文档库 最新最全的文档下载
当前位置:文档库 › 一元非线性回归分析例题

一元非线性回归分析例题

一元非线性回归分析例题
一元非线性回归分析例题

【一元非线性回归分析例题】

商店销售额与流通率的非线性回归分析下列数据是九个商店的销售额与流通率的有关数据

表销售额与流通费率数据

MATLAB数据处理与分析

1.绘制散点图

x=[1.5, 4.5, 7.5,10.5,13.5,16.5,19.5,22.5,25.5];

y=[7.0,4.8,3.6,3.1,2.7,2.5,2.4,2.3,2.2];

sdt(x,y)

2.拟合倒幂函数曲线

nlin1(x,y)

拟合曲线方程是y=2.2254+7.6213/x

剩余标准误差Sy=0.42851

可决系数R=0.96733

'方差来源' '偏差平方和' '自由度' '方差' ' F值' 'F临界值'

'显著性'

'回归' [18.7146] [ 1] [18.7146] [101.9186] [ 5.5914]

'* *'

'剩余' [ 1.2854] [ 7] [ 0.1836] [] [12.2464] []

'总和' [ 20] [ 8] [] [] [] []

3.拟合幂函数曲线

nlin3(x,y)

拟合曲线方程是y=8.5173x^-0.42589

剩余标准误差Sy=0.146

可决系数R=0.99626

'方差来源' '偏差平方和' '自由度' '方差' ' F值' ' F临界值'

'显著性'

'回归' [19.8508] [ 1] [19.8508] [931.2285] [ 5.5914]

'* *'

'剩余' [ 0.1492] [ 7] [ 0.0213] [] [12.2464] []

'总和' [ 20] [ 8] [] [] [] []

4.拟合指数函数曲线

nlin5(x,y)

拟合曲线方程是y=2.3957exp(1.7808/x)

剩余标准误差Sy=0.6497

可决系数R=0.92318

'方差来源' '偏差平方和' '自由度' '方差' 'F值' ' F临界值

' '显著性'

'回归' [17.0452] [ 1] [17.0452] [40.3812] [ 5.5914]

'* *'

'剩余' [ 2.9548] [ 7] [ 0.4221] [] [12.2464] []

'总和' [ 20] [ 8] [] [] [] []

5.拟合对数函数曲线

nlin6(x,y)

拟合曲线方程是y=1632.5-1.713log(x)

剩余标准误差Sy=0.2762

可决系数R=0.98656

'方差来源' '偏差平方和' '自由度' '方差' ' F值' ' F临界值

' '显著性'

'回归' [19.4660] [ 1] [19.4660] [255.1773] [ 5.5914]

'* *

'剩余' [ 0.5340] [ 7] [ 0.0763] [] [12.2464] []

'总和' [ 20] [ 8] [] [] [] []

【说明】函数

nlin1,nlin2,nlin3,nlin4,nlin5,nlin6,nlin7

分别用来拟合第一(倒幂函数)、二(双曲线)、三(幂函数)、四(指数函数)、五(倒指数函数)、六(对数函数)、七(S型曲线)种类型曲线求非线性回归的回归方程函数,并在同一个图形中绘制散点图和回归线图.

这几个函数的调用方式相同,以第一个函数为例

[S,Sy,r2,table]=nlin1(x,y)

输入参数x,y是长度相等的两个向量.

输出参数个数可选

如果没有输出参数,则在命令窗口中显示回归线方程,剩余标准误差、可决系数、方差分析表,并绘制散点图和拟合曲线图.

如果有输出参数,第一个输出参数是拟合曲线方程.

如果有两个输出参数,第二个输出参数是剩余标准误差Sy.

如果有三个输出参数,第三个输出参数是可决系数.

如果有四个输出参数,第四个输出参数是方差分析表.

