文档库 最新最全的文档下载
当前位置:文档库 › 模电multisim仿真设计

模电multisim仿真设计

模电multisim仿真设计
模电multisim仿真设计

模拟电子技术基础课程设计说明书题目: Multisim仿真应用

学生:明

学号:1

院(系):理学院

专业:应用物理学

指导教师:冠强

2014 年 6 月 10日

目录

第0节背景 (1)

第1节Multisim应用举例——二极管的特性的研究 (1)

第2节 Multisim应用举例——Rb变化对Q点和电压放大倍数的影响 (2)

第3节 Multisim应用举例——直接耦合多级放大电路的调试 (4)

第4节 Multisim应用举例——消除互补输出级交越失真方法的研究 (6)

第5节 Multisim应用举例——静态工作点稳定电路频率影响的研究 (8)

第6节 Multisim应用举例——交流负反馈对放大倍数稳定性的影响 (10)

设计体会及今后改进意见 (12)

参考文献 (12)

第0节背景

Multisim是一个完整的设计工具系统,提供了一个非常大的元件数据库,并提供原理图输入接口、全部的数模Spice仿真功能、VHDL设计接口与仿真功能、 FPGA/CPLD综合、RF设计能力和后处理功能还可以进行从原理图到PCB布线工具包(如:Ultiboard)的无缝隙数据传输。

随着计算机的飞速发展,以计算机辅助设计为基础的电子设计自动化技术(EDA)已经成为电子学领

域的重要学科。EDA工具使电子电路和电子系统的设计产生了革命性的变化,它摒弃了靠硬件调试

来大道设计目标的繁琐过程,实现了硬件设计软件化。

Multisim具有齐全的元器件模型参数库和比较齐全的仪器仪表库,可模拟实验室的操作进行

各种实验。学习Multisim可以提高仿真能力、综合能力和设计能力,还可进一步提高实践能力。

第1节Multisim应用举例——二极管的特性的研究

1.1 题目

研究二极管对直流量和交流量表现的不同特点。

1.2 仿真电路

仿真电路如图1-1所示。因为只有在低频小信号下二极管才能等效成一个电阻所以图流信号的频率为1kHz、数值为10mV(有效值)。由于交流信号很小,输出电压不失真故可以认为直流电压表(测平均值)的读书是电阻上直流电压值。

(a)(b)

图1-1二极管静态和动态电压的测试

(a)直流电源电压为1V时的情况(b)直流电源电压为4V时的情况

1.3仿真容

(1)在直流电流不同时二极管管压降的变化。利用直流电压表测电阻上的电压,从而得到二极管管压降。

(2)在直流电流不同时二极管交流等效电阻的变化。利用示波器测的电阻上交流电压的峰值,从而得到二极管交流电压的峰值。

1.4仿真结果

仿真结果如表1-1所示,表流电压均为峰值

表1-1 仿真数据

直流电源V1/V 交流信号

V2/V

R直流电压表读数

UR

R交流电压

Ur/mV

二极管直流电压

UD/V

二极管交流电压

Ud/mV

1 10 353.847mV 9.32

2 0.65V 0.678

4 10 9.920mV 9.920 0.704V 0.080 1.5结论

(1)比较直流电流在1V和4V两种情况下二极管的直流管压降可知,二极管的直流电流越大管压降越大,直流管压降不是常量。

(2)比较直流电源在1V和4V两种情况下二极管的直流管的直流管压降可知,二极管的直流电流越大,其交流管压降越小,说明随着静态电流的增大,动态电阻将减小;两种情况下的交流压降均接近输入交流电压值,说明二极管动态电阻很小。

