文档库 最新最全的文档下载
当前位置:文档库 › 带光耦双闭环反激式开关电源小信号模型分析

带光耦双闭环反激式开关电源小信号模型分析

带光耦双闭环反激式开关电源小信号模型分析
带光耦双闭环反激式开关电源小信号模型分析

小信号模型及环路设计

开关电源的小信号模型及环路设计 文章作者:万山明吴芳 文章类型:设计应用文章加入时间:2004年8月31日22:9 文章出处:电源技术应用 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型

图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo (1) S断开,D1续流导通时,状态方程变为 L(dil/dt)=-Uo (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为 L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得

基于UC3844的多路输出双管正激电源设计

第十七届全国电源技术年会论文集 基于UC3844的多路输出双管正激电源设计 石晓丽张代润黄念慈郑越四川大学电气信息学院(成都610065) 摘要:介绍了一种基于UC3844集成芯片实现双管正激多路输出的电路,分析了电路的工作原理,并介绍了电路启动和控制设计方法,该控制方法简单,成本低,工作频率高,实用性强,同时设计了两种输出方案来满足不同需要,与一般的双管正激相比有较高的实用价值,实验证明效果良好。 叙词:双管正激多路输出开关电源 1引言 在中等容量的开关电源中,双管正激变换器有比较明显的 优势,它克服了单管正激变换器开关管电压应力过高的缺点,而 且不需要特殊变压器磁复位电路。更重要的是,与全桥变换器 和半桥变换器相比,其在结构上有抗桥臂直通的优点,因此已成 为应用最为普遍的电路拓扑结构。本文设计了一种采用 UC3844控制的多路输出双管正激开关电源。UC3844是一种电 流调制的PWM控制器,实现电压电流双闭环控制,芯片内阻较 大(30k),启动电流小(小于lmA),因此在高压输入时仍然可以 使用大电阻分压来进行启动,直接采用变压器输出端反馈,控制 电路简单,电路输出采用LM350调整电压精度。 2变换器工作原理 本文设计的变换器输出功率200W,工作频率50kHz,工作范围400V~600V,输出4路分别为24V、±12V和5V。 图l是变换器的原理图,主电路是双管正激变换器,开关管Q1和Q2同时导通,能量通过高频变压器传输到输出侧,经整流输出给负载;开关管关断时,变压器能量通过续流二极管D。和D2回馈到输入端,变压器磁芯复位。 Q和Q采用功率M喽;H『r作为功率开关管。开关管与瞬态电压抑制器(TVS)并联,可靠保护开关管。R3、G、b构成高频变压器原边缓冲电路,用以限制开关管漏极因高频变压器的漏感而可能产生的尖峰电压,岛选用超快恢复二极管,恢复时间为75ns。变压器原边的直流输入电压、原边绕组的感应电压以及由变压器的漏感而产生的尖峰电压,三者叠加在一起,其值可能超过M哽;既丌的额定电压,所以必须在开关管的DS极增加钳位电路和吸收电路,用以保护功率M瞪;H『r不被损坏。R。、Rz、C1、聩与R、R5、c3、D4构成了两个开关管的缓冲电路,D3和D4选用超快恢复管,其最大反向耐压值为700V,恢复时间为30ns。 输出部分采用半波加续流二极管整流,二极管选用超快恢复MUR820,额定值为8A/200V,恢复时间为30ns。 3控制电路的设计 UC3844电流PWM模式集成控制芯片广泛用于中小功率的13(3-13(3开关电源,UC3844内部主要由5.0V基准电压源、振荡器、降压器、电流检测比较器、PWM锁存器、高增益E/A误差放大器和用于驱动功率MOSFET的大电流推挽输出电路等 图1由UC3844控制的多路输出双管正激开关电源 构成,启动/关闭电压阀值为16v/10V,输出最大占空比为50%,工作频率0~500kHz,驱动能力达士1A。 R2 R4 图2UC3844的典型外部接线图 UC3844典型外围电路如图2所示。UC3844的内阻大约30k,它的启动电压可以由主电路输入电压经过Rt、Rz、R。、R(芯片内阻)分压而得到,由图2可以知道,A点电压的计算公式为: UA2i孺Rl‰ UC3844的启动电压为16V,式中R一30k,R2—20k,R4—4.7k,可计算出,当R-一300k时,%一400V电路开始工作。UC3844启动时电流不到lmA,启动过程中电阻R-所消耗的功率大约为: Pea=r×R1一(10-3)2×300×103—0.3W在双管正激变换器中,两开关管是同步的,因此采用变压器分两路来同时给开关管驱动信号,接线如图3所示。UC3844正 ?189?

