文档库 最新最全的文档下载
当前位置:文档库 › 北斗授时仪

北斗授时仪

北斗授时仪
北斗授时仪

中新创科北斗授时仪DNTS-84-OB

产品型号:DNTS-84-OB

产品尺寸:19英寸1U

4网口:恒温晶振高精度守时

产品概况

北京中新创科技有限公司研制开发的北斗授时仪DNTS-84-OB是一种高科技智能的、可独立工作的基于NTP/SNTP协议的高精度时钟同步服务器。DNTS-84-OB从北斗地球同步卫星上获取标准时钟信号信息,将这些信息在网络中传输,网络中需要时间信号的设备如计算机,控制器等设备就可以与标准时钟信号同步。当北斗接收机无信号时,DNTS-84-OB使用内置的恒温晶振守时,守时精度可达1E-9。北斗授时仪DNTS-84-OB使用标准的时钟信息通过TCP/IP网络传输,DNTS-84-OB支持多种流行的时间发布协议,如NTP,time/UDP,还可支持可设置的UDP端口的中新创科定义的时间广播数据包。NTP和time/UDP的端口号分别固定于RFC-123和RFC-37指定的123和37。北斗授时仪DNTS-84-OB同时支持SNTP协议的广播工作模式。

北斗授时仪DNTS-84-OB有4个10/100M自适应的以太网口,网口间物理相互隔离,完全保证数据安全性,可全设置同一个网段或者不同网段,具有冗余性,某个网口的故障将不会影响其他网口正常工作。每个以太口必须设置独立IP地址。

详细参数

授时精度1-10ms

支持协议NTP/SNTP V10,V20,V30,V40,SNMP,UDP,Telnet,IP,TCP

网口数量4个10/100M自适应以太网口

CPU双CPU同时工作,32位CPU为双核处理器,性能及大提高卫星接收机北斗2代接收机

守时功能恒温晶振精度可达1E-9,GJB2242-94

吞吐量可满足每秒每口2000次时间请求

授时记录保存最新50条

本地告警干接点告警

输出接口RS232/485,IRIG-B,10M,1PPS,支持GJB2911A-2008

规格描述

产品尺寸19英寸1U机架式

接收机北斗2代接收机

内置时钟内置恒温晶振,当卫星信号丢失情况下仍须输出标准时间信号

液晶显示

LCD液晶显示时间,2行每行20个字符,显示时间、卫星颗数及设备工作状态

LED分别指示电源,卫星锁定状态,保持工作状态,告警,NTP有效指示吞吐量可满足每秒每口2000次时间请求

本地告警支持SNMP告警,本地干接点告警输出,最大电流10A

输出接口RS232/485,IRIG-B,10M,1PPS, 10M正弦波输出,BNC接口

1PPS输出,BNC接口

IRIG-B码输出,BNC接口

IRIG-B码输入,BNC接口

RS232输出,支持TL1协议

输入接口串口输入,可人工设置时间,可做外部时钟源

守时功能当北斗信号丢失情况下仍须输出标准时间信号,恒温晶振精度达1E-9以上加密验证提供MD5加密验证功能

网管功能有完善的SNMP网管功能;

功能扩展支持扩展选择其它功能模块

设置管理支持Web页面、telnet等设置管理方式

授时记录可通过网页及telnet查看授时记录,安装软件可保存无数条记录

UDP工作模

式提供UDP广播协议,能够接电子钟LED显示屏

可设置至少8个UDP远端IP地址及端口号:输出中新创科时间数据包:

共32字节,具体说明如下

偏移描述

00...01年(00...99) 02...03月(01...12) 04...05日(01...31) 06...07时(00...23) 08...09分(00...59) 10...11秒(always00)

12星期(1-Mo,2-Tue,...) 13夏令时标志(0-no,1-yes) 14字符串结束符,‘\0‘

15字符串结束符,‘\0‘

16...1932位CET/CST时间UNIX格式20...2332位GMT时间UNIX格式

24...31全0

北斗卫星时间同步系统的重要性

北斗卫星时间同步系统的重要性 概述 电脑时间走时不准时常有的事,不准确的电脑时钟对时网络结构以及其中的应用程序的安全性会产生较大的影响,尤其是那些对没有实现网络同步而导致的问题比较敏感的网络质量或应用程序。 要得到最佳的网络表现,就得向系统提供标准的时间信息,这时可以选用北斗卫星时间同步系统来实现时间统一,千万不要等到出了问题才认识到时间同步的重要性。如果没有时间同步,网络指令是没法正常运行的,时间同步直接影响网络指令的领域有:记录文件安全、审核和监控、网络错误检查和复原、文件时间戳目录服务、文件及指令存取安全与确认、分散式计算、预设操作、真实世界世界值等等。 北斗授时 北斗授时是通信网络安全组网的根本保证就同步网而言,我国的频率同步网采用的是多基准混合同步方式,即全网部署多个1级基准时钟设备,并且需配置高性能的卫星授时接收机,以保证全网的定时性能。我国的时间同步网则采用分布式组网方式,即在每个时间同步设备上均需配置高性能的卫星授时接收机,以保证全网的时间精度。 就移动通信网络而言,CDMA基站、CDMA2000基站、TD-SCDMA基站等均需要高精度的时间同步,目前是在每个基站上配置GPS授时模块。如果基站与基站之间的时间同步不能达到一定要求,将可能导致在选择器中发生指令不匹配,从而导致通话连接不能正常建立,影响无线业务的接续质量。 北斗授时性能可以满足通信网络的需求,基于北斗/GPS双模的授时设备最早在2003年进入通信领域,在2008年之前主要提供频率同步服务,此后可同时提供时间同步和频率同步服务。根据近十年的多次测试情况,可以看出北斗设备在正常情况下可以满足通信网中对频率同步和时间同步的要求,尤其是2008年以后生产的北斗设备其性能普遍达到了GPS卫星接收机设备的水平,完全可以满足通信网中各种通信设备对频率同步和时间同步的需求。 北斗卫星同步时间的意义 利用北斗卫星,才可在全球范围内用超短波传播时号;用超短波传播时号不