第2节Multisim应用举例——Rb变化对Q点和电压放大倍数的影响

2.1题目

研究Rb变化对Q点和的影响。

2.2仿真电路

仿真电路如图2-1所示。晶体管采用FMMT5179,其余参数BF = 133,RB = 5Ω。

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

Multisim课程设计正弦波发生器

东北石油大学MULTISIM电气应用训练 2012年3 月01日

MULTISIM电气应用训练任务书 课程MULTISIM电气应用训练 题目Multisim的正弦波振荡电路仿真 专业自动化姓名刘月莹学号0906******** 主要内容: 以文氏电桥正弦波振荡电路仿真为例,分析了基本及稳幅文氏电桥正弦波发生器的特点,并采用Multisim 10软件对文氏电桥正弦波发生器进行了仿真,仿真结果与理论分析结果一致。软件仿真在课堂教学、电路设计、及实验教学中的应用,使得课堂教学信息量饱满,设计、实验变得轻松,使教学的效果得到提升,在教学领域具有重要的推广、应用价值。 主要参考资料: [1] 黄智伟.全国大学生电子设计竞赛电路设计[J].北京:北京航空航天大学出版社,2006. [2] 康华光.电子技术基础[J].北京:高等教育出版社,2001. [3] 张凤言.电子电路基础[M].北京:高等教育出版社,1995. [4] 杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2002. [5] 岳怡.数字电路与数字电子技术[J].西安工业大学出版社,2004. [6] 路勇.电子电路实验及仿真[M].清华大学出版社,2004. [7] 张俊漠.单片机中级教程——原理与应用[M].北京航天航空大学出版社,2006. 完成期限2012.2.20——2012.3.1 指导教师李宏玉刘超 专业负责人 2012年3 月1 日

目录 1 任务和要求 (1) 2 稳幅文氏电桥正弦波发生器 (5) 3文氏电桥正弦波发生器电路仿真 (5) 4设计总结 (6) 参考文献 (6)

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班 MUltiSim软件使用 一、实验目的 1、掌握MUltiSim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、MUItiSim软件介绍 MUItiSim是美国国家仪器(NI)有限公司推出的以WindOWS为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用MUItiSinl交互式地搭建电路原理图,并对电路进行仿真。MUltiSiIn提炼了SPICE 仿真的复杂内容,这样工程师无需懂得深入的SPlCE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过MUItiSiIn和,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到和测试这样一个完整的综合设计流程。 实验名称:

仪器放大器设计与仿真 二、实验目的 1、 掌握仪器放大器的设计方法 2、 理解仪器放大器对共模信号的抑制能力 3、 熟悉仪器放大器的调试功能 4、 掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏 表信 号发生器等虚拟仪器的使用 三、设计实验电路图: 四、测量实验结果: 出为差模放大为399mvo 五、实验心得: 应用MUIti S im 首先要准备好器件的PSPiCe 模型,这是最重要的,没有这个 东西免谈,当然SPiCe 高手除外。下面就可以利用MUItiSinl 的元件向导功 能制作 差模分别输入信号InW 第二条线与第三条线: 共模输入2mv 的的电压,输出为2mv 的电压。 第一条线输

Multisim课程设计报告

Multisim课程设计报告 课程名称:multisim电路仿真设计题目:病房呼叫系统设计 学号:王后影110914033 专业班级:11电信本(一)班

指导老师:宇安 病房呼叫系统的设计 一.实验目的 1.掌握数字电路课程所学的理论知识以及数字电子技术在生活中的应用。2.熟悉几种常用集成数字芯片的功能和应用,并掌握其工作原理,进一步学会使用其进行电路设计。 3.进一步深化对电子技术的了解,强化实际动手操作能力以及发现问题解决问题的方法。 4.培养认真严谨的工作作风和实事的工作态度。 5.数电课程实验是大学中为我们提供的一次动手实践的机会,增强实际动手操作与研发的能力 二.实验原理 要求当一号病房的按钮按下时,无论其他病室的按钮是否按下,护士值班室的数码显示“1”,即“1”号病室的优先级别最高,其他病室的级别依次递减,7号病室级别最低,当7个病房中有若干个请求呼叫开关合上时,护士值班室的数码管所显示的即为当前优先级别最高的病室呼叫,同时在有呼叫的病房门口的指示灯闪烁。待护士按优先级处理完后,将该病房的呼叫开关打开,再去处理下一个相对最高优先级的病房的事务。全部处理完毕后,即没有病室呼叫,此时值班室的数码管显示“0”。

电路设计流程图 本例在设计中采用了8/3线优先编码器74LS148,74LS148有8个数据端(0~7),3个数据输出端(A0~A1),1个使能输入端(EI,低电平有效),两个输出端(GS,E0)。数据输出端A~C根据输入端的选通变化,分别输出000~111这0~7二进制码,经逻辑组合电路与74LS47D BCD-七段译码器/驱动器的数据输入端(A~C)相连,最终实现设计要求的电路功能,电路如图所示。电路中与门74LS08DD的输出端(3、6、8)与74LS147D BCD-七段译码器/驱动器的数据输入端的数据端(A、B、C)连接。 此例仿真可在Multisim的主界面下,启动仿真开关即可进行电路的仿真。K1~K7为病房呼叫开关,在其下方的Key=1,...Key=7分别表示按下键盘1~7数字键,即可控制相应开关的通道。L1~L7为模拟病房门口的呼叫指示灯,当呼叫开关K1~K7任何开关被按下时,相应开关上的指示灯即闪烁发光,同时护士值班室的数码管即显示相对最高优先级别的病房号,而且蜂鸣器SP会令计算机上的扬声器发声。