开关电源的小信号建模详解

详解:开关电源的小信号建模 开关电源的反馈环路设计是开关电源设计的一个非常重要的部分,它关系到一个电源性能的好坏。要设计一个好的环路,必须要知道主回路的数学模型,然后根据主回路的数学模型,设计反馈补偿环路。本文想重点介绍下主回路的数学建模方法。 首先来介绍下小信号的分析法。开关电源是一个非线性系统,但可以对其静态工作点附近进行局部线性化。这种方法称为小信号分析法。 以一个CCM模式的BOOST电路为例, 其增益为: 其增益曲线为: 其中M和D之间的关系是非线性的。但在其静态工作点M附近很小的一个区 域范围内,占空比的很小的扰动和增益变化量之间的关系是线性的。因此在这个很小的区域范围内,我们可以用线性分析的方法来对系统进行分析。这就是小信号分析的基本思路。因此要对一个电源进行小信号建模,其步骤也很简单,第一步就是求出其静态工作点,第二步就是叠加扰动,第三步就是分离扰动,

进行线性化,第四步就是拉氏变换,得到其频域特性方程,也就是我们说的传递函数。要对一个变换器进行小信号建模,必须满足三个条件。 首先要保证得到的工作点是“静”态的。因此有两个假设条件: 1,一个开关周期内,不含有低频扰动。因此叠加的交流扰动小信号的频率应该 远远小于开关频率。这个假设称为低频假设 2,电路中的状态变量不含有高频开关纹波分量。也就是系统的转折频率要远远 小于开关频率。这个假设称为小纹波假设。其次为了保证这个扰动是在静态工作 点附近,因此有第三个假设条件: 3,交流小信号的幅值必须远远小于直流分量的幅值。这个称为小信号假设。 对于PWM模式下的开关电源,通常都能满足以上三个假设条件,因此可以使用小 信号分析法进行建模。对于谐振变换器来说,由于谐振变换器含有一个谐振槽路。 在一个开关时区或多个开关时区内,谐振槽路中各电量为正弦量,或者其有效成 分是正弦量。正弦量的幅值是在大范围变化的,因此在研究PWM型变换器所使用 的“小纹波假设”在谐振槽路的小信号建模中不再适用。对于谐振变换器,通常 采用数据采样法或者扩展描述函数法进行建模。 以一个CCM模式下的BUCK电路为例,应用上面的四个步骤,来建立一个小信号 模型。 对于一个BUCK电路 当开关管开通时,也就是在(0-DTs)区间 其状态方程为

Buck电路小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路 设计 华中科技大学电气与电子工程学院作者:万山明,吴芳 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路 S导通时,对电感列状态方程有 L=U in-U o (1) S断开,D1续流导通时,状态方程变为 L=-U o (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为 L=D(U in-U o)+(1-D)(-U o)=DU in-U o(3) 稳态时,=0,则DU in=U o。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压U in成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L=(D+d)(U in+)-(U o+) (4)

