就用相应的组织细胞作对照。②试剂对照:在PCR试剂中不加模板DNA或RNA,进行PCR扩增,以监测试剂是否污染。

3.重复性试验

4.选择不同区域的引物进行PCR扩增

防止污染的方法

(一)合理分隔实验室:将样品的处理、配制PCR反应液、PCR循环扩增及PCR产物的鉴定等步骤分区或分室进行,特别注意样本处理及PCR产物的鉴定应与其它步骤严格分开。最好能划分①标本处理区;②PCR反应液制备区;③PCR循环扩增区;④PCR产物鉴定区。其实验用品及吸样枪应专用,实验前应将实验室用紫外线消毒以破坏残留的DNA或RNA。(二)吸样枪:吸样枪污染是一个值得注意的问题。由于操作时不慎将样品或模板核酸吸入枪内或粘上枪头是一个严重的污染源,因而加样或吸取模板核酸时要十分小心,吸样要慢,吸样时尽量一次性完成,忌多次抽吸,以免交叉污染或产生气溶胶污染。

(三)预混和分装PCR试剂:所有的PCR试剂都应小量分装,如有可能,PCR反应液应预先配制好,然后小量分装,-20℃保存。以减少重复加样次数,避免污染机会。另外,PCR试剂,PCR反应液应与样品及PCR产物分开保存,不应放于同一冰盒或同一冰箱。

(四)防止操作人员污染,使用一次性手套、吸头、小离心管应一次性使用。

(五)设立适当的阳性对照和阴性对照,阳性对照以能出现扩增条带的最低量的标准病原体核酸为宜,并注意交叉污染的可能性,每次反应都应有一管不加模板的试剂对照及相应不含有被扩增核酸的样品作阴性对照。

(六)减少PCR循环次数,只要PCR产物达到检测水平就适可而止。

(七)选择质量好的Eppendorf管,以避免样本外溢及外来核酸的进入,打开离心管前应先离心,将管壁及管盖上的液体甩至管底部。开管动作要轻,以防管内液体溅出。

标准的PCR反应体系

标准的PCR反应体系 PCR反应体系与反应条件 -------------------------------------------------------------------------------- 标准的PCR反应体系: 10×扩增缓冲液10ul 4种dNTP混合物各200umolL 引物各10~100mol 模板DNA 01~2ug TqDNA聚合酶25u g2+ 15mmolL 加双或三蒸水至100ul PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和g2+ 引物:引物是PCR特异性反应的关键,PCR产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。 设计引物应遵循以下原则: ①引物长度:15-30b,常用为20b左右。 ②引物扩增跨度:以200-500b为宜,特定条件下可扩增长至10kb的片段。 ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带。 ⑤引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。 ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。

⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度01~1umol或10~100mol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 酶及其浓度目前有两种TqDNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2。5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。 dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1NH或1Tris。HCL的缓冲液将其PH调节到70~75,小量分装,-20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umolL,尤其是注意4种dNTP的浓度要相等(等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与g2+结合,使游离的g2+浓度降低。 模板(靶基因)核酸模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。SDS的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS还能与蛋白质 结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法, 要防止RNse降解RNA。 g2+浓度g2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umolL时,g2+浓度为15~20mmolL为宜。g2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低TqDNA聚合酶的活性,使反应产物减少。 PCR反应条件的选择 PCR反应条件为温度、时间和循环次数。 温度与时间的设置:基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在TqDNA聚合酶的作用下,使引物链沿模板延 伸。对于较短靶基因(长度为100~300b时)可采用二温度点法,除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度TqDNA酶仍有较高的催化活性)。

PCR反应条件体系总结

PCR反应体系与反应条件 -------------------------------------------------------------------------------- 标准的PCR反应体系: 10×扩增缓冲液10ul 4种dNTP混合物各200umol/L 引物各10~100pmol 模板DNA 0.1~2ug Taq DNA聚合酶 2.5u Mg2+ 1.5mmol/L 加双或三蒸水至100ul PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板D NA在体外大量扩增。 设计引物应遵循以下原则: ①引物长度:15-30bp,常用为20bp左右。 ②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。

③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最 好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生 非特异的扩增条带。 ⑤引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PC R失败。 ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克 隆很有好处。 ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度0.1~1u mol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增, 且可增加引物之间形成二聚体的机会。 酶及其浓度目前有两种Taq DNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2。5U(指总反应体积为100ul时),浓度过高 可引起非特异性扩增,浓度过低则合成产物量减少。 dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装,-20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不