Multisim三相电路仿真实验

实验六 三相电路仿真实验 一、实验目的 1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真; 2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结; 3、 加深对三相四线制供电系统中性线作用的理解。 4、 掌握示波器的连接及仿真使用方法。 5、 进一步提高分析、判断和查找故障的能力。 二、实验仪器 1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求 1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。 3.仿真分析三相电路的相关内容。 4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明 1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。这种联接方式的 特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。 2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。 3、电流、电压的“线量”与“相量”关系 测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。画仿真图时要注意。 负载对称星形联接时,线量与相量的关系为: (1) P L U U 3= (2)P L I I = 负载对称三角形联接时,线量与相量的关系为: (1)P L U U = (2)P L I I 3= 4、星形联接时中性线的作用 三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。

如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。 五、实验内容及参考实验步骤 (一)、建立三相测试电路如下: 图1 三相负载星形联接实验电路图 1.接入示波器:测量ABC三相电压波形。并在下表中绘出图形。 Timebase:_________/DIV 三相电压相位差:φ=__________。 (二)、三相对称星形负载的电压、电流测量 (1)使用Multisim软件绘制电路图1,图中相电压有效值为220V。 (2)正确接入电压表和电流表,J1打开,J2 、J3闭合,测量对称星形负载在三相四线制(有中性线)时各线电压、相电压、相(线)电流和中性线电流、中性点位移电压。记入表1中。 (3)打开开关J2,测量对称星形负载在三相三线制(无中性线)时电压、相电压、相(线)电流、中性线电流和中性点位移电压,记入表1中。 表1 三相对称星形负载的电压、电流 (4)根据测量数据分析三相对称星形负载联接时电压、电流“线量”与“相量”的关系。 结论: (三)、三相不对称星形负载的电压、电流测量 (1)正确接入电压表和电流表,J1闭合,J2 、J3闭合,测量不对称星形负载在三相

最详细最好的Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

实验1:电路仿真工具multisim的基本应用

实验一电路仿真工具Multisim的基本应用 一.实验目的 1.学会电路仿真工具Multisim的基本操作。 2.掌握电路图编辑法,用Multisim对电路进行仿真。 二、实验仪器 PC机、Multisim软件 三、实验原理 MultiSim 7 软件是加拿大Electronics Workbench 公司推出的用于电子电路仿真的虚拟电子工作台软件。它可以对模拟电路、数字电路或混合电路进行仿真。该软件的特点是采用直观的图形界面,在计算机屏幕上模仿真实实验室的工作台,用屏幕抓取的方式选用元器件,创建电路,连接测量仪器。软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 1. Multisim 7主窗口 2. 常用Multisim7 设计工具栏 元件编辑器按钮--用以增加元件仿真按钮--用以开始、暂停或结束电路仿真。 分析图表按钮--用于显示分析后的图表结果分析按钮--用以选择要进行的分析。 3.元件工具栏(主窗口左边两列) 其中右边一列绿色的为常用元器件(且为理想模型)。左边一列包含了所有元器件(包括理想模型和类实际元器件模型)。在电路分析实验中常用到的器件组包括以下三个组(主界面左边第二列):

电源组信号源基本器件组 (1)电源(点击电源组) 交流电源直流电源接地 (2)基本信号源 交流电流源交流电压源 (3)基本元器件(点击基本器件组) 电感电位器电阻可变电容电容 4.常用虚拟仪器(主窗口右侧一列) ⑴数字万用表 数字万用表的量程可以自动调整。双击虚拟仪器可进行参数设定。下图是其图标和面板: 其电压、电流档的内阻,电阻档的电流和分贝档的标准电压值都可以任意设置。从打开的面板上选Setting按钮可以设置其参数。 (2)信号发生器 信号发生器可以产生正弦、三角波和方波信号,其图标和面板如下图所示。可调节方波和三角波的占空比。双击虚拟仪器可进行参数设定。 (3)示波器 在Multisim 7中提供了两种示波器:通用双踪示波器和4通道示波器。双击虚拟仪器可进行参数设定。这里仅介绍通用双踪示波器。其图标和面板如下图所示。