北斗授时

1.北斗授时工作机理 在现代卫星导航系统中,为了保证系统中各个钟的精确同步,需要一个准确、稳定和可靠的时间参考,这通常是以系统中的部分钟或全部的钟为基础。利用统计平均的方法建立一个系统时间来实现。星上通常以原子钟为参考钟。 系统时间与UTC之间协调方法,需要考虑国际标准时间到系统时间传递的各个环节,是提高授时准确度中的最重要一环。 系统钟的同步方法,主要涉及到系统中各个钟的精确数据的收集方法和控制方法,要研究相对论效应对星载钟同步的影响,比对测量和钟驾驭方法的研究是时钟同步的基础。 系统授时方法,包括卫星电文中的与时间有关的信息的制定与产生,用户终端定时技术涉及到接收、比对及控制技术等。 对用户来说,北斗的授时精度主要由授时模块来提供,通常20ns,由秒脉冲同步来保证。 2.为何要时间同步 对于一个进入信息社会的现代化大国,导航定位和授时系统是最重要、而且也是最关键的国家基础设施之一。现代武器实(试)验、战争需要它保障,智能化交通运输系统的建立和数字化地球的实现需要它支持。现代通信网和电力网建设也越来越增强了对精度时间和频率的依赖。为了提高民用定位定时的性能和可靠性、安全

性,利用这些卫星系统建立广域增强系统(Waas)美国、日本、欧洲和俄罗斯也在计划或研制之中。 这些系统导航定位的基本概念都是以精度时间测量为基础的。正如有人所指出的那样,我们人类生活在余割四维的世界(x、y、z、t)其中一维就是时间,而另外三维的精度确定,就今天而言,没有精确的定时也是难以实现的。 单从授时出发,不难理解系统发播时间的精确控制是不可缺少的。而对于导航定位,系统内部钟(星载钟和地面监测和控制台站的钟)的同步就极为关键。没有原子钟的支持,没有钟同步和保持技术的支持,实现星基导航和定位是不可能的。在完成精确时间的传递过程,需要对传播时延作精确修正,而这又需要知道用户的精确地理位置。 从以上分析可以看出,无论在系统概念、技术、装备或管理上,与其他通讯和卫星系统相比,导航定位卫星系统与高精度卫星授时系统有很好的兼容性和互补性,二者是相辅相成的。从资源共享和合理利用出发,先进的卫星系统应该成为一个导航授时一体化的高精度星基四维(x、y、z、t)信息源, GPS、北斗、Glonass和正在研制中的Galileo,无不把其授时功能提到仅次于导航定位的重要地位。以便满足个行各业对精度时间和频率日益增长的需求。 一般的电子设备晶振的精度为6~12ppm,亦即每秒有约9微秒(平均)的误差,1小时累积约32毫秒误差,1天累积约0.8秒误差,一个月累积约23秒误差,1年累积约280秒误差。可见日常工

北斗授时介绍

卫星授时介绍 1 概述 1.1 北斗系统介绍 “BD一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称:“双星定位”系统或“BD一号”系统。主要是利用两颗地球同步卫星来测量地球表面和空中的各种用户的位置,并同时兼有双向报文通信和定时授时的功能。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星导航、定位、通信系统。随着2003年5月25日“BD一号”系统的第3颗卫星成功发射升空,将进一步完善“BD一号”系统工作的稳定性和可靠性。 “BD一号”系统主要由一个地面中心站、两颗地球同步卫星(目前3颗)、若干个专用测轨站和标校站,以及成千上万个各类用户机等部分组成。用户机是“BD一号”卫星导航定位通信系统的应用终端,可以应用于各种不同的载体之中。按应用的载体不同,用户机可以分为:手持(单兵携带)型、车载型、舰载型、机载型和弹载型等;按用途不同又分为指挥型、定位型、授时型、信息接收型和组合功能型等。与GPS、GLONASS卫星导航定位系统相比,具有我国自主知识产权的“BD一号”系统在国防军事领域的部队作战、训练、科研、武器装备等方面,在公安、武警和民用交通运输、地质、科考、探险、地形测绘等领域中将具有更加广泛和深入的应用前景,该系统的建立和应用不仅会对我国国防现代化建设和国民经济建设作出重大的贡献,而且对国民经济的发展也会带来巨大的社会经济效益。 1.2 工作原理概述 “BD一号”系统的工作原理是“三球交会测量原理”,即: 以位置已知的两颗地球同步卫星为两个球心,以它们分别到用户的距离(要完成的测量量)为半径可以作两个球面;以地球的球心为中心,以地球的半径加上用户的高程为半径作出第三个球面,三个球面的交会点排除其镜象点即为用户的位置。 “BD一号”系统的定位工作过程是: 首先由地面中心站向两颗地球同步卫星发送确定格式的询问信号,两颗地球同步卫星将询问信号广播转发给服务区域内的各种用户机。当用户机接收到一颗地球同步卫星转发的信号以后,自动搜索、捕获和稳定跟踪

四创电子北斗单向授时型模块说明书

目 次 1 背景 (1) 2 模块简介 (1) 3 功能特点和技术指标 (2) 3.1 模块功能特点 (2) 3.2 模块性能指标 (2) 4 接口规范 (4) 4.1 外形尺寸 (4) 4.2 引脚定义 (4) 4.3 软件接口 (5) 5 连接说明 (6)

1 背景 “北斗一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称“双星定位”系统或“北斗一号”系统。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星定位、授时、通信系统。 随着北斗卫星系统的不断成熟和终端技术的不断发展,实现北斗授时同步已成为我国卫星授时应用的发展趋势。其终端模块的应用可减少对国外卫星系统的依赖性,这将为我国通信、电力等重点行业授时应用提供可靠技术保障。 2 模块简介 在北斗应用早期,由于“北斗一号”系统固有的局限,用户机实现授时定位通信等功能必须通过有源发射,因此现有的北斗用户机设备普遍存在体积大、成本高、系统容量小的缺点。四创公司通过多年在北斗领域的研发攻关,推出具备无源授时功能的“北斗一号”单向授时产品(模块外观示意图如图2-1所示)。 图2-1 北斗单向授时模块实物图