PCR反应体系

PCR反应体系 2007-07-20 11:04:33 PCR反应体系与反应条件 标准的PCR反应体系: 10×扩增缓冲液 10ul 4种dNTP混合物各200umol/L 引物各10~100pmol 模板DNA 0.1~2ug Taq DNA聚合酶 2.5u Mg2+ 1.5mmol/L 加双或三蒸水至 100ul PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。 设计引物应遵循以下原则: ①引物长度: 15-30bp,常用为20bp左右。 ②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。 ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。 ⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。 ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。 ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。 引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 酶及其浓度目前有两种Taq DNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。 dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP 粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降

关于PCR总结

PCR总结 若模板为环状质粒,最好先用酶将其切开成线性分子。 酵母、细菌及质粒基因组,每次反应的模板最大加入量分别为10ng,1ng和1pg。 引物的设计原则 1.引物的长度应适宜,一般要求18~25bp,一对引物中两个引物之间的长度差异应小于3bp。 2.基本成分:G+C的含量一般为40%~60%。四种碱基应随机的分布,避免碱基堆积的现象。尤其引物的3’端,不应有连续的3个G或C,否则会使引物与核酸的G或C富集区互补从而影响PCR的特异性。 3.引物自身:引物自身不应有反向重复序列或者大于3bp 的自身互补序列,否则引物自身会折叠形成发夹结构,将影响引物与待增DNA中的靶序列的杂交结合。 4.引物之间:引物之间不应存在互补序列,尤其应避免3’端的互补重叠以免形成引物二聚体。由于PCR反应体系中含有高浓度的引物,即使引物之间存在极为微弱的互补作用也会使引物相互杂交,最终得到引物二聚体的扩增产物。若引物二聚体在PCR反应的早期形成,它们将通过竞争DNA聚合酶、引物及四种单核苷酸从而抑制待增DNA的扩增。通过精心设计引物、应用热启动PCR(hot start PCR)或者降落PCR(touch down PCR)及特制的DNA聚合酶,可以减少引物二聚体的生成。 5.3’末端:引物的3’端(羟基端)是引发延伸的起点,因此一定要与模板准确配对,应尽量避免在引物3’端的第一位碱基是A。引物3’端最佳碱基的选择是G和C,因为他们形成的碱基配对比较稳定。 6.溶解温度:3’端引物和5’端引物应有相似的T m值(不同序列的DNA,Tm值不同。DNA中G-C含量越高,Tm值越高,成正比关系。),其差别不应大于5℃。扩增产物与引物的T m值的差别应小于10℃,以确保PCR循环中的扩增产物有

PCR反应体系有关的过程

PCR反应体系有关的过程 姓名:于烨敏学号:11243220 班级:113 第一部分 1、 PCR原料: DNA模板: 模板包含要用来扩增的靶基因区域,适当提高模板浓度,可减少循环次数,从而减少突变的发生和非特异性产物的形成;但过高的模板浓度会降低反应效率。 上游引物和下游引物: 是人工合成的短的单链DNA片段(寡核苷酸),经常由18-30个碱基组成,用来确定扩增区域的起止位点从而确定扩增的DNA片段大小;物与要扩增的双链DNA的两端精确互补,在退火中可以与DNA模板链特异性地结合。当引物与模板链结合后,DNA聚合酶就开始从引物链的结合位点催化合成新的DNA链。引物的量不能太多,过多的引物导致非特异性扩增的发生和引物二聚体的形成。 聚合酶: 聚合酶从引物结合位点开始沿DNA链移动,阅读DNA编码信息,填充正确的匹配核苷酸,催化DNA新链的合成;来源于生活在热泉中的一种细菌Thermus aquaticus的Taq聚合酶是目前使用最广泛的聚合酶。由于Taq酶没有3'-5'外切酶活性,在复制DNA的过程中可能会随机的引入错误的碱基。对于一般的PCR实验来讲,错误的产生不影响实验的结果;但特定的实验,如扩增的序列是用在测序或蛋白表达等用途时最好使用有较读活性的高保真酶,如Tli或Pfu。由于Taq酶相比其它酶要求的反应条件简单,扩增效率较高,因此可同其它酶混合起来以提高扩增长片段时的保真性。单独使用高保真酶扩增的产物如果与具有黏性末端的载体相连前,通常利用Taq酶在产物的3'末端增加一个多余的A碱基。 四种dNTP(dATP,dCTP,dGTP和dTTP): 是合成DNA新链的原料。dNTP的量与合成产物的大小有关,越长的片段需要越多的dNTP,但过多的dNTP能增加复制的错误率并可能抑制Taq酶活性。 缓冲液: 为维持DNA聚合酶的活性提供必要的pH值和离子浓度。 Mg离子: Mg离子对于维持聚合酶的活性是必须的,它通过稳定引物-模板相互作用而影响退火进程;同时也能稳定聚合酶同引物-模板形成的复制复合物,因此可以增加非特异性退火,进而形成非特异性产物。许多成分如EDTA和dNTP可以结合一部分Mg离子,所以Mg离子准确的用量需要实验来确定。一般来讲,低浓度的Mg离子增加复制的可信度,而高量的Mg离子降低特异性、引入突变。一般反应可通过变化温度、模板质和量而规避提高Mg量的操作。 添加剂: 1. 7-deaza-dGTP, Glycerol (5-10%), formamide (1-5%) or DMSO (2-10%):当模板GC