非线性回归分析

SPSS—非线性回归(模型表达式)案例解析 2011-11-16 10:56 由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二! 非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢? 答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究: 第一步:非线性模型那么多,我们应该选择“哪一个模型呢?” 1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型 点击“图形”—图表构建程序—进入如下所示界面:

点击确定按钮,得到如下结果:

放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高! 点击“分析—回归—曲线估计——进入如下界面

在“模型”选项中,勾选”二次项“和”S" 两个模型,点击确定,得到如下结果: 通过“二次”和“S “ 两个模型的对比,可以看出S 模型的拟合度明显高于

线性回归推导及实例

数据点基本落在一条直线附近。这告诉我们,变量X与Y的关系大致可看作是线性关系,即它们之间的相互关系可以用线性关系来描述。但是由于并非所有的数据点完全落在一条直线上,因此X与Y的关系并没有确切到可以唯一地由一个X值确定一个Y值的程度。其它因素,诸如其它微量元素的含量以及测试误差等都会影响Y的测试结果。如果我们要研究X与Y的关系,可以作线性拟合 (2-1-1) 我们称(2-1-1)式为回归方程,a与b是待定常数,称为回归系数。从理论上讲,(2-1-1)式有无穷多组解,回归分析的任务是求出其最佳的线性拟合。 二、最小二乘法原理 如果把用回归方程计算得到的i值(i=1,2,…n)称为回归值,那么实际测量值y i与回归值i之间存在着偏差,我们把这种偏差称为残差,记为e i(i=1,2,3,…,n)。这样,我们就可以用残差平方和来度量测量值与回归直线的接近或偏差程度。残差平方和定义为: (2-1-2) 所谓最小二乘法,就是选择a和b使Q(a,b)最小,即用最小二乘法得到的回归直线是在所 有直线中与测量值残差平方和Q最小的一条。由(2-1-2)式可知Q是关于a,b的二次函数,所以它的最小值总是存在的。下面讨论的a和b的求法。 三、正规方程组 根据微分中求极值的方法可知,Q(a,b)取得最小值应满足 (2-1-3) 由(2-1-2)式,并考虑上述条件,则 (2-1-4) (2-1-4)式称为正规方程组。解这一方程组可得 (2-1-5) 其中 (2-1-6)

(2-1-7) 式中,L xy称为xy的协方差之和,L xx称为x的平方差之和。 如果改写(2-1-1)式,可得 (2-1-8) 或 (2-1-9) 由此可见,回归直线是通过点的,即通过由所有实验测量值的平均值组成的点。从力学观点看, 即是N个散点的重心位置。 现在我们来建立关于例1的回归关系式。将表2-1-1的结果代入(2-1-5)式至(2-1-7)式,得出 a=1231.65 b=-2236.63 因此,在例1中灰铸铁初生奥氏体析出温度(y)与氮含量(x)的回归关系式为 y=1231.65-2236.63x 四、一元线性回归的统计学原理 如果X和Y都是相关的随机变量,在确定x的条件下,对应的y值并不确定,而是形成一个分布。当X 取确定的值时,Y的数学期望值也就确定了,因此Y的数学期望是x的函数,即 E(Y|X=x)=f(x) (2-1-10) 这里方程f(x)称为Y对X的回归方程。如果回归方程是线性的,则 E(Y|X=x)=α+βx (2-1-11) 或 Y=α+βx+ε(2-1-12) 其中 ε―随机误差 从样本中我们只能得到关于特征数的估计,并不能精确地求出特征数。因此只能用f(x)的估计 式来取代(2-1-11)式,用参数a和b分别作为α和β的估计量。那么,这两个估计量是否能够满足要求呢? 1. 无偏性 把(x,y)的n组观测值作为一个样本,由样本只能得到总体参数α和β的估计值。可以证明,当满足下列条件: (1)(x i,y i)是n个相互独立的观测值 (2)εi是服从分布的随机变量 则由最小二乘法得到的a与b分别是总体参数α和β的无偏估计,即 E(a)= α E(b)=β 由此可推知 E()=E(y)

