文档库 最新最全的文档下载
当前位置:文档库 › 基于Lyapunov函数的倒立摆系统设计

基于Lyapunov函数的倒立摆系统设计

基于Lyapunov函数的倒立摆系统设计
基于Lyapunov函数的倒立摆系统设计

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

一级倒立摆的Simulink仿真.docx

单级倒立摆稳定控制 直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。 mg θ 杆长为λ 2u 图1 直线一级倒立摆系统 图2 控制系统结构 假设小车质量M =0.5kg ,匀质摆杆质量m=0.2kg ,摆杆长度2l =0.6m ,x (t )为小车的水平 位移,θ为摆杆的角位移,2 /8.9s m g =。控制的目标是通过外力u (t)使得摆直立向上(即 0)(=t θ)。该系统的非线性模型为: u ml x m M ml mgl x ml ml J +=++=++22)sin ()()cos (sin )cos ()(θθθθθ θθ&&&&&&&&&,其中2 31 ml J =。 解: 一、 非线性模型线性化及建立状态空间模型 因为在工作点附近(0,0==θθ& )对系统进行线性化,所以 可以做如下线性化处理: 3 2 sin ,cos 13! 2!θθθθθ≈- ≈-

当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’^2≈0; 因此模型线性化后如下: (J+ml^2)θ’’+mlx ’’=mgl θ (a) ml θ’’+(M+m) x ’’=u (b) 其中2 31ml J = 取系统的状态变量为, ,,,4321θθ&&====x x x x x x 输出T x y ][θ=包括小车位移和摆杆 的角位移. 即X=????????????4321x x x x =?????? ??????''θθx x Y=??????θx =??????31x x 由线性化后运动方程组得 X1’=x ’=x2 x2’=x ’’=m m M mg 3)(43-+-x3+m m M 3)(44 -+u X3’ =θ’=x4 x4’=θ’’=ml l m M g m M 3)(4)(3-++x3+ml l m M 3)(43 -+-u 故空间状态方程如下: X ’=????????????'4'3'2'1x x x x =?????? ??? ?????????-++-+-03)(4)(300100003)(4300001 0ml l m M g m M m m M mg ??? ??? ??????4321x x x x + ? ?????????????????-+--+ml l m M m m M 3)(43 03)(440 u X ’=????????????'4'3'2'1x x x x =??????????? ?-01818.3100100006727.20000 1 ??? ??? ??????4321x x x x + ??? ??? ??????-5455.408182.10 u

Lyapunov稳定性理论概述

Lyapunov Lyapunov稳定性理论概述稳定性理论概述稳定性理论概述 稳定性理论是19 世纪80 年代由俄国数学家Lyapunov创建的,它在自动控制、航空技术、生态生物、生化反应等自然科学和工程技术等方面有着广泛的应用,其概念和理念也发展得十分迅速。通过本学期“力学中的数学方法”课程的学习,我对此理论的概况有了一些认识和体会,总结于本文中。 一, 稳定性的概念稳定性的概念 初始值的微分变化对不同系统的影响不同,例如初始值问题 ax dt dx = , x(0)=x 0 , t≥0,x 0≥0 (1) 的解为e x at t x 0 )(= ,而x=0 是(1)式的一个解。当a f 0时,无论|x 0|多小,只要 |x 0| ≠ 0 ,在t→+∞时,总有x(t)→ ∞,即初始值的微小变化会导致解的误差任意大,而当a ?0时,e x at t x 0 )(= 。与零解的误差不会超过初始误差x 0,且随 着t 值的增加很快就会消失,所以,当|x 0|很小时,x(t)与零解的误差也很小。 这个例子表明a f 0时的零解是“稳定”的。下面,我们就给出微分方程零解稳定的严格定义。 设微分方程 ),(x t f dt dx =, x(t 0)=x 0 , x ∈R n (2) 满足解存在唯一定理的条件,其解x(t)=x(t,t 0,x 0)的存在区间是),(+∞?∞,f(t,x)还满足条件: f (t ,0)=0 (3) (3)式保证了x(t) = 0 是(2)式的解,我们称它为零解。 这里给出定义1:若对任意给定的ε > 0,都能找到δ=δ(ε,t 0),使得当||x 0||<δ时的解满足x ( t,x 0 , x 0 ) || x ( t, t 0 , x 0 ) || <ε, t ≥ t 0 , 则称(2)式的零解是稳定的,否则称(2)式的零解是不稳定的。