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

Multisim电路仿真应用

Multisim电路仿真及应用 仿真实训一:彩灯循环控制器的设计与仿真分析变换的彩灯已经成为人们日常生活不可缺少的点缀。那么这些变化的灯光是如何控制的呢?这就是我们下面要讨论的课题—彩灯循环控制电路。 电路设计分析彩灯循环控制技术指标: 1.彩灯能够自动循环点亮。 2.彩灯循环显示且频率快慢可调。 3.该控制电路具有8路以上输出。 仿真实训二:交通信号灯控制系统的设计与仿真分析十字路口的交通信号灯是我们每天出行时都会遇到的,信号灯指挥着行人和各种车辆安全有序的通行。实现红、绿灯的自动控制是城市交通管理现代化的重要课题,合适的信号灯指挥系统可以提高城市交通的效率。下面我们以该课题为例进行设计与仿真分

析。 电路设计分析交通信号灯控制系统的技术指标: 1.主、支干道交替通行,主干道每次放行30s,支干道每次放行20s。 2.绿灯亮表示可以通行,红灯亮表示禁止通行。 3.每次绿灯变红灯时,黄灯先亮5s(此时另一干道上的红灯不变)。 4.十字路口要有数字显示,作为等候时间提示。要求主、支干道通行时间及黄灯亮的时间均以秒为单位作减计数。 5.在黄灯亮时,原红灯按1HZ的频率闪烁。 6.要求主、支干道通行时间及黄灯亮的时间均可在0-99s任意设定。 仿真实训三:篮球比赛24秒倒计时器的设计与仿真分析电路设计分析: 计时器在许多领域均有普遍的应用,篮球比赛中除了有总时间倒计时外,为了加快比赛节奏,新的规则还要求进攻方在24秒有一次投篮动作,否则视为违规。 本设计题目“篮球比赛24秒倒计时器”从数字电路角度讨论,实际上就是一个二十四进制递减的计数器。 电路设计技术指标: 1.能完成24秒倒计时功能。 2.完成计数器的复位、启动计数、暂停/继续计数、声光报警等功能。

数电课程设计基于Multisim的乒乓球游戏机控制电路设计

课程设计(论文) 课程名称:数字电子技术基础 题目:基于Multisim的乒乓球游戏机控制电路设计院(系): 专业班级: 姓名: 学号: 指导教师:

任务书 设计题目:基于Multisim乒乓球游戏机的控制设计电路 课题目的: 该乒乓球游戏机电路主要由3块组成:球台驱动电路,控制电路和计分电路组成。其中球台电路主要实现游戏者击球完毕后球的左右移动显示位置功能;控制电路实现游戏者A和B击球,裁判对系统初始化的功能;计分电路具有当A或B击球有效时加分和当游戏者的分数累计超过10时报警通知裁判对系统初始化以便重新开始比赛计分功能。 课题主要内容与要求: 内容:本课题设计一个以8个二极管的依次被点亮代表球的移动位置双向选择开关J2,J3控制发球,击球信号,在Multisim软件上测试结果。 要求:1、熟悉Multisim软件 2、用8个发光二极管表示球,用俩个按钮分别表示AB俩个球员的球拍; 3、A,B各有一个数码管计分。 4、裁判有一个按钮,用来对系统初始化,每次得分后按下一次。

摘要 乒乓球游戏机通过十分巧妙地设计采用数字芯片实现乒乓球左右移动,选手击球得分,累计得分超10报警灯功能。该设计三个双向开关J1,J2,J3分别作为裁判和游戏者A,B,且选手可以译码显示器上直接读出自己的得分,具有操作简单,结构清晰的优点。 对与模电课题的研究离不开电路图,不过现在都在实行电子化,所以需要借助电子产品。Multisim软件就是一款画电路图的电子软件,在此对不太熟悉或未接触过Multisim软件的朋友简短的介绍下: Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。同时具备可以根据自己的需求制造出真正属于自己的仪器;所有的虚拟信号都可以通过计算机输出到实际的硬件电路上;所有硬件电路产生的结果都可以输回到计算机中进行处理和分析等特点。该乒乓球游戏机电路主要有3块电路:台球驱动电路,控制电路和计分电路组成。其中台球驱动电路主要实现游戏者击球完毕后球的左右移动显示位置功能;控制电路实现游戏者A和B击球,裁判对系统初始化的功能;