反激变换器小信号模型Gvd(s)推导__1210

一、反激变换器小信号模型的推导 1.1 DCM 1.1.1 DCM buck-boost 小信号模型的推导 根据状态空间平均法推导DCM buck-boost 变换器小信号模型如下: +-v in (t)v o (t)一般开关网络 图1 1理想Buck-Boost 变换器开关网络 1231d d d ++= (1) 首先,定义开关网络的端口变量1122,,,v i v i ,建立开关周期平均值 1 1 2 2 ,,,s s s s T T T T v i v i 之间的关系: 11()s g T g pk s s v t v i d T d T L L <>= = (2) 根据工作模态:113()()()0s s s L T g T T v t d v t d v t d <>=<>+<>+ (3) []1 1 ()()()s s s t T t T L T L s t t s s s di L v t v d L d i t T i t T T d T τττ++<>= = =+-? ? (4) DCM 下,()()0s i t T i t +==,所以()0s L T v t <>=,结合(3)式: 11()()0s s g T T d v t d v t <>+<>= (5) 21()(t)=-(t)()s s g T T v t d d v t <><> (6) 根据工作模态:1123()()0()(()())()()s s s s T g T T g T v t d t d t v t v t d t v t <>=+<>-<>+<>(7) 消去上式的2d 和3d 得:1()()s s T g T v t v t <>=<> (8) 根据工作模态:2123()()(()())()0(()) s s s s T g T T g T v t d t v t v t d t d v t <>=<>-<>++-<>

双管正激参数及控制环路的SABER仿真设计

引言 双管正激变换器开关管的电压应力等于输入电压,关断时也不会出现漏感尖峰,加上结构简单、可靠性高,在高输入电压的中、大功率场合得到广泛的应用。 在开关电源的设计过程中,控制环路设计的优劣关系到系统的稳定与否。对于PWM变换器的控制环路,传统的方法使用状态空间平均法,求出小信号模型,来设计控制环路。此方法计算量大,效率低,不利于工程应用。 SABER与其他仿真软件相比,具有更丰富的元件库和更精确的仿真描述能力,真实性更好。特别是在电源领域的先天优势,借助其强大的仿真功能缩短电源产品的上市时间。目前,用SABER软件设计控制环路尚不多见,基于此,提出用SABER仿真设计双管正激参数及控制环路。 1 电路结构 双管正激拓扑结构如图1所示,工作原理为:VT1、VT2同时导通,同时关断;VT1与VT2导通时,电源经高频变压器T,快恢复二极管VD3向负载输出能量,经L给C充电;VT1与VT2关断时,输出电流由快恢复二极管VD4续流,同时变压器原边绕组的励磁电流经VD1-UiN-VD2向电源反馈能量。由于VD1与VD2的箝位,VT1与VT2的开关应力等于电源电压。与单管正激电路相比,多用一个开关管,电压应力为单管的一半,不存在漏感尖峰,变压器无需磁通复位绕组,适用于较高输入电压的中、大功率等级场合。

2 控制环路的设计方法 系统稳定的条件:系统回路开环BODE图,在剪切频率处幅值斜率为-20dB/dec,且至少有45°的相位裕度。 控制环路的设计步骤: (1)根据应用要求设计主电路。 (2)由SABER仿真器得出主电路的BODE图。

(3)根据实际要求和限制条件确定剪切频率ωc,对电源产品,剪切频率通常为开关频率的1/4或者1/5。 (4)根据系统稳态精度的要求及剪切频率决定补偿放大器的类型和各频率点。使低频段增益高,一般电源产品的低频段设计成I型系统,以保证稳态精度;中频段带宽处的斜率为-20dB/dec,且有足够的相位裕度(即y>45°);高频段增益衰减快,减少高频干扰;用SABER得出补偿后环路的开环频响曲线,验证系统的稳定性。 3 主电路参数设置 由于主电路输出滤波器参数关系到控制环路的设置,补偿器应根据输出滤波参数进行调整。本文以一台250W电源实例说明控制环路的设计。 1)主要技术要求 输入:AC220V(DC=265V(220~310V)) 输出:48V 0.5~5A; 波纹电压:0.1V; 波纹电流:1A; 效率:≥0.85;开关频率:100kHz; 变压器原副边比n=2;Uout=48.85V(二极管); 占空比: 2)输出滤波参数 输出滤波器按照要求的纹波电流与纹波电压值来设计,纹波电流决定电感值,纹波电流与纹波电压共同决定电容值。 (1)滤波电感 流经滤波电感电流波形如图2所示,纹波电流峰峰值取决于允许的最小电流值,当负载电流小于0.5A时,进入电流断续模式。 为防止变换器进入断续模式,在Toff期间,流经L的电流不能降到零。