倒立摆控制系统设计报告.doc

控制系统综合设计 倒立摆控制系统 院(系、部): 组长: 组员 班级: 指导教师: 2014年1月2日星期四

目录 摘要----------------------------------------------------------------------------------3 引言----------------------------------------------------------------------------------3 一、整体方案设计--------------------------------------------------------------3 1、需求-----------------------------------------------------------------------------3 2、目标-----------------------------------------------------------------------------3 3、概念设计----------------------------------------------------------------------3 4、整体开发方案设计---------------------------------------------------------3 5、评估----------------------------------------------------------------------------4 二、系统设计--------------------------------------------------------------------4 (一)系统设计-----------------------------------------------------------------4 1、功能分析----------------------------------------------------------------------4 2、设计规范和约束------------------------------------------------------------6 3、详细设计----------------------------------------------------------------------7 (二)机械系统设计-----------------------------------------------------------8 三、理论分析---------------------------------------------------------------------9 1、控制系统建模----------------------------------------------------------------9 2、时域和频域分析------------------------------------------------------------13 3、设计PID或其他控制器---------------------------------------------------21 四、元器件、设备选型--------------------------------------------------------30

自动控制原理课程设计——倒立摆系统控制器设计

一、引言 支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。 问题的提出 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。

-Lyapunov指数的计算方法

【总结】 Lyapunov指数的计算方法非线性理论 近期为了把计算LE的一些问题弄清楚,看了有7~9本书!下面以吕金虎《混沌时间序列分析及其应用》、马军海《复杂非线性系统的重构技术》为主线,把目前已有的LE计算方法做一个汇总! 1. 关于连续系统Lyapunov指数的计算方法连续系统LE的计算方法主要有定义方法、Jacobian方法、QR分解方法、奇异值分解方法,或者通过求解系统的微分方程,得到微分方程解的时间序列,然后利用时间序列(即离散系统)的LE求解方法来计算得到。关于连续系统LE的计算,主要以定义方法、Jacobian方法做主要介绍容。 (1)定义法

定义法求解Lyapunov指数.JPG 关于定义法求解的程序,和matlab板块的“连续系统LE求解程序”差不多。以Rossler系统为例 Rossler系统微分方程定义程序 function dX = Rossler_ly(t,X) %Rossler吸引子,用来计算Lyapunov指数 %a=0.15,b=0.20,c=10.0 %dx/dt = -y-z, %dy/dt = x+ay, %dz/dt = b+z(x-c), a = 0.15; b = 0.20; c = 10.0; x=X(1); y=X(2); z=X(3); % Y的三个列向量为相互正交的单位向量 Y = [X(4), X(7), X(10); X(5), X(8), X(11);

X(6), X(9), X(12)]; % 输出向量的初始化,必不可少 dX = zeros(12,1); % Rossler吸引子 dX(1) = -y-z; dX(2) = x+a*y; dX(3) = b+z*(x-c); % Rossler吸引子的Jacobi矩阵 Jaco = [0 -1 -1; 1 a 0; z 0x-c]; dX(4:12) = Jaco*Y; 求解LE代码: % 计算Rossler吸引子的Lyapunov指数clear; yinit = [1,1,1]; orthmatrix = [1 0 0; 0 1 0; 0 0 1]; a = 0.15; b = 0.20; c = 10.0; y = zeros(12,1); % 初始化输入 y(1:3) = yinit; y(4:12) = orthmatrix; tstart = 0; % 时间初始值 tstep = 1e-3; % 时间步长 wholetimes = 1e5; % 总的循环次数 steps = 10; % 每次演化的步数 iteratetimes = wholetimes/steps; % 演化的次数mod = zeros(3,1); lp = zeros(3,1); % 初始化三个Lyapunov指数 Lyapunov1 = zeros(iteratetimes,1); Lyapunov2 = zeros(iteratetimes,1); Lyapunov3 = zeros(iteratetimes,1); for i=1:iteratetimes