北斗单向授时模块是一款通过无源方式实现授时功能的核心处理板,该产品可同时接收“北斗一号” 三通道信号,北斗授时功能通过跟踪现有的三颗北斗卫星和通过外输入高程值而快速实现。授时模块功耗小,数据更新率1Hz。北斗单向授时模块从硬件和软件上都易于使用,非常适合系统集成应用。模块产品主要面向军队、电力、通信、金融、广电等需要时间同步的系统应用客户。 3 功能特点和技术指标 3.1 模块功能特点 ?同时跟踪三颗北斗卫星; ?具备北斗授时功能、提供UTC时间输出; ?提供高精度1PPS 输出; ?支持本地串口进行参数配置; ?支持天线开短路检测和保护功能。 3.2 模块性能指标 表3-1北斗单向授时模块性能指标 接收器结构●3个并行通道 跟踪能力●同时跟踪3颗卫星 基本特征 接收信号灵敏度●-157.6dBW 秒脉冲(1PPS)●误差≤100 ns(初始化精确位置信息,1σ) ●脉冲宽度:500ms ●前沿宽度:<10ns ●首帧串口信息与 1PPS上升沿的同步精度:<10 ms ●幅度:≥3V(LVCMOS电平) ●极性:正极性,前沿为正 ●输出阻抗:50? 性能特点 锁定时间●时钟(1PPS)锁定时间小于3分钟

北斗+GPS光纤拉远授时系统

GPS/北斗光纤拉远授时系统有效解决TD-SCDMA基站选址难题 中国移动建设运营的第三代移动通信TD-SCDMA-SCDMA网络是严格要求同步的 TD-SCDMAD系统,目前基站的时间同步由单一GPS授时系统实现。传统GPS授时系统, 由于拉远距离、工程施工和抗干扰能力等受限因素,限制了TD-SCDMA系统采用BBU+RRU 光纤拉远分布式基站的优势发挥,在TD-SCDMA站址选择日益困难的现状下,进一步加剧 基站选址的难度,已经成为TD-SCDMA站址选址的瓶颈。 在TD-SCDMA网络工程建设中,TD-SCDMA站址选择成为基站建设的重点问题,需主 要克服以下几点:首先,GPS天线与基站BBU侧的接收机通过射频馈线连接,射频馈线较 粗而且韧性差不易弯曲,其工程施工的难度限制了BBU与天面的拉远距离,极大地降低了BBU机房选址的灵活性;其次,射频馈线的信号衰减性限制了GPS射频信号的传输距离,拉远距离为百米之外就需要增加线路补偿放大器,加装放大器既增加了故障维护点又加大了施工难度,进一步加大新增站址的BBU机房选址灵活性;另外,GPS卫星系统属于美国军方,将使TD-SCDMA系统的正常运行受制于人,非常情况下,卫星系统一旦关闭或受干扰,TD-SCDMA系统将工作紊乱和瘫痪,整网安全存在很大隐患。 在TD-SCDMA网络建设过程中,GPS授时系统的替代解决方案一直是中国移动研究的 课题之一,大唐移动与中国移动持续加强创新合作,面对网络工程建设中的实际问题,推出了GPS/北斗双模一体化光纤拉远授时系统解决方案。该方案采用GPS/北斗双模一体化设计,相比传统GPS授时系统在拉远距离、工程实施、抗干扰能力、美化天面外观、安装维护便 捷性等方面有明显的优势,可实现TD-SCDMA系统天线和GPS/北斗天线的共抱杆安装,给GPS/北斗天线布放及基站选址提供了极大的灵活性,有效解决了网络建设中的基站选址难题,满足运营商快速建网的需求。 GPS/北斗光纤拉远授时系统解决工程施工难题 针对传统GPS单一授时系统普遍存在的传输距离受限、施工困难、易受干扰及安全隐 患的问题,为适应更广泛的布站场景,本方案采用GPS/北斗双模一体化设计,并且采用光 纤拉远的方法有效解决工程施工中传输距离受限和施工困难的难题。一体化GPS/北斗光纤 拉远授时系统方案,就是在天面部分将GPS/北斗天线与接收机进行一体化设计,接收机输 出的PPS与TOD信息通过光纤拉远的方法传输给基站机房内的BBU,BBU时钟恢复模块恢复PPS和TOD信息,并且传送到BBU需要同步的模块。基站设计不再需要考虑接收机的类型(GPS/北斗)、型号、厂家、尺寸等一系列问题,只需要基站和拉远接收机有相同的标 准接口和时间传输机制(如图1所示)。

北斗卫星授时介绍

北斗卫星授时介绍 北斗卫星授时介绍 1 概述 1.1 北斗系统介绍 “BD一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称:“双星定位”系统或“BD一号”系统。主要是利用两颗地球同步卫星来测量地球表面和空中的各种用户的位置,并同时兼有双向报文通信和定时授时的功能。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星导航、定位、通信系统。随着2003年5月25日“BD一号”系统的第3颗卫星成功发射升空,将进一步完善“BD一号”系统工作的稳定性和可靠性。 “BD一号”系统主要由一个地面中心站、两颗地球同步卫星(目前3颗)、若干个专用测轨站和标校站,以及成千上万个各类用户机等部分组成。用户机是“BD一号”卫星导航定位通信系统的应用终端,可以应用于各种不同的载体之中。按应用的载体不同,用户机可以分为:手持(单兵携带)型、车载型、舰载型、机载型和弹载型等;按用途不同又分为指挥型、定位型、授时型、信息接收型和组合功能型等。与GPS、GLONASS卫星导航定位系统相比,具有我国自主知识产权的“BD一号”系统在国防军事领域的部队作战、训练、科研、武器装备等方面,在公安、武警和民用交通运输、地质、科考、探险、地形测绘等领域中将具有更加广泛和深入的应用前景,该系统的建立和应用不仅会对我国国防现代化建设和国民经济建设作出重大的贡献,而且对国民经济的发展也会带来巨大的社会经济效益。 1.2 工作原理概述 “BD一号”系统的工作原理是“三球交会测量原理”,即: 以位置已知的两颗地球同步卫星为两个球心,以它们分别到用户的距离(要完成的测量量)为半径可以作两个球面;以地球的球心为中心,以地球的半径加上用户的高程为半径作出第三个球面,三个球面的交会点排除其镜象点即为用户的位置。 “BD一号”系统的定位工作过程是: 首先由地面中心站向两颗地球同步卫星发送确定格式的询问信号,两颗地球同步卫星将询问信号广播转发给服务区域内的各种用户机。当用户机接收到一颗地球同步卫星转发的信号以后,自动搜索、捕获和稳定跟踪该卫星信号。经过一定的信息处理和时延后,再按确定的格式同时向两颗地球同步卫星播发自己的应答信号。两颗地球同步卫星将其应答信号转发到地面中心站。地面中心站接收到该应答信号以后,测量整个应答信号的往返总时延,并根据地面中心站至两颗同步卫星的距离、用户机的高度等数据信息,解算出该用户机(即载体)在地球表面或空中的当前位置。再由地面中心站经过地球同步卫星把该位置信息传送给用户机,在用户机的显示器上显示其当前地理坐标位置,完成了用户机的单收双发定位工作模式。如果用户机同时接收到两颗地球同步卫星的信号,并测量出两个询问信号的时差后,将该时差通过一颗地球同步卫星转发给地面中心站,地面中心站的计算机根据该时差值就可以解算出用户机(即载体)在地球表面或空中的当前位置,并发送给用户机,完成了双收单发的定位工作模式。 地面中心站发送广播询问信号的同时也可以传送通信电文。用户机可以通过自己的应答信号向地面中心站传送需要发送的通信信息,因而该系统具备双向通信功能。地面中心站所发送的广播询问信号中还可以发播标准时间信号,用户机应用这些信号可以进行校时,所以该系