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计 万山明,吴芳 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路

S 导通时,对电感列状态方程有 O U Uin dt dil L -= ⑴ S 断开,D 1续流导通时,状态方程变为 O U dt dil L -= (2) 占空比为D 时,一个开关周期过程中,式(1)及式(2)分别持续了DT s 和(1-D )T s 的时间(T s 为开关周期),因此,一个周期内电感的平均状态方程为 ())()(O in O O in U DU U D U U D dt dil L -=--+-=1 稳态时,dt dil =0,则DU in =U o 。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压U in 成 正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L =(D +d )(U in +)-(U o +) (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d 为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L =D +dU in - (5) 由图1,又有 i L =C + (6) U o =U c +R e C (7)

双管正激同步整流变换器

本科毕业设计(论文) 双管正激同步整流变换器 *** 燕山大学 2012年6月

本科毕业设计(论文) 双管正激同步整流变换器 学院(系):里仁学院 专业:08应电2班 学生姓名:*** 学号:*** 指导教师:*** 答辩日期:2012/6/17

燕山大学毕业设计(论文)任务书学院:系级教学单位: 学号*** 学生 姓名 *** 专业 班级 08应电2班 题目题目名称推挽正激式DC-DC变换器的设计 题目性质 1.理工类:工程设计(√ );工程技术实验研究型(); 理论研究型();计算机软件型();综合型() 2.管理类(); 3.外语类(); 4.艺术类() 题目类型 1.毕业设计(√ ) 2.论文() 题目来源科研课题()生产实际()自选题目(√) 主要内容随着电源技术的发展,低电压、大电流的变换器因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激式和反激式有电路拓扑结构简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。与正、反激式相比,推挽式变换器变压器利用率高,输出功率较大,基本不存在励磁不平衡的现象。因此,一般认为推挽式变换器适用于低压,大电流,功率较大的场合。应用SG3525设计一套用于正激电路的低压大电流变换器及其控制系统,并通过Pspice仿真验证其闭环控制性能。 基本要求1. 了解正激变换器的基本原理,建立推挽正激式低压大电流DC-DC变换器的Pspice仿真模型; 2. 基于SG3525的特性设计PI控制闭环系统,给出控制参数的设计过程; 3. 仿真验证控制系统的性能。 参考资料1. 基于SG3525控制的双管正激变换器 2. SG2525A-REGULA TING PULSE WIDTH MODULA TORS 3. 脉宽调制电路SG3525AN原理与应用 4. SG3525在开关电源中的应用 周次第~周第~周第~周第~周第~周 应完成的内容查阅资料、 分析原理 建立正激式 DC-DC变换器的 Pspice仿真模型 闭环控制参 数的设计与 整定; 仿真验证;撰写论文 准备答辩 指导教师: 职称:年月日系级教学单位审批: 年月日

一种正激变换器开关电源设计方案方法

一种基于正激变换器的开关电源设计方法 收藏此信息打印该信息添加:郑慧汤天浩韩金刚来源:未知 1 引言 经过多年的发展,开关电源技术已经取得了很大成功,其应用也十分普遍和广泛。但因其结构复杂,涉及的元器件较多,以及要降低成本、提高可靠性,仍存在一些问题需要解决。例如:电源的设计和生产需要较高的技术支持;电路的调试要有实际经验,也有一定的难度。对于第一个问题,由于目前各种开关电源虽然形式多样,结构各异,但其大都源于几种基本的dc-dc变换器拓扑结构,或者是这些基本电路组合,因此,可以对几种基本dc-dc变换器进行分析,将已有的电路设计公式应用于实际开关电源的设计。对于第二个问题,随着计算机硬件和软件的发展以及仿真技术的不断完善,人们可以利用仿真技术来解决开关电源产品开发和生产中存在的问题。 本文在对基本的buck变换器电路拓扑分析的基础上,对与之相关的正激变换器和双管正激变换器进行了分析,发现可以通过等效变换,从buck变换电路的设计公式中推导出正激变换和双管正激变换电路的参数计算公式;此外,采用pspice仿真软件进行了电路仿真试验,仿真结果证明了开关电源电路设计的正确性。 2 buck变换的拓扑结构与参数设计 基本buck变换器的电路拓扑结构如图1所示,由电压源vi、串联开关s、续流二极管vd和由lc组成的电流负载组合而成,其中l的大小决定输出电流纹波,而输出电压纹波则由c决定,这是最基本的一种直流变换器。 图1 基本的buck变换器 文献[1]给出了buck变换器的电路设计公式,根据buck变换器的输出公式:

式中:ρ为占空比,且有:ρ=ton/t,则ρ=vo/vi。 电感l的计算公式为: 式中:f为开关频率; iomin为输出最小电流。 而电容c的计算公式为: 式中:δvo为输出电压纹波。 3 正激变换的公式推导 3.1 拓扑结构与工作模式 一个单管正激变换器的主电路拓扑结构如图2所示,由于正激变换器是在基本的buck型变换器基础上多了一个隔离变压器t1、一个二极管vd1和一个由回收绕组n3和箝位二极管vd3构成的复位电路。由于电路形式发生了变化,所以设计时不能直接使用上述基本buck变换器的参数计算公式。本文通过对正激变换器工作模式的分析,采用等效变换方法将正激变换器等效为一个基本的buck变换电路,由此可将基本buck变换电路的参数计算公式(2)和(3)推广到一类正激变换器的参数计算,建立新的设计公式。 图2 单管正激变换器主电路结构

第四章 放大电路基础(2)小信号模型及三种基本电路2016 [兼容模式]

§4.3 放大电路的分析方法 ——小信号模型分析法
思路:在Q点附近,三极管特性曲线可近似看为线性的,把非线性问题转为 线性问题求解。条件:输入为交流小信号(微变信号) 式中各量均是全量,包 一、H参数等效电路: 含直流和交流两部分
1、H参数的导出:
v BE = VBE + vbe
iB = I B + ib iC = I C + ic
iC iB
+
vCE = VCE + vce
vBE=f1 (iB , vCE ) iC=f 2 (iB , vCE )
电气工程学院 苏士美
T
+
输入回路关系 输出回路关系
v BE 2016/3/7
PDF pdfFactory Pro
v CE -
1
https://www.wendangku.net/doc/424846985.html,

小信号模型分析法
考虑微变关系,对两式取全微分:
vBE=f1 (iB , vCE ) iC=f 2 (iB , vCE )
式中: dvBE = vbe , diB = ib , dvCE = vce , diC = ic
dvBE=
?vBE ?iB
? diB +
vCE
?vBE ?vCE
? dvCE
iB
vbe=hie ib + hre vce
在小信号情况下: H参数,具有不同的 量纲,混合参数
共e下BJT的输入 电阻rbe(欧姆) 电流放大系数β
输出对输入的反作 用μr(无量纲) 输出电导1/rce
?iC diC= ?iB
2016/3/7
PDF pdfFactory Pro
vCE
?iC ? diB + ?vCE
? dvCE
iB
电气工程学院 苏士美
ic=hfe ib + hoe vce
2
https://www.wendangku.net/doc/424846985.html,