倒立摆校正装置的设计

自动控制原理课程设计报告 倒立摆系统的控制器设计 指导教师:谢昭莉 学生:冯莉 学号: 20095099 专业:自动化 班级: 2009 级 3 班 设计日期: 2011.12.12—2011.12.23 重庆大学自动化学院 2011年12月

重庆大学本科学生课程设计任务书

目录 1倒立摆系统的研究背景和意义 (1) 2小车倒立摆系统模型的假设 (1) 3符号说明 (2) 4模型的建立 (2) 4.1牛顿力学法系统分析 (2) 4.2拉氏变换后实际系统的模型 (6) 5开环响应分析 (7) 6根轨迹法设计超前校正装置函数 (9) 6.1校正前倒立摆系统的闭环传递函数的析 (9) 6.2系统稳定性分析 (9) 6.3期望闭环极点的确定 (10) 6.4 超前校正装置传递函数的设计 (11) 6.4.1校正参数计算 (11) 6.4.2控制器的确定 (13) 6.4.3校正装置的改进 (13) 6.4.4Simulink仿真 (15)

7直线一级倒立摆频域法设计 (17) 7.1系统频域响应分析 (17) 7.2频域法控制器设计 (19) 7.2.1控制器的选择 (19) 7.2.2系统开环增益的计算 (19) 7.2.3校正装置的频率分析 (20) 7.2.4控制器转折频域和截止频域的求解 (22) 7.2.5校正装置的确定 (22) 7.2.6Simulink仿真 (24) 8直线一级倒立摆的PID控制设计 (25) 8.1PID简介 (25) 8.2PID控制设计分析 (25) 8.3PID控制器的参数测定 (26) 9总结与体会 (29) 9.1总结 (29) 9.2体会 (29) 10参考文献 (30)

一级倒立摆的课程设计

第 1 页 目录 摘要............................................................................................... 3 1.一阶倒立摆的概述.. (4) 1.1倒立摆的起源与国内外发展现状................................. 4 1.2倒立摆系统的组成......................................................... 5 1.3倒立摆的分类:............................................................. 5 1.4倒立摆的控制方法:..................................................... 5 1.5本文研究内容及安排..................................................... 6 1.6系统内部各相关参数为:............................................. 6 2.一阶倒立摆数学模型的建立. (7) 2.1概述................................................................................. 7 2.2数学模型的建立............................................................. 8 2.3一阶倒立摆的状态空间模型:....................................11 2.4实际参数代入:........................................................... 12 3.定量、定性分析系统的性能.. (13) 3.1,对系统的稳定性进行分析........................................ 13 3.2 对系统的稳定性进行分析:...................................... 15 4.状态反馈控制器的设计. (16) 4.1反馈控制结构............................................................... 16 4.2单输入极点配置........................................................... 17 4.3利用MATLAB 编写程序 ............................................ 20 5.系统的仿真研究,校验与分析. (22) 5.1使用Matlab 中的SIMULINK 仿真............................ 22 6.设计状态观测器,讨论带有状态观测器的状态反馈系统的

20112515直线一级倒立摆机理建模

上海电力学院课程设计报告 课名:自动控制原理应用实践 题目:倒立摆控制装置 院系:自动化工程学院 专业:测控技术与仪器 班级:2011151班 姓名:马玉林 学号:20112515 时间:2014年1月14日

倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 1.1 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。 2 直线倒立摆数学模型的建立 直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

-Lyapunov指数的计算方法

【总结】Lyapunov指数的计算方法非线性理论 近期为了把计算LE的一些问题弄清楚,看了有7~9本书!下面以吕金虎《混沌时间序列分析及其应用》、马军海《复杂非线性系统的重构技术》为主线,把目前已有的LE计算方法做一个汇总! 1. 关于连续系统Lyapunov指数的计算方法连续系统LE的计算方法主要有定义方法、Jacobian方法、QR分解方法、奇异值分解方法,或者通过求解系统的微分方程,得到微分方程解的时间序列,然后利用时间序列(即离散系统)的LE求解方法来计算得到。关于连续系统LE的计算,主要以定义方法、Jacobian方法做主要介绍内容。 (1)定义法