PCR反应中基本成分(引物、dNTP、模板等)的作用

PCR反应中基本成分(引物、dNTP、模板等)的作用 PCR(聚合酶链式反应)反应包括三个基本步骤,即:模板DNA的变性、模板DNA 与引物的退火复性、引物的延伸。PCR反应体系包括5种基本成分,依次为:引物、DNA聚合酶、dNTP、模板DNA、Mg2+。 PCR(聚合酶链式反应)反应包括三个基本步骤,即:模板DNA的变性、模板DNA 与引物的退火复性、引物的延伸。PCR反应体系包括5种基本成分,依次为:引物、DNA聚合酶、dNTP、模板DNA、Mg2+。 1、引物 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板 DNA在体外大量扩增。 设计引物应遵循以下原则: ①引物长度: 15-30bp,常用为20bp左右。 ②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。 ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。 ⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。 ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。 ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 2、酶 目前有两种Taq DNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反

PCR反应体系中各种成分的作用

PCR反应体系中各种成分的作用 不同模板浓度的实验结果 用相同的引物、两种不同的模板,对6种不同模板量进行PCR扩增,发现在模板量<25ng的条件下,扩增产物强度相应减弱,大约到2ng左右时无扩增产物;当模板量在25ng~200ng之间时,扩增产物基本稳定,条带清晰、稳定,分辨率高;当模板量>200ng时,会出现大片段扩增产物的缺失或无扩增产物,且点样孔至泳道会出现相应增强的弥散背景。综合考虑,在25μl的PCR反应体系中,模板DNA以25~100ng为最适用量。同时模板DNA在200ng以下不影响扩增结果,但为降低TE缓冲液中EDTA对反应体系中Mg2+的不良影响程度,应该尽量降低DNA模板用量。 不同Mg2+浓度时实验结果 设置不同Mg2+浓度,当Mg2+浓度为1 0mM时,无PCR扩增产物;Mg2+浓度为1 5~2 5mM时,随着Mg2+浓度的增加,PCR扩增产物带型基本一致,但以2 0mM的扩增效果最好 不同引物浓度对PCR结果的影响 设置5种不同浓度的引物进行PCR扩增,当引物浓度在0 1~0 2μM时,扩增结果基本一致;但随着引物浓度的逐渐增加,开始出现弥散背景增强的趋势,并且有些扩增带发生减弱或缺失。为了保证反应结果的稳定性和特异性,引物浓度以0 .2μM左右为宜。 不同dNTP浓度对PCR结果的影响

采用2种引物(OPB17、OPA16),分别以4种不同的dNTP浓度进行PCR反应,发现dNTP浓度在100μM、150μM、200μM、300μM时,随着浓度的减小,扩增带明显减少或扩增强度减弱,当dNTP浓度<200μM时,扩增产物丰富、清晰、带浓,扩增片段产率与dNTP浓度呈正相关。综合考虑,以100~200μM的dNTP浓度为佳。 TaqDNA聚合酶对扩增结果的影响 设置5个梯度的TaqDNA聚合酶浓度,结果表明随着TaqDNA聚合酶浓度的增高,扩增产物量呈增多趋势。在0 5u~2 5u浓度间均有扩增产物,但随着TaqDNA聚合酶浓度增加的同时,弥散背景也相应增强。综合考虑,TaqDNA聚合酶浓度以1 0~1 5u结果较好 不同退火温度下的扩增效果 引物用OPD16和OPA01,按照优化的PCR反应体系将退火温度分别设置为33℃、36℃、39℃、42℃。结果表明随着退火温度降低,非特异性产物增加,有弥散背景;退火温度升高,特异性相对增加。 Mgcl2与dNTP互相作用及对PCR反应的影响用同一引物OPD07、相同模板DNA比较3种MgCl2浓度与3种dNTP浓度完全随机相结合的9个处理的PCR结果,研究了Mgcl2与dNTP的相互作用。结果表明,Mgcl2在低浓度时,