小信号分析法重点笔记讲解

开关电源的反馈环路设计是开关电源设计的一个非常重要的部分,它关系到一个电源性能的好坏。要设计一个好的环路,必须要知道主回路的数学模型,然后根据主回路的数学模型,设计反馈补偿环路。开关电源是一个非线性系统,但可以对其静态工作点附近进行局部线性化,这种方法称为小信号分析法。 以一个CCM模式的BOOST电路为例 其增益为: 其增益曲线为: 其中M和D之间的关系是非线性的。但在其静态工作点M附近很小的一个 区域范围内,占空比的很小的扰动和增益变化量之间的关系是线性的。因此在这个很小的区域范围内,我们可以用线性分析的方法来对系统进行分析。这就是小信号分析的基本思路。 因此要对一个电源进行小信号建模,其步骤也很简单,第一步就是求出其静态工作点,第二步就是叠加扰动,第三步就是分离扰动,进行线性化,第四步就是拉氏变换,得到其频域特性方程,也就是我们说的传递函数。 要对一个变换器进行小信号建模,必须满足三个条件,首先要保证得到的工作点是“静”态的。因此有两个假设条件: 1,一个开关周期内,不含有低频扰动。因此叠加的交流扰动小信号的频率应该

远远小于开关频率。这个假设称为低频假设 2,电路中的状态变量不含有高频开关纹波分量。也就是系统的转折频率要远远小于开关频率。这个假设称为小纹波假设。 其次为了保证这个扰动是在静态工作点附近,因此有第三个假设条件:3,交流小信号的幅值必须远远小于直流分量的幅值。这个称为小信号假设。 对于PWM模式下的开关电源,通常都能满足以上三个假设条件,因此可以使用小信号分析法进行建模。 对于谐振变换器来说,由于谐振变换器含有一个谐振槽路。在一个开关时区或多个开关时区内,谐振槽路中各电量为正弦量,或者其有效成分是正弦量。正弦量的幅值是在大范围变化的,因此在研究PWM型变换器所使用的“小纹波假设”在谐振槽路的小信号建模中不再适用。 对于谐振变换器,通常采用数据采样法或者扩展描述函数法进行建模。 以一个CCM模式下的BUCK电路为例,应用上面的四个步骤,来建立一个小信号模型。对于一个BUCK电路 当开关管开通时,也就是在(0-DTs)区间。其状态方程为 当开关管S断开时,二极管D导通,忽略二极管D的压降,可得到等效电路

最新交错并联式双管正激变换器及其控制电路毕业

交错并联式双管正激变换器及其控制电路 毕业

摘要 本文主要研究了交错并联式双管正激变换器及其控制电路。相比于其他隔离式DC/DC变换器,交错并联结构的双管正激变换器有自动实现励磁能量的回馈,结构简洁等优点。同时,其主功率管只需承受电源电压,从而选择面更广。此外,其并联结构缩小了输出滤波电感的体积,降低了器件的应力,从而进一步减小了损耗。在控制电路的设计方面,考虑到电源输出电压范围的可控性,本文采用电压反馈控制方式,选用UC3825型脉宽调制器。本文列举了DC/DC变换的各种拓扑,比较了四种PWM控制模式,分析了交错并联式双管正激变换器的工作原理及其工作过程,详细推导并建立了带有电压反馈控制的双管正激变换电路的小信号模型,设计了补偿网络,给出了主电路和控制电路的工程计算。最后,对系统进行频域、时域仿真,并给出相关分析。 关键词:双管正激变换器、电压反馈控制、小信号模型、补偿网络、仿真

Abstract This paper studies the parallel dual interleaved forward converter and its control circuit. Different to other isolated DC/DC converters, the parallel dual interleaved forward converter can feedback excitation energy automatically, also, simple structure is the one of the system’s advantages. Meanwhile, the power switches only need to work just under the main power voltage, which makes the designers have a wider range of choosing the power switches. In addition, the parallel structure reduces the volume of the output filter inductance, reducing the stress of the device, thereby, further reducing the loss. In the control circuit design, taking into account of the controllability of the range of the output voltage, we use voltage feedback control method, and chose the UC3825 voltage pulse width modulator. This article lists the DC/DC conversion of the various topologies, makes a comparison of the four PWM control modes, analyzes the parallel dual interleaved forward converter’s operating principle and working process, derives in detail and establish the small signal model, designs the compensation network, and carries out the main circuit’s and control circuit’s engineering calculation. Finally, this paper makes the system frequency and time domain simulation, and make some correlation analysis. Key words: dual forward converter, voltage feedback control, small signal model, compensation network, simulation