定义法求解Lyapunov指数.JPG 关于定义法求解的程序,和matlab板块的“连续系统LE求解程序”差不多。以Rossler系统为例 Rossler系统微分方程定义程序 function dX = Rossler_ly(t,X) %Rossler吸引子,用来计算Lyapunov指数 %a=0.15,b=0.20,c=10.0 %dx/dt = -y-z, %dy/dt = x+ay, %dz/dt = b+z(x-c), a = 0.15; b = 0.20; c = 10.0; x=X(1); y=X(2); z=X(3); % Y的三个列向量为相互正交的单位向量 Y = [X(4), X(7), X(10); X(5), X(8), X(11); X(6), X(9), X(12)]; % 输出向量的初始化,必不可少 dX = zeros(12,1); % Rossler吸引子

dX(1) = -y-z; dX(2) = x+a*y; dX(3) = b+z*(x-c); % Rossler吸引子的Jacobi矩阵 Jaco = [0 -1 -1; 1 a 0; z 0x-c]; dX(4:12) = Jaco*Y; 求解LE代码: % 计算Rossler吸引子的Lyapunov指数 clear; yinit = [1,1,1]; orthmatrix = [1 0 0; 0 1 0; 0 0 1]; a = 0.15; b = 0.20; c = 10.0; y = zeros(12,1); % 初始化输入 y(1:3) = yinit; y(4:12) = orthmatrix; tstart = 0; % 时间初始值 tstep = 1e-3; % 时间步长 wholetimes = 1e5; % 总的循环次数 steps = 10; % 每次演化的步数 iteratetimes = wholetimes/steps; % 演化的次数mod = zeros(3,1); lp = zeros(3,1); % 初始化三个Lyapunov指数 Lyapunov1 = zeros(iteratetimes,1); Lyapunov2 = zeros(iteratetimes,1); Lyapunov3 = zeros(iteratetimes,1); for i=1:iteratetimes tspan = tstart:tstep:(tstart + tstep*steps); [T,Y] = ode45('Rossler_ly', tspan, y); % 取积分得到的最后一个时刻的值 y = Y(size(Y,1),:); % 重新定义起始时刻 tstart = tstart + tstep*steps;

基于双闭环PID控制的一阶倒立摆控制系统设计

自动控制原理课程设计说明书 基于双闭环PID控制的一阶倒立摆控 制系统设计 姓名: 学号: 学院: 专业: 指导教师: 2018年 1月

目录 1 任务概述 (3) 1.1设计概述 (3) 1.2 要完成的设计任务: (3) 2系统建模 (4) 2.1 对象模型 (4) 2.2 模型建立及封装 (4) 3仿真验证 (9) 3.1 实验设计 (9) 3.2 建立M文件编制绘图子程序 (9) 4 双闭环PID控制器设计 (12) 4.1内环控制器的设计 (13) 4.2外环控制器的设计 (14) 5 仿真实验 (15) 5.1简化模型 (15) 5.2 仿真实验 (17) 6 检验系统的鲁棒性 (18) 6.1 编写程序求系统性能指标 (18) 6.2 改变参数验证控制系统的鲁棒性 (19) 7 结论 (22) 附录 (22)

1 任务概述 1.1设计概述 如图1 所示的“一阶倒立摆控制系统”中,通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。 图1 一阶倒立摆控制系统 这是一个借助于“SIMULINK封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。 1.2 要完成的设计任务: (1)通过理论分析建立对象模型(实际模型),并在原点进行线性化,得到线性化模型;将实际模型和线性化模型作为子系统,并进行封装,将倒立摆的振子质量

m和倒摆长度L作为子系统的参数,可以由用户根据需要输入; (2)设计实验,进行模型验证; (3)一阶倒立摆系统为“自不稳定的非最小相位系统”。将系统小车位置作为“外环”,而将摆杆摆角作为“内环”,设计内化与外环的PID控制器; (4)在单位阶跃输入下,进行SIMULINK仿真; (5)编写绘图程序,绘制阶跃响应曲线,并编程求解系统性能指标:最大超调量、调节时间、上升时间; (6)检验系统的鲁棒性:将对象的特性做如下变化后,同样在单位阶跃输入下,检验所设计控制系统的鲁棒性能,列表比较系统的性能指标(最大超调量、调节时间、上升时间)。 倒摆长度L不变,倒立摆的振子质量m从1kg分别改变为1.5kg、2kg、2.5kg、0.8kg、0.5kg; 倒立摆的振子质量m不变,倒摆长度L从0.3m分别改变为0.5m、0.6m、0.2m、0.1m。 2系统建模 2.1 对象模型 一阶倒立摆的精确模型的状态方程为: 若只考虑θ在其工作点 = 0附近的细微变化,这时可以将模型线性化,这时可以近似认为: 一阶倒立摆的简化模型的状态方程为: 2.2 模型建立及封装 上边的图是精确模型,下边的是简化模型。