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称电路分析CAI 成绩评定 实验项目名称正弦稳态交流电路仿真实验指导教师 实验项目编号05实验项目类型验证型实验地点计算机中心C305 学生姓学号 学院电气信息学院专业实验时间 2013 年5月28日 一、实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP,Microsoft office, 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL)的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL)的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测

量电阻R、电感L、电容C两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R、L和C参数不变, 使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。 暨南大学本科实验报告专用纸(附页) 欧姆定律向量形式数据 V Rm/V V Lm/V V Cm/V I/mA 理论计算值 仿真值(f=50Hz) 理论计算值 仿真值(f=25Hz) 理论计算值 仿真值(f=1kHz) 2.基尔霍夫电压定律向量形式 在Multisim10中建立如图(2)所示仿真电路图。 打开仿真开关,用并接在各元件两端的电压表经行 仿真测量,分别测出电阻R、电感L、电容C两端 的电压值。用窜连在电路中的电流表测出电路中流 过的电流I,将测的数记录在下表。 ②改变电路参数进行测试。电路元件R=300Ω、L=

实验八multisim电路仿真

电子线路设计软件课程设计报告 实验内容:实验八multisim电路仿真 一、验目的 1、进一步熟悉multisim的操作和使用方法 2、掌握multisim做电路仿真的方法 3、能对multisim仿真出的结果做分析 二、仿真分析方法介绍 Multisim10为仿真电路提供了两种分析方法,即利用虚拟仪表观测电路的某项参数和利用Multisim10 提供的十几种分析工具,进行分析。常用的分析工具有:直流工作点分析、交流分析、瞬态分析、傅立叶分析、失真分析、噪声分析和直流扫描分析。利用这些分析工具,可以了解电路的基本状况、测量和分析电路的各种响应,且比用实际仪器测量的分析精度高、测量范围宽。下面将详细介绍常用基本分析方法的作用、分析过程的建立、分析对话框的使用以及测试结果的分析等内容 1、直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 执行菜单命令Simulate/Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图所示。直流工作点分析对话框包括3页。

Output 页用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再点击Plot during simulation 按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。Analysis Options页 点击Analysis Options按钮进入Analysis Options页,其中排列了与该分析有关的其它分析选项设置,通常应该采用默认的 Summary页

电路仿真软件Multisim_11.0安装使用教程及破解

Multisim 11.0 软件免费下载汉化激活全套 Multisim 11.0目前为最新版本。嵌入式系统 安装需要需要资料:17Embed,17嵌入式 1.Multisim11.0软件,免费下载地址: https://www.wendangku.net/doc/428411416.html,/c07n2rh7tb m 2. Multisim11.0汉化包+激活包免费下载地址: https://www.wendangku.net/doc/428411416.html,/c0frrgfutf Multisim是美国国家仪器(NI)有限公司推出的一款优秀的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 《数字电子技术》一书就是以Mulitisim作为教材工具,其强大的功能被广大老师、同学和自由爱好者所喜爱,所以本人决定在此做个教程以共大家学习参考之用。(文末附有下载) 一、安装 1、双击应用程序(379.35MB的那个)首先会出现如下窗口,确定即可。 2、确定后会出现如下窗口,说白了,就是个解压缩过程 一起嵌入式开发

3、选择第一项,然后解压缩后紧接着会出现如下窗口,仍选择第一项 4、然后选择“Install this product for evaluation”,试用的意思

5、接下来就按照提示一路狂Next就行,然后重启就行了嵌入式系统 这样安装就算完成了,接下来就是汉化和破解了。

嵌入式系统 二、汉化 1、将ZH文件夹放到目录“...\Program Files\National Instruments\Circuit Design Suite 11.0\stringfiles”下。 记住,不是目录“X:\National Instruments Downloads”,这个文件是你安装时第二步解压缩后的文件,安装完后就可以删掉了。(好多朋友在这里犯错误)17Embed,17嵌入式2、再运行Multisim11,菜单里边的:Options\Gobal Preferences\convention\language\ZH (参考图片)