北斗授时终端现状概述

北斗授时终端现状概述 近些年来,北斗卫星导航系统的逐渐崛起使得北斗授时终端应时而生。毫无疑问,北斗授时终端相关产业和方向的研究也必将会成为一大热门。 一、北斗授时终端简介 授时技术一般来说主要包括短波授时、长波授时、网络授时和卫星授时。其中卫星导航授时因为其具有精度高、覆盖范围广、全天时、全天候和设备成本低等诸多优点,越来越受到各类用户的青睐。 利用所接收导航信号解算的高精度时间信息综合实现了NTP、B码、PTP和串口等的高精度授时服务的设备即为授时终端。 电力、金融、电信是与国家安全和人民利益息息相关的重要领域,它们对时间系统的同步性往往都有着很高的要求。之前我国在这些领域使用的都是美国GPS授时技术,不但受制于人,还存在着极大的安全隐患。但是随着我国北斗卫星导航系统(BDS)和北斗授时技术的快速发展,北斗授时产品目前正在逐步替代着GPS授时产品。 二、北斗授时原理 北斗授时根据其授时方式的不同,大致可以分为单向授时和双向授时两种。 1、单向授时 单向授时是由授时终端接收卫星信号,解算出基本观测量信息和导航电文信息,进而获得钟差修正本地时间,使得本地时间与UTC同步。当然,单向授时细分之下也可分为RNSS 单向授时与RDSS单向授时两种模式。鉴于文章篇幅原因,这里不再赘述。 简单来说,单向授时是北斗授时终端可以自主实现的一种定时功能。 2、双向授时 相对于单向授时而言,双向授时具有较高的授时精度。 首先,双向授时设备具备出站信号接收和应答发射入站信号的能力。它通过与地面中心站进行往返测量,由中心站获得授时终端与地面中心站的时间差值。这样它就可以避免授时终端天线位置误差、电离层/对流层改造残差等诸多不确定因素引起的单向授时偏差。 授时终端发起授时申请,与地面中心站进行交互,向地面中心站发送定时申请,地面中心站计算其与授时终端的时间差,并通过出站信号播发给该授时终端,授时终端返回的正向传播时延信息T正向及出站电文获得的RDSS系统时间与UTC时间差值?T(GNT-UTC),修正本地时间使其与UTC时间同步完成双向授时。?TJST-UTC=T测量-T正向-T接收零值+?TGNT-UTC(5)。

北斗授时仪

中新创科北斗授时仪DNTS-84-OB 产品型号:DNTS-84-OB 产品尺寸:19英寸1U 4网口:恒温晶振高精度守时 产品概况 北京中新创科技有限公司研制开发的北斗授时仪DNTS-84-OB是一种高科技智能的、可独立工作的基于NTP/SNTP协议的高精度时钟同步服务器。DNTS-84-OB从北斗地球同步卫星上获取标准时钟信号信息,将这些信息在网络中传输,网络中需要时间信号的设备如计算机,控制器等设备就可以与标准时钟信号同步。当北斗接收机无信号时,DNTS-84-OB使用内置的恒温晶振守时,守时精度可达1E-9。北斗授时仪DNTS-84-OB使用标准的时钟信息通过TCP/IP网络传输,DNTS-84-OB支持多种流行的时间发布协议,如NTP,time/UDP,还可支持可设置的UDP端口的中新创科定义的时间广播数据包。NTP和time/UDP的端口号分别固定于RFC-123和RFC-37指定的123和37。北斗授时仪DNTS-84-OB同时支持SNTP协议的广播工作模式。 北斗授时仪DNTS-84-OB有4个10/100M自适应的以太网口,网口间物理相互隔离,完全保证数据安全性,可全设置同一个网段或者不同网段,具有冗余性,某个网口的故障将不会影响其他网口正常工作。每个以太口必须设置独立IP地址。

详细参数 授时精度1-10ms 支持协议NTP/SNTP V10,V20,V30,V40,SNMP,UDP,Telnet,IP,TCP 网口数量4个10/100M自适应以太网口 CPU双CPU同时工作,32位CPU为双核处理器,性能及大提高卫星接收机北斗2代接收机 守时功能恒温晶振精度可达1E-9,GJB2242-94 吞吐量可满足每秒每口2000次时间请求 授时记录保存最新50条 本地告警干接点告警 输出接口RS232/485,IRIG-B,10M,1PPS,支持GJB2911A-2008 规格描述 产品尺寸19英寸1U机架式 接收机北斗2代接收机 内置时钟内置恒温晶振,当卫星信号丢失情况下仍须输出标准时间信号 液晶显示 LCD液晶显示时间,2行每行20个字符,显示时间、卫星颗数及设备工作状态 LED分别指示电源,卫星锁定状态,保持工作状态,告警,NTP有效指示吞吐量可满足每秒每口2000次时间请求 本地告警支持SNMP告警,本地干接点告警输出,最大电流10A 输出接口RS232/485,IRIG-B,10M,1PPS, 10M正弦波输出,BNC接口 1PPS输出,BNC接口 IRIG-B码输出,BNC接口 IRIG-B码输入,BNC接口 RS232输出,支持TL1协议 输入接口串口输入,可人工设置时间,可做外部时钟源 守时功能当北斗信号丢失情况下仍须输出标准时间信号,恒温晶振精度达1E-9以上加密验证提供MD5加密验证功能