一元线性回归分析的结果解释

一元线性回归分析的结果解释 1.基本描述性统计量 分析:上表是描述性统计量的结果,显示了变量y和x的均数(Mean)、标准差(Std. Deviation)和例数(N)。 2.相关系数 分析:上表是相关系数的结果。从表中可以看出,Pearson相关系数为0.749,单尾显著性检验的概率p值为0.003,小于0.05,所以体重和肺活量之间具有较强的相关性。 3.引入或剔除变量表

分析:上表显示回归分析的方法以及变量被剔除或引入的信息。表中显示回归方法是用强迫引入法引入变量x的。对于一元线性回归问题,由于只有一个自变量,所以此表意义不大。 4.模型摘要 分析:上表是模型摘要。表中显示两变量的相关系数(R)为0.749,判定系数(R Square)为0.562,调整判定系数(Adjusted R Square)为0.518,估计值的标准误差(Std. Error of the Estimate)为0.28775。 5.方差分析表 分析:上表是回归分析的方差分析表(ANOVA)。从表中可以看出,回归的均方(Regression Mean Square)为1.061,剩余的均方(Residual Mean Square)为0.083,F检验统计量的观察值为12.817,相应的概率p 值为0.005,小于0.05,可以认为变量x和y之间存在线性关系。

6.回归系数 分析:上表给出线性回归方程中的参数(Coefficients)和常数项(Constant)的估计值,其中常数项系数为0(注:若精确到小数点后6位,那么应该是0.000413),回归系数为0.059,线性回归参数的标准误差(Std. Error)为0.016,标准化回归系数(Beta)为0.749,回归系数T检验的t统计量观察值为3.580,T检验的概率p值为0.005,小于0.05,所以可以认为回归系数有显著意义。由此可得线性回归方程为: y=0.000413+0.059x 7.回归诊断 分析:上表是对全部观察单位进行回归诊断(Casewise Diagnostics-all cases)的结果显示。从表中可以看出每一例的标准

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

简单线性相关(一元线性回归分析)..

第十三讲 简单线性相关(一元线性回归分析) 对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。 一、一元线性回归模型及其对变量的要求 (一)一元线性回归模型 1、一元线性回归模型示例 两个变量之间的真实关系一般可以用以下方程来表示: Y=A + BX + ε 方程中的A 、B 是待定的常数,称为模型系数,ε是残差,是以X 预测Y 产生的误差。 两个变量之间拟合的直线是: y a bx ∧ =+ y ∧ 是 y 的拟合值或预测值,它是在X 条件下Y 条件均值的估计 a 、 b 是回归直线的系数,是总体真实直线A 、B 的估计值,a 即 constant 是截距,当自变量的值为0时,因变量的值。 b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。 可以对回归方程进行标准化,得到标准回归方程: y x ∧ =β β 为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位(Z X X S j j j = -),因变量Y 的标准差的平均变化。

由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y的重要性。 (二)对变量的要求:回归分析的假定条件 回归分析对变量的要求是: 自变量可以是随机变量,也可以是非随机变量。自变量X值的测量可以认为是没有误差的,或者说误差可以忽略不计。 回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。 (三)数据要求 模型中要求一个因变量,一个或多个自变量(一元时为1个自变量)。 因变量:要求间距测度,即定距变量。 自变量:间距测度(或虚拟变量)。 二、在对话框中做一元线性回归模型 例1:试用一元线性回归模型,分析大专及以上人口占6岁及以上人口的比例(edudazh)与人均国内生产总值(agdp)之间的关系。 本例使用的数据为st2004.sav,操作步骤及其解释如下: (一)对两个变量进行描述性分析 在进行回归分析以前,一个比较好的习惯是看一下两个变量的均值、标准差、最大值、最小值和正态分布情况,观察数据的质量、缺少值和异常值等,缺少值和异常值经常对线性回归分析产生重要影响。最简单的,我们可以先做出散点图,观察变量之间的趋势及其特征。通过散点图,考察是否存在线性关系,如果不是,看是否通过变量处理使得能够进行回归分析。如果进行了变量转换,那么应当重新绘制散点图,以确保在变量转换以后,线性趋势依然存在。 打开st2004.sav数据→单击Graphs → S catter →打开Scatterplot 对话框→单击Simple →单击 Define →打开 Simple Scatterplot对话框→点选 agdp到 Y Axis框→点选 edudazh到 X Aaxis框内→单击 OK 按钮→在SPSS的Output窗口输出所需图形。 图12-1 大专及以上人口占6岁及以上人口比例与人均国内生产总值的散点图

非线性回归分析(教案)

1.3非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的/y 个 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为 0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数 x 与增大的容积y 之间的关系.