模电实验报告

模拟电子技术基础实验报告 姓名:蒋钊哲 学号:2014300446 日期:2015.12.21

实验1:单极共射放大器 实验目的: 对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。 实验原理: 静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流I CQ和管压降V CEQ。其中集电极电流有两种测量方法。 直接法:将万用表传到集电极回路中。 间接法:用万用表先测出R C两端的电压,再求出R C两端的压降,根据已知的R E的阻值,计算I CQ。 输出波底失真为饱和失真,输出波顶失真为截止失真。 电压放大倍数即输出电压与输入电压之比。 输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量。 输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量。 实验电路:

实验仪器: (1)双路直流稳压电源一台。 (2)函数信号发生器一台。 (3)示波器一台。 (4)毫伏表一台。 (5)万用表一台。 (6)三极管一个。 (7)电阻各种组织若干。 (8)电解电容10uF两个,100uF一个。 (9)模拟电路试验箱一个。

实验结果: 经软件模拟与实验测试,在误差允许范围内,结果基本一致。

实验2:共射放大器的幅频相频 实验目的: 测量放大电路的频率特性。 实验原理: 放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。 放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。 通频带为: f BW=f H-f L 实验电路:

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

模电PSPICE仿真实验报告

实验一晶体三极管共射放大电路 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件 条件一: 条件二: I 1>>I BQ V>>V BE I I =(5~10)I B V B =3~5V R E 由 V B V BE V B 再选定 I EQ I CQ 计算出Re R b2 I I ,由 V B V B I I (5~10)I B Q 计算出 m - Vcc V B R b1 再由 V CC V B (5~10)I BQ 计算出 Ri

Time 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: V1 12Vdc Rc 此时得到波形为: 400mV 200mV 0V -200mV 450us 500us 75k 3k 4.372V R2 50k Q1 Q2N2222 Re 2.2k C2 T 一 6.984V 10uF 彳Ce 100uF

2.0 V -4.0V 0s 50us 100us 口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500us Time 此时出现饱和失真。 当RL开路时(设RL=1MEG Q)时: V1 输出波形为:

4.0V -4.0V 出现饱和失真 二、实验心得 这个实验我做了很长时间,主要是耗在静态工作点的调试上面。按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调 节Rb1、Rb2和Re的值是电路输出不失真。 实验二差分放大电路 -、实验目的 1、学习差分放大电路的设计方法 2、学习差分放大电路静态工作的测试和调整方法 3、学习差分放大电路差模和共模性能指标的测试方法 二、实验内容 1. 测量差分放大电路的静态工作点,并调整到合适的数值。

Multisim实验报告

实验一 单级放大电路 一、实验目得 1、 熟悉mul tisim 软件得使用方法 2、 掌握放大器静态工作点得仿真方法及其对放大器性能得影响 3、 学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻得仿真方法,了解共射极电 路得特性 二、虚拟实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表 三、实验步骤 4、 静态数据仿真 电路图如下: 当滑动变阻器阻值为最大值得10%时,万用表示数为2。204V。 R151kΩ R25.1kΩR320kΩ R41.8kΩ R5 100kΩ Key=A 10 % R61.5kΩ V110mVrms 1000 Hz 0° C110μF C210μF C347μF 2Q1 2N2222A 3 R7 100Ω8 1 5 64XMM1 7

仿真得到三处节点电压如下 : 仿真数据(对地数据)单位:V 计算数据 单位:V 基极V(3) 集电极V(6) 发射级V(7) V be Vc e Rp 2。83387 6、12673 2.20436 0。6295 1 3、92237 10K Ω 5、 动态仿真一 (1)单击仪器表工具栏中得第四个(即示波器Oscillos cope),放置如图所示,并且连接电路、 (注意:示波器分为两个通道,每个通道有+与—,连接时只需要连接+即可,示波器默认得地已经接好、观察波形图时会出现不知道哪个波形就是哪个通道得,解决方法就是更改连接得导线颜色,即:右键单击导线,弹出,单击wir e colo r,可以更改颜色,同时示波器中波形颜色也随之改变) R151kΩ R25.1kΩR3 20kΩ R41.8kΩ R5 100kΩ Key=A 10 % V110mVrms 1000 Hz 0° V212 V C110μF C210μF C347μF 2Q1 2N2222A 3 R7100Ω8 1 XSC1 A B Ext Trig + + _ _ + _ 746R61.5kΩ 5

相关文档
相关文档 最新文档