PCR反应程序

PCR反应程序 1.常规程序 将PCR 反应所需的成分配置完后,在PCR 仪上于94-96℃预加热几十秒至几分钟,使模板DNA 充分变性,然后进入扩增循环。在每一个循环中,先于94℃保持30 秒钟使模板变性,然后将温度降到复性温度(一般50-60℃之间),一般保持 30 秒钟,使引物与模板充分退火;在72℃保持1 分钟(扩增1kb 片段),使引物在模板上延伸,合成DNA ,完成一个循环。重复这样的循环25~35 次,使扩增的DNA 片段大量累积。最后,在72℃保持3-7min ,使产物延伸完整,4℃保存。 2.复性(退火)和延伸温度 复性的温度是PCR 扩增是否顺利的关键因素,通常在50-60℃ 之间。具体的温度主要由引物的Tm 值决定。延伸温度绝大多数设定为72℃。如果复性的温度很高,可以将延伸温度和复性温度设置成同一温度,变成二步法PCR 。 3.反应时间 变性步骤一般使用30 秒钟,如果模板的G+C 含量较高,或直接用细胞做模板,变性时间可适当延长。复性时间有30 秒种一般是足够的。延伸时间由扩增产物的大小决定,一般采用1kb 用1 分钟来保证充足的时间。 4.循环次数 循环次数主要与模板的起始数量有关,在模板拷贝数为104~105 数量级时,循环数通常为25~35 次。 平台效应(plateau effect):PCR 扩增过程后期会出现的产物的积累按减弱的指数速率增长的现象。原因:底物和引物的浓度已经降低,dNTP 和DNA 聚合酶的稳定性或活性降低,产生的焦磷酸会出现末端产物抑制作用,非特异性产物或引物的二聚体出现非特异性竞争作用,扩增产物自身复性,高浓度扩增产物变性不彻底。 5.PCR 反应液的配制 PCR反应体系的配置方式有时也会影响反应的正常进行。常规方法与其它酶学反应一样,在最后加入DNA 聚合酶。早期的PCR 仪没有带加热的盖子,要求在反应液上覆盖一层矿物油,防止水分蒸发。对于使用具3’-5’ 外切活性的高温DNA 聚合酶时,有时会扩增不出产物。在遇到这个问题时,如果将反应成分分开配制,A 管含模板、引物和dNTP ,以及调整体积的H2O ,B 管含缓冲液、DNA 聚合酶和水,然后再将两管溶液混合起来,可较好地克服这个问题。 按照常规的方法配制反应体系,有时会出现非特异性扩增的问题。

PCR反应体系与反应条件

PCR反应体系与反应条件 标准的PCR反应体系: 10×扩增缓冲液 10ul 4种dNTP混合物各200umol/L 引物各10~100pmol 模板DNA 0.1~2ug Taq DNA聚合酶 2.5u Mg2+ 1.5mmol/L 加双或三蒸水至100ul PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。 设计引物应遵循以下原则: ①引物长度: 15-30bp,常用为20bp左右。 ②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。 ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带。 ⑤引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。

⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。 ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 酶及其浓度目前有两种Taq DNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2。5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。 dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP 粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR 产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。 模板(靶基因)核酸模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。SDS的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质 结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸。提取