一元线性回归,方差分析,显著性分析

一元线性回归分析及方差分析与显著性检验 某位移传感器的位移x 与输出电压y 的一组观测值如下:(单位略) 设x 无误差,求y 对x 的线性关系式,并进行方差分析与显著性检验。 (附:F 0。10(1,4)=4.54,F 0。05(1,4)=7.71,F 0。01(1,4)=21.2) 回归分析是研究变量之间相关关系的一种统计推断法。 一. 一元线性回归的数学模型 在一元线性回归中,有两个变量,其中 x 是可观测、可控制的普通变量,常称它为自变量或控制变量,y 为随机变量,常称其为因变量或响应变量。通过散点图或计算相关系数判定y 与x 之间存在着显著的线性相关关系,即y 与x 之间存在如下关系: y =a +b ?x +ε (1) 通常认为ε~N (0,δ2)且假设δ2与x 无关。将观测数据(x i ,y i ) (i=1,……,n)代入(1)再注意样本为简单随机样本得: {y i =a +b ?x i +εi ε1?εn 独立同分布N (0,σ2) (2) 称(1)或(2)(又称为数据结构式)所确定的模型为一元(正态)线性回归模型。 对其进行统计分析称为一元线性回归分析。 模型(2)中 EY= a +b ?x ,若记 y=E(Y),则 y=a+bx,就是所谓的一元线性回归方程,其图象就是回归直线,b 为回归系数,a 称为回归常数,有时也通称 a 、b 为回归系数。 设得到的回归方程 bx b y +=0? 残差方程为N t bx b y y y v t t t i ,,2,1,?0Λ=--=-= 根据最小二乘原理可求得回归系数b 0和b 。 对照第五章最小二乘法的矩阵形式,令 ?????? ? ??=??? ? ??=??? ???? ??=??????? ??=N N N v v v V b b b x x x X y y y Y M M M M 2102121?111 则误差方程的矩阵形式为 V b X Y =-? 对照X A L V ?-=,设测得值 t y 的精度相等,则有

非线性回归分析

非线性回归问题, 知识目标:通过典型案例的探究,进一步学习非线性回归模型的回归分析。 能力目标:会将非线性回归模型通过降次和换元的方法转化成线性化回归模型。 情感目标:体会数学知识变化无穷的魅力。 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的 过程中寻找更好的模型的方法. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学方式:合作探究 教学过程: 一、复习准备: 对于非线性回归问题,并且没有给出经验公式,这时我们可以画出已知数据的散点图,把它与必修模块《数学1》中学过的各种函数(幂函数、指数函数、对数函数等)的图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量代换,把问题转化为线性回归问题,使其得到解决. 二、讲授新课: 1. 探究非线性回归方程的确定: 1. 给出例1:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间 2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. ① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模. ② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用指数函数模型来拟合这两个变量. ③ 在上式两边取对数,得21ln ln y c x c =+ ,再令ln z y =,则21ln z c x c =+, 可以用线性回归方程来拟合. ④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-$,因此红铃虫的产卵数对温度的非线性回归方程为$0.272 3.843x y e -=. ⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 三、合作探究 例 2.:炼钢厂出钢时所用的盛钢水的钢包,在使用过程中,由于钢液及炉渣对包衬耐火材料的侵蚀,使其容积不断增大,请根据表格中的数据找出使用次数x 与增大的容积y 之间的关系.