开关电源的小信号模型和环路原理

开关电源的小信号模型和环路原理 本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。 S导通时,对电感列状态方程有 L(dil/dt)=Uin-Uo (1) S断开,D1续流导通时,状态方程变为

L(dil/dt)=-Uo (2) 占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为 L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo (3) 稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压Uin成正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L[d(il+il')/dt]=(D+d)(Uin+Uin')-(Uo+Uo') (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L(dil'/dt)=DUin'+dUin-Uo' (5) 由图1,又有 iL=C(duc/dt)+Uo/R0 (6) Uo=Uc+ReC(duc/dt) (7) 式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得 iL+ReC(dil/dt)=1/Ro(Uo+CRo(duo/dt)) (8)

DCDC开关电源的设计

引言 随着电子技术的飞速发展,现代电子测量装置往往需要负电源为其内部的集成电路芯片与传感器供电。如集成运算放大器、电压比较器、霍尔传感器等。 负电源的好坏很大程度上影响电子测量装置运行的性能,严重的话会使测量的数据大大偏离预期。目前,电子测量装置的负电源通常采用抗干扰能力强,效率高的开关电源供电方式。以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电压开关电源的研究具有很高的实用价值。 传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。图3是其滤波输出电容的充电电流波形。由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。 为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源。 图1 传统的非隔离负电压开关电源电路结构1 图2 传统的非隔离负电压开关电源电路结构2

图3 两种开关电源滤波电容的充电电流波形 1 工作原理分析 本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。当电源控制器LT1935内部的功率三极 管导通时,直流电源给输出电感L1和输出电容C1充电。当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再 次导通。可见电容C1在输出电感L1储存能量和释放能量的过程中均获得充电,从而减小了输出纹波电压。同时,在CCM条件下,输出电流在LT1935内部功率三极管的导通和关断期间均通过输出电感L1,这很大程度上抑制了输出电流的波动,降低了输出纹波 电流的影响,进而大大增加系统的带负载能力和效率。 反馈控制回路采用了峰值电流控制。相比传统的电压控制,峰值电流控制一方面能很好的改善电源的动态响应,另一方面还能 实现快速的过电流保护,很大程度上提高了系统的可靠性。由于采用了电源控制器LT1935,其内部集成了峰值电路控制电路和斜 坡补偿电路,非隔离负电压DC/DC开关电源反馈回路设计即转换为补偿网络设计,进而大大简化了反馈回路的设计。 为防止过高的直流电源对电源控制器的危害,这里使用稳压管VD2和VD3实现过电压保护。

100W双管正激变换器设计

1 绪论 随着计算机、电子技术的高速发展,电子技术的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。任何电子设备都离不开可靠的电源,他们对电源的要求也越来越高。电子设备的小型化和低成本化,使电源以轻、薄、小和高效率为发展方向。 1.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器[1];逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器[18]四种。 传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。这种传统稳压电源技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点。但通常需要体积大而且笨重的工频变压器与体积和重量都很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有百分之四十五左右[16]。另外,由于调整管上消耗较大的功率,所以需要采用大功率调整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。20世纪50年代,美国宇航局以小型化、重量轻为目标,为搭载火箭开发了开关电源。在近半个多世纪的发展过程中,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制作的连续工作电源,并广泛应用于电子整机与设备中。 到了20世纪90年代,开关电源在电子、电气设备、家电领域得到了广泛的应用,开关电源技术进入快速发展时期。 开关型稳压电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。以功率晶体管为例,当开关管饱和导通时,集电极和发射机两端的电压降接近零;当开关管截止时,其集电极电流为零。所以其功率小,效率可高达百分之七十至