GPS北斗双模授时板卡设计方案

GPS北斗双模授时板卡设计方案 一、概述 GPS北斗双模授时板是由我公司(西安同步电子科技有限公司)精心设计、自行研发生产的一款双模授时板卡,接收北斗或者GPS北斗混合授时卫星信号,使用北斗定时信号对本机进行时间同步,产生串口时间信息信号和1PPS(秒信号)同步脉冲信号,是建立时间尺度、实现时间统一同步的实用授时板卡。装置配有标准RS232、RS422/485、脉冲等接口形式,可以适应各种不同设备的对时需要,广泛应用于电力、金融、通信、交通、广电、安防、石化、冶金、水利、国防、医疗、教育、政府机关、IT等领域。 北斗双模校时、北斗双模对时、北斗/gps双模授时系统、北斗对时装置 二、装置特点 单芯片支持BD2/GPS功能,无需外接CPU即可直接输出NMEA数据; 支持单系统独立定位和多系统联合定位 使用GPS/BD二合一单路输出天线。 易于集成,高可靠性;具有出色的导航、定位、授时功能。 三、授时系统的主要设备及功能 双模授时、北斗时钟同步系统、北斗卫星授时系统 整套装置包括:GPS北斗双模授时板卡,串口线,授时天线,天线支架 系统连接图如下:

?授时天线 GPS北斗接收天线用于为北斗双模接收机提供信号,从而使授时板卡获得高精度时间参考,为电脑提供准确的时间信息: 北斗双模天线主要性能如下: 形状:蘑菇头 线长:30米(可定制) 物理接口:BNC 支架:蘑菇头安装支架 ?北斗双模接收机 卫星:GPS、北斗 工作频率:BD2-B1频点,GPS-L1频点 定时精度:优于100ns 跟踪灵敏度:-160dBm 工作方式:GPS单独定位及授时;BD单独定位及授时;GPS+BD组合定位及授时

北斗对时设备

北斗对时设备--北斗网络时钟--北斗授时装置 北斗对时设备是目前国内应用最为广泛的授时装置,基本工作原理就是接收北斗卫星定时信号,输出各种授时信号,同步其它设备的时钟设备。影响北斗授时器价格的因素主要由外部参考源选择,内部时钟源选择,输出授时信号种类,授时信号路数,授时精度等因素决定。 1、北斗对时设备外部参考源 北斗授时器一般都是接收北斗卫星信号,但是有些也是可以接收gps卫星授时信号,glonass卫星授时信号,增加这两个信号价格也会相应提高,如果使用gps北斗双模卫星授时,价格基本增加不多,如果选择三模卫星授时,那价格会增加比较多,一般都要增加几千元。另外外部参考源还有IRIG-B,1PPS,10MHZ,DCF77等,增加一种价格就会增加一点,最贵的就是全部功能都有,价格是最高的。 联系人:刘池 手机:189********qq:2563113967 公司:西安同步电子科技有限公司 2、北斗网络时钟内部时钟源

北斗授时器内置时钟源一般包括温补晶振,恒温晶振,铷钟等,温补晶振最便宜,恒温晶振会比温补晶振贵1000元左右,铷钟会比恒温晶振价格贵1-2万元。选择以上三种内置时钟源的区别主要是守时精度的不同,比如温补晶振一天就会误差几百毫秒,恒温晶振会误差几毫秒,铷钟一天就会误差几微妙,如果对守时精度没有要求可以选择性价比高的温补晶振,如果用户对守时精度有要求那就务必按照技术指标来选择。 3、北斗授时装置输出信号种类 北斗授时器熟悉信号种类主要包括1pps,串口tod,NTP,SNTP,PTP,IRIG-B 码等信号,1pps和串口tod相对比较便宜,如果增加NTP/SNTP一路价格会贵2000元左右,如果增加PTP价格会增加5000元左右,如果增加IRIG-B码价格会增加3000元左右,具体的输出信号要根据实际应用环境来选择,如果不是很懂可以咨询我们的售前技术工程师,他们都是长期工作在一线的技术工程师,技术经验丰富,可以提出合理的授时解决方案。 4、北斗授时设备出路数 在上面北斗授时器输出信号种类的基础上增加输出路数,价格也会有相应的区别,一般1pps和tod增加一路在几百元,增加一路ntp/sntp在2000元左右,增加一路PTP在5000元左右,路数的增加肯定带来硬件成本的增加和系统的复杂程度,所以价格肯定也会高一些,建议预算充足的用户可以预留一些备用接口,以防后期使用。 5、北斗授装置授时精度 北斗授权授时精度是最关键的影响价格的因素,一般北斗授时精度在30ns 左右,如果授时精度要提高到20ns,那么价格就会增加几千元,如果要提高到10ns,那么价格就会提高几万元,如果要提高到几个ns,那么价格就会很昂贵,具体的价格就要和厂家直接沟通才可以确定。 6、北斗授时设备厂家 西安同步电子科技有限公司研发生产的北斗授时设备采用厂家直销,不需要中间商,直接让利给用户,用户直接与厂家签订合同,售后保障无忧,价格更是有保障。

北斗三号授时系统设计分析

北斗三号授时系统设计分析 摘要 近日,中国科学院国家授时中心时间频率基准实验室研究人员利用北斗三号卫星,采用双频共视法,实现了我国时间基准UTC(NTSC)与捷克国家时间基准UTC(TP) 的亚欧长基线国际时间比对。在当前北斗三号共视可视卫星比北斗二号数少一半的情况下,达到共视比对精度1.2ns,提升幅度约19%。目前,北斗三号已经成功发射了19颗全球组网卫星,包括18颗正常服务的MEO卫星和一颗在轨测试的GEO卫星,其基本系统现已建成并开始提供全球服务。北斗三号卫星上搭载了更高性能的铷原子钟和氢原子钟,铷原子钟天稳定度为E-14量级,氢原子钟天稳为E-15量级,比北斗二号星载钟的稳定度提高了一个数量级。 关键词:北斗三号;原子钟;授时精度