一元线性回归分析教程文件

一元线性回归分析论 文

一元线性回归分析的应用 ——以微生物生长与温度关系为例 摘要:一元线性回归预测法是分析一个因变量与一个自变量之间的线性关系的预测方法。应用最小二乘法确定直线,进而运用直线进行预测。本文运用一元线性回归分析的方法,构建模型并求出模型参数,对分析结果的显著性进行了假设检验,从而了微生物生长与温度间的关系。 关键词:一元线性回归分析;最小二乘法;假设检验;微生物;温度 回归分析是研究变量之间相关关系的统计学方法,它描述的是变量间不完全确定的关系。回归分析通过建立模型来研究变量间的这种关系,既可以用于分析和解释变量间的关系,又可用于预测和控制,进而广泛应用于自然科学、工程技术、经济管理等领域。本文尝试用一元线性回归分析方法为微生物生长与温度之间的关系建模,并对之后几年的情况进行分析和预测。 1 一元线性回归分析法原理 1.1 问题及其数学模型 一元线性回归分析主要应用于两个变量之间线性关系的研究,回归模型模型为εββ++=x Y 10,其中10,ββ为待定系数。实际问题中,通过观测得到n 组数据(X i ,Y i )(i=1,2,…,n ),它们满足模型i i i x y εββ++=10(i=1,2,…,n )并且通常假定E(εi )=0,V ar (εi )=σ2各εi 相互独立且服从正态分布。回归分析就是根据样 本观察值寻求10,ββ的估计10?,?ββ,对于给定x 值, 取x Y 10?? ?ββ+=,作为x Y E 10)(ββ+=的估计,利用最小二乘法得到10,ββ的估计10?,?ββ,其中 ??? ? ??????? ??-???? ??-=-=∑ ∑ ==n i i n i i i x n x xy n y x x y 122111 0???βββ。

实验六-用SPSS进行非线性回归分析

实验六用SPSS进行非线性回归分析 例:通过对比12个同类企业的月产量(万台)与单位成本(元)的资料(如图1),试配合适当的回归模型分析月产量与单位成本之间的关系

图1原始数据和散点图分析 一、散点图分析和初始模型选择 在SPSS数据窗口中输入数据,然后插入散点图(选择Graphs→Scatter命令),由散点图可以看出,该数据配合线性模型、指数模型、对数模型和幂函数模型都比较合适。进一步进行曲线估计:从Statistic下选Regression菜单中的Curve Estimation命令;选因变量单位成本到Dependent框中,自变量月产量到Independent框中,在Models框中选择Linear、Logarithmic、Power和Exponential四个复选框,确定后输出分析结果,见表1。 分析各模型的R平方,选择指数模型较好,其初始模型为 但考虑到在线性变换过程可能会使原模型失去残差平方和最小的意义,因此进一步对原模型进行优化。 模型汇总和参数估计值 因变量: 单位成本 方程模型汇总参数估计值 R 方 F df1 df2 Sig. 常数b1 线性.912 104.179 1 10 .000 158.497 -1.727 对数.943 166.595 1 10 .000 282.350 -54.059 幂.931 134.617 1 10 .000 619.149 -.556 指数.955 212.313 1 10 .000 176.571 -.018 自变量为月产量。 表1曲线估计输出结果

二、非线性模型的优化 SPSS提供了非线性回归分析工具,可以对非线性模型进行优化,使其残差平方和达到最小。从Statistic下选Regression菜单中的Nonlinear命令;按Paramaters按钮,输入参数A:176.57和B:-.0183;选单位成本到Dependent框中,在模型表达式框中输入“A*EXP(B*月产量)”,确定。SPSS输出结果见表2。 由输出结果可以看出,经过6次模型迭代过程,残差平方和已有了较大改善,缩小为568.97,误差率小于0.00000001, 优化后的模型为: 迭代历史记录b 迭代数a残差平方和参数 A B 1.0 104710.523 176.570 -.183 1.1 5.346E+133 -3455.813 2.243 1.2 30684076640.87 3 476.032 .087 1.3 9731 2.724 215.183 -.160 2.0 97312.724 215.183 -.160 2.1 83887.036 268.159 -.133 3.0 83887.036 268.159 -.133 3.1 59358.745 340.412 -.102 4.0 59358.745 340.412 -.102 4.1 26232.008 38 5.967 -.065 5.0 26232.008 385.967 -.065 5.1 7977.231 261.978 -.038 6.0 797 7.231 261.978 -.038 6.1 1388.850 153.617 -.015 7.0 1388.850 153.617 -.015 7.1 581.073 180.889 -.019 8.0 581.073 180.889 -.019 8.1 568.969 182.341 -.019 9.0 568.969 182.341 -.019 9.1 568.969 182.334 -.019 10.0 568.969 182.334 -.019 10.1 568.969 182.334 -.019 导数是通过数字计算的。 a. 主迭代数在小数左侧显示,次迭代数在小数右侧显示。 b. 由于连续残差平方和之间的相对减少量最多为SSCON = 1.000E-008,因此在 22 模型评估和 10 导数评估之后,系统停止运行。