酶切体系及PCR体系

酶切反应体系 1.反应体系尽可能的小。 2.酶切缓冲液为整个体系的十分之一,本实验室内切酶为NEB公司,缓冲液的选择,可参照该公司的使用说明。 3.内切酶的用量为反应体系的十至二十分之一(若为双酶切,则两种酶的总量占总反应体系的十至二十分之一),酶用量过大可能反而不利于酶切(因为内切酶中含有甘油)。4.DNA总量不宜大于2-3ug,否则在进行琼脂糖凝胶电泳时,会产生拖尾现象。 5.一般酶切温度为37℃水浴1-2h (小样鉴定1-2h,如要酶切回收,应切5-8h,特别是单酶切的载体,一定要切全,还应加去磷酸酶1-2h)。 6.一般小样鉴定为20ul总体系(酶一般用0.5ul),酶切回收为50-100ul总体系(酶一般用2-3ul,酶切3-4h后,可补加酶1ul)。 7.一般65℃水浴15分钟,灭活内切酶(也可不灭或,因为加入溴酚蓝后酶就失活了)。8.用0.8-1.2%的琼脂糖凝胶电泳。 PCR反应体系 1.反应体系一般为20-25ul 2.摸板:菌液2-5ul,质粒0.5-1ul,病毒DNA3-5ul 3.引物:25umol/l 各0.5ul 4.dNTP : 0.5ul 5.10X Buffer: 如含Mgcl2的为总体系的十分之一(2-2.5ul),如不含Mg cl2,应加入Mgcl2溶液1.5ul 6.Taq酶:0.5ul 7.加入Milli Q水,补齐至20-25ul PCR参数 1.95-96℃3-5 min 2. 95-96℃30-40 Sec 3. (TM-5℃)一般为45-60℃30-40 Sec 4.72℃ 30-180 Sec(一般一分钟为1000个碱基)5.72℃链延伸10 min 6. 10℃保存 以上只用于普通PCR,一般为鉴定用。

PCR体系优化

由于Taq DNA聚合酶是目前PCR反应体系中应用最广泛的酶,因此此文主要讨论使用该 酶的PCR反应体系。 A镁离子浓度 镁离子是热稳定DNA聚合酶的辅因子,其浓度对PCR至关重要。模板DNA的浓度,鳌合物(如EDTA和柠檬酸盐)、dNTP浓度和蛋白都会影响反应体系中游离镁离子的量。如果游离的镁离子含量不够,那么Taq DNA聚合酶则无法行使功能(figurel)。过多的游离镁离子 则会降低酶的保真度,可能会增加非特异性扩增。因此,研究者应当根据实际的实验结果来 优化每一反应中镁离子的浓度。可以用一系列的镁离子浓度梯度来验证,镁离子浓度范围为 1~4mM每次增加或降低 0.5~1 mM扩增产量最高,非特异性产物最低时的镁离子浓度即为最优。最优镁离子的浓度范围跟DNA聚合酶的类型相关,例如, Pfu DNA聚合酶似乎对镁离 子的依赖性更低,但其优化范围通常为2~6mM 许多DNA聚合酶产品提供 Mg-free reaction buffer和单独一管 25mMMgCl2,这样就可以自行调节 Mg+浓度,优化反应体系。MgC2溶液在反复冻融后会出现浓度分层,为获得均 一的溶液,在配液的时候,要确保MgCb溶液完全溶解并充分震荡混匀。非常简单的两步, 溶解和混匀,常常会造成实验失败。 有些科学家倾向于使用包含MgCb的buffer , MgC2的终浓度为1.5mM。值得注意的是有 文献报道发现使用此类buffer的结果并不稳定,有时体系内游离镁离子的浓度会有0.6mM 的变化,如果在90C加热10min,则结果趋于稳定,因此作者假设反复冻融的buffer中MgCb 可能会有沉淀现象发生。 M12345678 2.645 1.605 1.198- 0 0.5 10 1.5 2,0 2.5 3,0 3.5

pcr模板量

竭诚为您提供优质文档/双击可除 pcr模板量 篇一:标准的pcR反应体系 标准的pcR反应体系 pcR反应体系与反应条件 -------------------------------------------------------------------------------- 标准的pcR反应体系: 10×扩增缓冲液10ul 4种dntp混合物各200umoll 引物各10~100mol 模板dna01~2ug tqdna聚合酶25u g2+15mmoll 加双或三蒸水至100ul pcR反应五要素:参加pcR反应的物质主要有五种即引物、酶、dntp、模板和g2+引物:引物是pcR特异性反应的关键,pcR产物的特异性取决于引物与模板dna互补的程度。

理论上,只要知道任何一段模板dna序列,就能按其设计互补的寡核苷酸链做引物,利用pcR就可将模板dna在体外大量扩增。 设计引物应遵循以下原则: ①引物长度:15-30b,常用为20b左右。 ②引物扩增跨度:以200-500b为宜,特定条件下可扩 增长至10kb的片段。 ③引物碱基:g+c含量以40-60%为宜,g+c太少扩增效 果不佳,g+c过多易出现非特异条带。atgc最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3端的互补,否则会形成引物二聚体,产生非特异的扩增条带。 ⑤引物3端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致pcR失败。 ⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。 ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:每条引物的浓度01~1umol或10~100mol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。

相关文档