第1章绪论 1.1 研制背景 从建立一个现代化国家的大系统工程总体考虑,导航定位和授时系统应该说是基础中的基础,它对整体社会的支撑几乎是全方位的,星基导航和授时是未来发展的必然趋势。美国投入巨资建成了全球定位系统(GPS),俄罗斯也使自己的全球导航卫星系统(GLONASS)投入了运行。欧盟一些国家也正在联合开展伽利略(Galileo)卫星导航系统的研制。 孙家栋院士这样评价北斗:“卫星导航,只有想不到,没有做不到。未来,北斗将为我国提供统一的时空基准服务,在我国国家安全和国民经济社会各领域得到广泛应用,保障国家国家经济社会安全,转变国民经济发展方式,成为战略性新兴产业,促进信息化建设的跨越式发展。”一方面,我们“不能把登山的保险绳交到别人手里”,发展北斗是保障我国国家安全的重要举措,另一方面,我们“不愿自己家的钥匙掌握在别人手里”,发展北斗有利于促进社会经济的发展,人民生活水平的提高。 第2章北斗卫星的授时系统 2.1 授时原理 授时是指接收机通过某种方式获得本地时间与北斗标准时间的钟差,然后调整本地时钟使时差控制在一定的精度范围内。卫星导航系统通常由三部分组成:导航授时卫星、地面检测校正维护系统和用户接收机。对于北斗一号局域卫星系统,地面检测中心要帮助用户一起完成定位授时同步。 2.1.1单向授时 北斗时间为中心控制站精确保持的标准北斗时间,用户钟时间为用户钟的钟面时间,若两者不同步存在钟差,则北斗时间和用户钟时间虽然读数相同其出现时刻却是不同的。地面中心站在出站广播信号的每一超帧单向授时就是用户机通过接收北斗通播电文信息,由用户机自主计算出钟差并修正本地时间,使本地时间和北斗时间同步。周期内的第一帧数据段发送标准北斗时间(天、时、分信号与时间修正数据)和卫星的位置信息,同时把时标信息通过一种特殊的方式调制在出站信号中,经过中心站到卫星的传输延迟、卫星到用户机的延迟以及其它各种延迟(如对流层、电离层等)之后传送到用户机,也就是说用户机在本地钟面时间为观测到卫星的时间,由用户机测量接收信号和本地信号的时标之间的时延获得,后则根据导航电文中的卫星位置信息、延迟修正信息以及接收机事先获取的自身位置信息计算。 一般来说,对已知精密坐标的固定用户,观测1颗卫星,就可以实现精密的时间测量或者同步。若观测2颗卫星或者更多卫星,则提供了更多的观测量,提高了定时的稳健性。 2.1.2双向授时 双向授时的所有信息处理都在中心控制站进行,用户机只需把接收的时标信号返回即可。为了说明方便,给出简化模型:中心站系统在T0时刻发送时标信号ST0,该时标信号经过延迟后到达卫星,经卫星转发器转发后经到达授时用户机,用户机对接收到的信号进行的处理也可看做信号转发,经过空间的传播时延到达卫星,卫星把接收的信号转发,经过空间的传播时延传送回中心站系统。也即表示时间T0的时标信号ST0,最终在T0 + + + + 时刻重新回到中心站系统。中心站系统把接收时标信号的时间与发射时刻相差,得到双向传播时延+ + + ,除以2得到从中心站到用户机的单向传播时延。中心站把这个单向传播时延发送给用户机,定时用户机接收到的时标信号及单向传播时延计算出本地钟与中心控制系统时间的差值修正本地钟,使之与中心控制系统的时间同步。 2.1.3 双向授时和单向授时的对比 从双向授时和单向授时的原理介绍中可以看出,双向授时和单向授时的主要差别在于从中心站系统到用户机传播时延的获取方式:单向授时用系统广播的卫星位置信息按照一定的计算模型由用户机自主计算单向传播时延,卫星位置误差、建模误差(对流层模型、电离层模型等)都会影响该时延的估计精度,从而影响最终的定时精度;双向授时无需知道用户机位置和卫星位置,通过来回双向传播

北斗简介

北斗卫星导航系统 - 简介 北斗卫星导航系统 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国独立发展、自主运行,并与世界其他卫星导航系统兼容互用的全球卫星导航系统。 北斗卫星导航系统既能提供高精度、高可靠的定位、导航和授时服务,还具备短报文通信、差分服务和完好性服务特色,是中国国家安全、经济和社会发展不可或缺的重大空间信息基础设施。 北斗卫星导航系统包括北斗一号和北斗二号两代导航系统。其中北斗一号用于中国及其周边地区的区域导航系统,北斗二号是类似美国GPS的全球卫星导航系统。[1] 北斗卫星导航系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的中国卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。[2] 三步走 按照“质量、安全、应用、效益”的总要求,坚持“自主、开放、兼容、渐进”的发展原则,北斗卫星导航系统按照“三步走”的发展战略稳步推进。具体如下: 第一步,2000年建成北斗卫星导航试验系统,使中国成为世界上第三个拥有自主卫星导航系统的国家。 第二步,建设北斗卫星导航系统,2012年左右形成覆盖亚太大部分地区的服务能力。 第三步,2020年左右,北斗卫星导航系统形成全球覆盖能力。[3][4] 北斗卫星导航系统 - 系统组成 北斗卫星导航系统包括北斗一号和北斗二号的2代系统,由空间段,地面段,用户段三部分组成。 空间段