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模

多元线性回归模型案例

我国农民收入影响因素的回归分析 本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。?农民收入水平的度量常采用人均纯收入指标。影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。但可以归纳为以下几个方面:一是农产品收购价格水平。二是农业剩余劳动力转移水平。三是城市化、工业化水平。四是农业产业结构状况。五是农业投入水平。考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。 一、计量经济模型分析 (一)、数据搜集 根据以上分析,我们在影响农民收入因素中引入7个解释变量。即:2x -财政用于农业的支出的比重,3x -第二、三产业从业人数占全社会从业人数的比重,4x -非农村人口比重,5x -乡村从业人员占农村人口的比重,6x -农业总产值占农林牧总产值的比重,7x -农作物播种面积,8x —农村用电量。

资料来源《中国统计年鉴2006》。 (二)、计量经济学模型建立 我们设定模型为下面所示的形式: 利用Eviews 软件进行最小二乘估计,估计结果如下表所示: DependentVariable:Y Method:LeastSquares Sample: Includedobservations:19 Variable Coefficient t-Statistic Prob. C X1 X3 X4 X5 X6 X7 X8 R-squared Meandependentvar AdjustedR-squared 表1最小二乘估计结果 回归分析报告为: () ()()()()()()()()()()()()()()() 2345678 2? -1102.373-6.6354X +18.2294X +2.4300X -16.2374X -2.1552X +0.0100X +0.0634X 375.83 3.7813 2.066618.37034 5.8941 2.77080.002330.02128 -2.933 1.7558.820900.20316 2.7550.778 4.27881 2.97930.99582i Y SE t R ===---=230.99316519 1.99327374.66 R Df DW F ====二、计量经济学检验 (一)、多重共线性的检验及修正 ①、检验多重共线性 (a)、直观法 从“表1最小二乘估计结果”中可以看出,虽然模型的整体拟合的很好,但是x4x6

一元线性回归分析法

一元线性回归分析法 一元线性回归分析法是根据过去若干时期的产量和成本资料,利用最小二乘法“偏差平方和最小”的原理确定回归直线方程,从而推算出a(截距)和b(斜率),再通过y =a+bx 这个数学模型来预测计划产量下的产品总成本及单位成本的方法。 方程y =a+bx 中,参数a 与b 的计算如下: y b x a y bx n -==-∑∑ 222 n xy x y xy x y b n x (x)x x x --==--∑∑∑∑∑∑∑∑∑ 上式中,x 与y 分别是i x 与i y 的算术平均值,即 x =n x ∑ y =n y ∑ 为了保证预测模型的可靠性,必须对所建立的模型进行统计检验,以检查自变量与因变量之间线性关系的强弱程度。检验是通过计算方程的相关系数r 进行的。计算公式为: 22xy-x y r= (x x x)(y y y) --∑∑∑∑∑∑ 当r 的绝对值越接近于1时,表明自变量与因变量之间的线性关系越强,所建立的预测模型越可靠;当r =l 时,说明自变量与因变量成正相关,二者之间存在正比例关系;当r =—1时,说明白变量与因变量成负相关,二者之间存在反比例关系。反之,如果r 的绝对值越接近于0,情况刚好相反。 [例]以表1中的数据为例来具体说明一元线性回归分析法的运用。 表1: 根据表1计算出有关数据,如表2所示: 表2:

将表2中的有关数据代入公式计算可得: 1256750x == (件) 2256 1350y ==(元) 1750 9500613507501705006b 2=-??-?=(元/件) 100675011350a =?-=(元/件) 所建立的预测模型为: y =100+X 相关系数为: 9.011638 10500])1350(3059006[])750(955006[1350 750-1705006r 22==-??-???= 计算表明,相关系数r 接近于l ,说明产量与成本有较显著的线性关系,所建立的回归预测方程较为可靠。如果计划期预计产量为200件,则预计产品总成本为: y =100+1×200=300(元)

计量第3章(7节)非线性回归实例

非线性回归实例 例1:此模型用来评价台湾农业生产效率。用台湾1958-1972年农业生产总值(Y t ),劳动力(X 1t ),资本投入(X 2t )数据为样本得到估计模型: = -3.4 + 1.50 LnX 1t + 0.49 LnX 2t (2.78) (4.80) R 2 = 0.89, F = 48.45 还原后得, = 0.713X 1t 1.50 X 2t 0.49 因为1.50 + 0.49 = 1.99,所以,此生产函数属规模报酬递增函数。当劳动力和资本投入都增加1%时,产出增加近2%。 例2:用天津市工业生产总值(Y t ),职工人数(L t ),固定资产净值与流动资产平均余额(K t )数据 (1949-1997年) 为样本得估计模型如下: Ln Y t = 0.7272 + 0.2587 Ln L t + 0.6986 LnK t (3.12) (3.08) (18.75) R 2 = 0.98, s.e. = 0.17, DW = 0.42, F = 1381.4 因为0.2587 + 0.6986 = 0.9573,所以此生产函数基本属于规模报酬不变函数。 例3: 中国铅笔需求预测模型 中国从上个世纪30年代开始生产铅笔。1985年全国有22个厂家生产铅笔。产量居世界首位(33.9亿支),占世界总产量的1/3。改革开放以后,铅笔生产增长极为迅速。1979-1983年平均年增长率为8.5%。铅笔销售量时间序列见图1。1961-1964年的销售量平稳状态是受到了经济收缩的影响。文革期间销售量出现两次下降,是受到了当时政治因素的影响。1969-1972年的增长是由于一度中断了的中小学教育逐步恢复的结果。1977-1978年的增长是由于高考正式恢复的结果。1981年中国开始生产自动铅笔,对传统铅笔市场冲击很大。1979-1985年的缓慢增长是受到了自动铅笔上市的影响。 初始确定的影响铅笔销量的因素有全国人口、各类在校人数、设计

非线性回归分析

非线性回归分析(转载) (2009-10-23 08:40:20) 转载 分类:Web分析 标签: 杂谈 在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。 SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。 应用实例 研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下: 表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率 温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型: 本例子数据保存在DATA6-4.SAV。 1)准备分析数据 在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。 或者打开已经存在的数据文件(DATA6-4.SAV)。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1

所示的线回归对话窗口。 图5-1 Nonlinear非线性回归对话窗口 3) 设置分析变量 设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。本例子选“发育速率[v]”变量为因变量。 4) 设置参数变量和初始值 单击“Parameters”按钮,将打开如图6-14所示的对话框。该对话框用于设置参数的初始值。 图5-2 设置参数初始值

第二节 一元线性回归分析

第二节一元线性回归分析 本节主要内容: 回归是分析变量之间关系类型的方法,按照变量之间的关系,回归分析分为:线性回归分析和非线性回归分析。本节研究的是线性回归,即如何通过统计模型反映两个变量之间的线性依存关系。 回归分析的主要内容: 1.从样本数据出发,确定变量之间的数学关系式; 2.估计回归模型参数; 3.对确定的关系式进行各种统计检验,并从影响某一特定变量的诸多变量中找出 影响显著的变量。 一、一元线性回归模型: 一元线性模型是指两个变量x、y之间的直线因果关系。 理论回归模型: 理论回归模型中的参数是未知的,但是在观察中我们通常用样本观察值估计参数值,通常用分别表示的估计值,即称回归估计模型: 回归估计模型: 二、模型参数估计: 用最小二乘法估计: 【例3】实测某地四周岁至十一岁女孩的七个年龄组的平均身高(单位:厘米)如下表所示