开关电源的建模和环路补偿设计 上

开关电源的建模和环路补偿设计上 如今的电子系统变得越来越复杂,电源轨和电源数量都在不断增加。为了实现最佳电源解决方案密度、可靠性和成本,系统设计师常常需要自己设计电源解决方案,而不是仅仅使用商用砖式电源。设计和优化高性能开关模式电源正在成为越来越频繁、越来越具挑战性的任务。 电源环路补偿设计常常被看作是一项艰难的任务,对经验不足的电源设计师尤其如此。在实际补偿设计中,为了调整补偿组件的值,常常需要进行无数次迭代。对于一个复杂系统而言,这不仅耗费大量时间,而且也不够准确,因为这类系统的电源带宽和稳定性裕度可能受到几种因素的影响。本应用指南针对开关模式电源及其环路补偿设计,说明了小信号建模的基本概念和方法。本文以降压型转换器作为典型例子,但是这些概念也能适用于其他拓扑。本文还介绍了用户易用的LTpowerCAD设计工具,以减轻设计及优化负担。 确定问题 一个良好设计的开关模式电源(SMPS) 必须是没有噪声的,无论从电气还是声学角度来看。欠补偿系统可能导致运行不稳定。不稳定电源的典型症状包括:磁性组件或

陶瓷电容器产生可听噪声、开关波形中有抖动、输出电压震荡、功率FET 过热等等。 不过,除了环路稳定性,还有很多原因可能导致产生不想要的震荡。不幸的是,对于经验不足的电源设计师而言,这些震荡在示波器上看起来完全相同。即使对于经验丰富的工程师,有时确定引起不稳定性的原因也是很困难。图 1 显示了一个不稳定降压型电源的典型输出和开关节点波形。调节环路补偿可能或不可能解决电源不稳定问题,因为有时震荡是由其他因素引起的,例如PCB 噪声。如果设计师对各种可能性没有了然于胸,那么确定引起运行噪声的潜藏原因可能耗费大量时间,令人非常沮丧。 图1:一个“不稳定” 降压型转换器的典型输出电压和 开关节点波形 对于开关模式电源转换器而言,例如图 2 所示的 LTC3851 或LTC3833 电流模式降压型电源,一种快速确

200W开关电源设计PFC双管正激

学位论文 200W开关电源设计 ——基于双管正激变换器

摘要 开关电源是一种由占空比控制的开关电路构成的电能变换装置,用于交流-直流或直流—直流电能变换,通常称其为开关电源。其功率从零点几瓦到数十千瓦,广泛用于生活、生产、科研、军事等各个领域。开关电源的核心为电力电子开关电路,根据负载对电源提出的输出稳压或稳流特性的要求,利用反馈控制电路,采用占空比控制方法,对开关电路进行控制。本设计的交流输入电压范围是85V~265V,输出电压24V,输出功率200W。该设计能够同时实现输入欠压保护、输出过压保护、功率因数校正等功能。本设计主要采用单片开关电源芯片L6562D,NCP1015和NCP1217,线性光耦合器PC817A及可调式精密并联稳压器TL431等专用芯片以及其它的分立元件相配合,使设计出的开关电源具有稳压输出功能。主要用到的开关电源电路拓扑有BUCK电路,BOOST电路和正激电路。 关键词:开关电源,功率因数校正,电路拓扑

ABSTRACT The switching power supply is a power conversion device for AC-DC or DC-DC conversion,which is consist of switching circuits controled by duty cycle.Its power varies from a few tenths of watts to tens of kilos watts,and it is widely used in life,production,scientific research, military and other fields.The core of the switching power supply is power electronic circuit.According to the request of steay output voltage or flow characteristics of power from the load,it can use feedback control circuit with duty cycle control method to control the switching circuit. The AC input voltage of this design ranges from 85V to 265V and the output voltage is 24V,the output power 200W.The design can simultaneously realize functions of input under-voltage protection, output overvoltage protection and power factor correction. The design mainly adopts dedicated chips ,such as single switching power supply chip L6562D, the NCP1015 and NCP1217A, a linear optocoupler PC817 and adustable precision shunt regulator control TL431 ,which is matched with other discrete components to make the switching power supply with voltage regulator output function. The main switching power supply circuit topology are Buck Circuit, the Boost Circuit and a Forward Circuit. Key words:the switching power supply,power factor correction,circuit topology

相关文档
相关文档 最新文档