空间段包括五颗静止轨道卫星和三十颗非静止轨道卫星。地球静止轨道卫星分别位于东经5 8.75度、80度、110.5度、140度和160度。非静止轨道卫星由27颗中圆轨道卫星和3颗同步轨道卫星组成。 地面站 北斗导航卫星应用战略图 地面段包括主控站、卫星导航注入站和监测站等若干个地面站。 主控站主要任务是收集各个监测站段观测数据,进行数据处理,生成卫星导航电文和差分完好性信息,完成任务规划与调度,实现系统运行管理与控制等。 注入站主要任务是在主控站的统一调度下,完成卫星导航电文、差分完好性信息注入和有效载荷段控制管理。 监测站接收导航卫星信号,发送给主控站,实现对卫星段跟踪、监测,为卫星轨道确定和时间同步提供观测资料。 用户段 用户段包括北斗系统用户终端以及与其他卫星导航系统兼容的终端。系统采用卫星无线电测定(RDSS)与卫星无线电导航(RNSS)集成体制,既能像GPS、GLONASS、GALILEO系统一样,为用户提供卫星无线电导航服务,又具有位置报告以及短报文通信功能。 北斗卫星导航系统 - 导航信息 系统在L、S频段发播导航信号,L频段B1、B2和B3三个频点上发射开放和授权服务信号。B1:1559.052MHz-1591.788MHz B2:1166.22MHz-1217.37MHz B3:1250.618MHz-1286.423MHz

北斗卫星导航和授时系统的地位和作用

北斗卫星导航和授时系统的地位和作用各国对自主建设卫星导航和授时系统的必要性,均有充分认识。 一、空间战略发展的需要 卫星导航系统是空间战略系统的重要组成部分,也是大国综合实力的体现。同时,卫星上天需要轨道位置,系统运行也需要频率资源。目前这些资源的大部分,已被美国的GPS和俄罗斯的格罗纳斯所占据,在剩余的资源中,按照“先用先赢”的国际法原则,北斗系统先建成,就先占用,而欧盟的伽利略系统由于只发射了4颗卫星,已注定在这场空间资源争夺赛中败下阵来。我们在空间战略上,已抢占了主动把握了先机。 二、国家安全的战略需要 2003年3月20日,伊拉克战争爆发,美军大批轰炸机、巡航导弹猛扑巴格达,炸弹和导弹一一精准命中目标,迅速摧毁了伊军作战力量。其中,指引方向和提供定位的,正是美军卫星导航系统—GPS。我们使用他国的卫星导航和授时系统,将在诸多方面受困:一是使用权上受制于人。伊拉克战争期间,我国的一艘远洋货轮就因拒绝了美军拦截检查,船用GPS导航仪遭信号关闭,被迫停驶。二是使用精度上受制于人。目前,世界上应用最广泛是美国的GPS系统,但其高精度的军用信号就连英国、法国等国也享用不到。所以,欧盟联合研制了自己的卫星导航系统—伽利略系统。三是易受电子欺骗。在战时,敌人可通过GPS系统注

入定位和时间误差,实施欺骗,这将导致导弹失准,指控失调、作战失败的灾难性后果。美、俄等国明确规定,国家安全系统不允许使用国外导航定位和授时服务。 三、社会经济发展的需要 卫星导航系统作为重要的空间基础设施,具有巨大的社会经济效益,有力地促进了国家经济建设,推动了社会发展。目前,已在测绘、电信、水利、气象、煤炭、交通、渔业、勘探、农业、森林防火和应急救援等各个领域发挥着重要作用。同时导航系统本身就是一个巨大的市场,而目前全球95%的市场份额被GPS所占据。

北斗授时设备

北斗二代授时北斗授时北斗授时模块 西安同步电子科技有限公司是最专业的陕西北斗二代授时厂家。 产品概述 SYN2306型北斗串口时间服务器接收北斗二代卫星信号,使用北斗定时信号对本机进行时间同步,产生串口时间信息信号和1PPS(秒信号)同步脉冲信号,是建立时间尺度、实现时间统一同步的实用电子仪器。 产品功能 1) 以北斗二代定时信号建立时间参考; 2) 同步产生、输出串口时间信息,每秒发送一次时、分、秒、年、月、日北京时间信息; 3) 输出定时同步信号(1PPS),TTL接口输出供测试; 4) LCD钟面(年月日、时分秒)显示; 5) WINDOWS环境串口校时软件。 产品特点 a) 性价比高,应用广泛; b) 授时精度高; c) 高可靠性; d) 可长期连续稳定工作; 典型应用 1) 单位低成本计算机授时; 2) 为电力厂(站)的故障录波器、事件记录仪、微机继电保护及安全自动装置、远动及微机监控系统,能量管理系统等提供时间标记; 3) 电力厂(站)和电网中心调度的时间统一系统及各种时间显示屏; 4) 电厂的DCS系统、MIS系统、抄表报价系统及需要时间信息的自动化装置。 技术指标 输出信号 串口输出 路数

2路 输出电平 RS232C 物理接口 DB9接口 输出时间间隔 1s输出一次 1PPS脉冲信号 路数 1路 电平 TTL 有效电平 上升沿 物理接口 BNC 同步误差 ≤200ns 北斗接收机 定时精度 优于200ns 捕获时间 小于2分钟 供电电源 交流220V±10%,50Hz±5% 机箱尺寸 1U,19″标准机箱(上机架) 环境特性 工作温度 -10℃~+50℃

北斗授时设备介绍

1、设备简介 定时型用户机设计目标定位于车载或固定应用,为其提供高可靠、高精度的各类时间码信号。 图1 定时型用户机 定时型用户机具备多种形式的高精度授时时频信号输出,包括1PPS、串口、IRIG-B、NTP、PTP等;可在前面板显示时间以及状态信息,并可通过前面板的按键输入配置信息,如位置、零值等。 定时型用户机已经广泛应用于地面站站间时间同步、车载系统授时与同步、船载系统授时与同步、机载系统授时与同步等。 定时型用户机由天线、主机两部分组成,其中主机部分采用标准插卡式1U 上架机箱,机箱背面共配置6个插槽,最多可安装6张插卡;由于采用统一的公

用母版总线,因此这6张插卡可占用任意槽位;6张插卡为:接收机卡、时钟输出卡、NTP与网管卡、PTP卡、B码卡、串口卡。 2、主要功能 (1)接收卫星导航系统RNSS B3信号,具有授时和定位功能; (2)利用卫星授时信号对本地铷钟驯服功能; (3)具有标准10MHz、1PPS信号输出功能; (4)具有NTP时间服务功能; (5)具有B码时间服务功能; (6)具有串口时间服务功能; (7)具有PTP时间服务功能。 3、主要指标 (1)驯服指标 守时能力:优于1us/24小时 (2)接收机卡指标 定时精度:≤50ns(95%) (3)NTP卡指标 授时精度优于30ms (4)B码卡指标 同步误差小于200ns (5)时频输出卡指标 定时准确度(绝对值)≤50ns (6)PTP卡指标 点对点授时精度优于200ns(主从模式,从节点也必须配置硬件PTP板卡)(7)串口卡指标 接口形式:DB9-F,RS232,波特率可设 报文帧头与秒脉冲(1pps)的前沿对齐,偏差小于1us (8)电源要求 交流工作电压:200-240V AC,50-60Hz