某地女孩身高的实测数据 建立身高与年龄的线性回归方程。 根据上面公式求出b0=80.84,b1=4.68. 三.回归系数的含义 (2)回归方程中的两个回归系数,其中b0为回归直线的启动值,在相关图上变现为x=0时,纵轴上的一个点,称为y截距;b1是回归直线的斜率,它是自变量(x)每变动一个单位量时,因变量(y)的平均变化量。 (3)回归系数b1的取值有正负号。如果b1为正值,则表示两个变量为正相关关系,如果b1为负值,则表示两个变量为负相关关系。 [例题·判断题]回归系数b的符号与相关系数r的符号,可以相同也可以不同。() 答案:错误 解析:回归系数b的符号与相关系数r的符号是相同的 [例题·判断题]在回归直线y c=a+bx,b<0,则x与y之间的相关系数() a.r=0 b.r=1 c.0

非线性回归分析常见曲线及方程)

非线性回归分析 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S 型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的 回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析 常见非线性规划曲线 1. 双曲线1b a y x =+ 2. 二次曲线 3. 三次曲线 4. 幂函数曲线 5. 指数函数曲线(Gompertz) 6. 倒指数曲线y=a /e b x 其中a>0, 7. S 型曲线(Logistic) 1e x y a b -=+ 8. 对数曲线 y=a+b log x,x >0 9. 指数曲线y =a e bx 其中参数a >0 1.回归: (1)确定回归系数的命令 [beta ,r ,J]=nlinfit (x,y,’model’,beta0) (2)非线性回归命令:nlintool (x ,y ,’model’, beta0,alpha ) 2.预测和预测误差估计: [Y ,DELTA]=nlpredci (’model’, x,beta ,r ,J ) 求nlinfit 或lintool 所得的回归函数在x 处的预测值Y 及预测值的显著性水平为1-alpha 的置信区间Y ,DELTA. 例2 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s 关于t 的回归方程2?ct bt a s ++=. 解: 1. 对将要拟合的非线性模型y=a /e b x ,建立M 文件volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); 2.输入数据: x=2:16; y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];

matlab多元非线性回归及显着性分析(实例)

matlab多元非线性回归及显著性分析 给各位高手:小弟有一些数据需要回归分析(非线性)及显著性检验(回归模型,次要项,误差及失拟项纯误差,F值和P值),求大侠帮助,给出程序,不胜感激。 模型: DA TA=... %DA TA前三列是影响因子,第四列为响应值 [2 130 75 48.61; 2 110 75 56.43; 2 130 45 61.32; 2 110 45 65.28; 1 110 45 55.80; 1 130 75 45.65; 1 110 75 50.91; 1 130 45 67.94; 1.5 120 60 74.15; 1.5 120 60 71.28; 1.5 120 60 77.95; 1.5 120 60 74.16; 1.5 120 60 75.20; 1.5 120 85 35.65; 1.5 140 60 48.66; 1.5 120 30 74.10; 1.5 100 60 6 2.30; 0.5 120 60 66.00; 2.5 120 60 75.10]; 回归分析过程: (1)MATLAB编程步骤1:首先为非线性回归函数编程,程序存盘为user_function.m function y=user_function(beta,x) b0 = beta(1); b1 = beta(2); b2 = beta(3); b3 = beta(4); x0 = x(:,1); x1 = x(:,2); x2 = x(:,3); x3 = x(:,4); y=b0*x0+b1*x1.^2+b2*x2.^2+b3*x3.^2; (2)MATLAB编程步骤2:编写非线性回归主程序,程序运行时调用函数user_function x=[1 2 130 75 48.61;

相关文档
相关文档 最新文档