北斗卫星精密授时终端

北斗卫星精密授时终端 项目概述 本项目拟围绕卫星通信设备、微蜂窝基站设备等的精确定时需求,面向基于北斗授时系统的精密时频发布的规模化应用,采用下一代民用原子钟的最新技术及理念,开发VCSEL激光器、专用低功耗微波集成电路及MEMS工艺气室,研制生产小型化相干布局囚禁(CPT)原子钟。在此基础上研制新一代基于北斗导航授时的低功耗、高精度的时间同步关键设备。突破时间同步对高速卫星通信与高速移动通信的制约,较大程度提高通信效率,形成针对高速卫星通信与高速移动通信的时间同步的解决方案,为高速卫星通信系统、宽带移动通信系统提供可靠的时钟同步平台。进而对北斗卫星授时终端进行规模化应用推广,为国家北斗卫星民用化战略服务。 技术优势 项目的先进性: 1.通过研究获得了高质量的CPT参考谱线,使CPT原子钟的千秒稳定度达到 10-12量级。 2.研制体积小于30mm3的微型原子气室,做到原子钟体积小型化。 3.研制专用低功耗集成电路及光路,做到可用电池驱动原子钟。 4.将可用电池驱动的原子钟作为守时模块加入北斗授时终端,大幅度提高北斗授时终端的自持工作能力。 主要技术指标: 1.原子钟物理部分总体积小于1cm3。 2.CPT原子钟总体积小于15cm3。 3.CPT原子钟总功耗小于600mW。 4.输出频率:10MHz 5.准确度:优于1×10-10 6.秒稳优于1×10-10,千秒稳定度达到10-12量级。 7.北斗授时终端自持工作能力大于1万秒。 技术水平 北京大学拥有数十年的原子钟研制经验,其作为主要参加单位研制的铷钟已经运行于北斗卫星系统。项目组曾获得二代导航重大专项和863项目的支持,发表国际高水平SCI论文20余篇,授权发明专利三项。 项目进度

网络授时简介及现网实现分析

龙源期刊网 https://www.wendangku.net/doc/42888348.html, 网络授时简介及现网实现分析 作者:高健 来源:《理论与创新》2020年第06期 【摘; 要】时间是不停“运动”的一种信息,它作为我们生活中不可缺少的一项基本形式存在,它无时无刻影响着人们的作息、行动等各方面。目前来说,获取时间最简单的方式就是手表、手机、网络等等,文章也介绍了GPS以及不同方面对于时间获取的方式以及其优势和改进措施。 【关键词】网络授时;GPS授时;现网实现;探讨分析 引言 “一寸光阴一寸金,寸金难买寸光阴”,这句诗体现出的就是时间的重要性,说起时间的信息,随着我们社会科技的不断发展,时间信息的重要性已经是重中之重,其中时间的获取作为信息的一种,对人们的日常生活起到了更重要的作用,由于现如今的社会,手机,已经可以说是一种“烂大街”的物品,本文将会以手机获取时间方面展开探讨,并且联系其他授时介绍。 1.网络授时 网络授时的含义是NTP ,即网络时间协议。网络授时的目标是在互联网上为用户提供无差别并且精准的时间信息,使用户能够精准的得知具体的时间,网络授时是用户经过在网络上指定的多个时钟源网站获取信息,获得效益,这些网站之间还可以查漏补缺,以此来提高网络授时提供的时间的准确度。 网络授时在互联网上提供统一和规范的时间,确定的时间与通讯信道(如计算机网络和电话网络)同步。这种时间服务的形式对信道的依靠性要求较强,而因为需要占用信道时间的同时,经过信道传输到不同终端的时间信号延迟产生的差异,这种方式并不能满足追求高度精准时间的用户的追求。 2.卫星导航授时系统的分类 卫星导航授时系统包括美国的GPS定位系统(拥有授时系统)、俄罗斯的 GLONASS授时系统;欧洲的 Galileo授时系统 ;中国的北斗卫星授时系统。由于卫星系统的授时精准度非常 之高,无可挑剔,能达到分毫不差的地步。 2.1 GPS系统

北斗卫星导航系统简介

资料来源:http: 北斗卫星导航系统简介 (一)概述 北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。 (二)发展历程 卫星导航系统是重要的空间信息基础设施。中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。为更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。 (三)建设原则 北斗卫星导航系统的建设与发展,以应用推广和产业发展为根本目标,不仅要建成系统,更要用好系统,强调质量、安全、应用、效益,遵循以下建设原则:

1、开放性。北斗卫星导航系统的建设、发展和应用将对全世界开放,为全球用户提供高质量的免费服务,积极与世界各国开展广泛而深入的交流与合作,促进各卫星导航系统间的兼容与互操作,推动卫星导航技术与产业的发展。 2、自主性。中国将自主建设和运行北斗卫星导航系统,北斗卫星导航系统可独立为全球用户提供服务。 3、兼容性。在全球卫星导航系统国际委员会(ICG)和国际电联(ITU)框架下,使北斗卫星导航系统与世界各卫星导航系统实现兼容与互操作,使所有用户都能享受到卫星导航发展的成果。 4、渐进性。中国将积极稳妥地推进北斗卫星导航系统的建设与发展,不断完善服务质量,并实现各阶段的无缝衔接。 (四)发展计划 目前,我国正在实施北斗卫星导航系统建设。根据系统建设总体规划,2012年左右,系统将首先具备覆盖亚太地区的定位、导航和授时以及短报文通信服务能力;2020年左右,建成覆盖全球的北斗卫星导航系统。 (五)服务 北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服务,包括开放服务和授权服务两种方式。开放服务是向全球免费提供定位、测速和授时服务,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。授权服务是为有高精度、高可靠卫星导航需求的用户,提供定位、测速、授时和通信服务以及系统完好性信息。

相关文档