一阶倒立摆课程设计报告

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系):英才学院专业:自动化班号: 任务起至日期: 2011 年8 月22 日至 2011 年9 月9 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)的超调量小于20度(0.35弧度) (4)稳态误差小于2%。

工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。 工作计划安排: 第3周:(1)建立直线一级倒立摆的线性化数学模型; (2)倒立摆系统的PID控制器设计、Matlab仿真; (3)倒立摆系统的极点配置控制器设计、Matlab仿真。 第4周:实物调试; 撰写课程设计论文。 同组设计者及分工: 各项工作独立完成 指导教师签字 年月日教研室主任意见:

一级倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有 大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 二、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:

工业控制计算机电动机驱动器一阶倒立摆 一阶倒立摆控制系统动态结构图 F面的工作是根据结构框图,分析和解决各个环节的传递函数! 1. 一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示, 其中: M小车质量 m为摆杆质量 J :为摆杆惯量 F:加在小车上的力 x :小车位置 摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 J鎳F y lsin 二- F x l cos: (1) (2) 摆杆重心的运动方程为 F x d2 (x l sin r) 彳『=mg-m d2 d2t

倒立摆课程设计

摘要 倒立摆系统作为一个具有绝对不稳定、高阶次、多变量、强祸合 的典型的非线性系统,是检验新的控制理论和方法的理想模型,所以 本文选择倒立摆系统作为研究对象具有重要的理论意义和应用价值。 相对于其他研究倒立摆系统的控制方法,Backstepping方法最大的优点是不必对’系统进行线性化,可以直接对系统进行递推性的控制器设计,保留了被控对象中有用的非线性项,使得控制设计更接近实际情况,而且所设计的控制器具有很强的鲁棒性。 本文主要利用Backstepping方法设计了直线型一级倒立摆系统控制器并基于/ MATLAB Simulink对系统进行了离线仿真。本文所作的主要工作或要达到的主要目的是: (一)建立直线型一级倒立摆系统的数学模型,并利用Backstepping方法设计了该倒立摆系统的控制器,然后对闭环系统进行了数值仿真并与其他方法进行了数值仿真分析比较。与当前的倒立摆研究成果相比,具有研究方法新颖、控制效果好的特点。 (二)本文利用所设计的非线性控制器在/ MATLAB Simulink环境下对系统进行了离线仿真分析,并与固高公司提供的算法进行了仿真效果比较。 关键词:倒立摆系统,Backstepping, / MATLAB Simulink,实时控制

目录 1.倒立摆系统的简介 (1) 1.1倒立摆系统的研究背景 (1) 1.2倒立摆系统的研究历史、现状及发展趋势 (2) 1.3倒立摆的主要控制方法 (4) 2.一级倒立摆数学模型 (6) 2.1一级倒立摆系统的组成 (6) 2.2一级倒立摆系统数学模型的建立 (7) 3.系统控制器的设计和闭环系统的数值仿真 (9) 4.直线型一级倒立摆系统的Simulink模型和离线仿真 (12) 4.1基于线性控制器对线性系统的离线仿真 (12) 4.2基于线性控制器对非线性系统的离线仿真 (15) 4.3基于非线性控制器对非线性系统的离线仿真 (16) 5.模型的优点 (18) 6.结论和展望 (19) 7.参考文献 (20)

环形一级倒立摆设计.

1 绪论 随着计算机技术和通信技术的飞速发展,控制理论的研究不断深入,自动 控制技术在农业、工业、军队和家庭等社会各领域得到了广泛应用,对于提高 劳动生产率做出了重要贡献。 倒立摆是一种理想的控制对象平台,它结构简单、成本较低,可以有效地 检验众多控制方法的有效性。对倒立摆系统这样一个典型的多变量、快速、非 线性和自然不稳定系统的研究,无论在理论上和方法上都具有重要意义。这不 仅因为其级数增加而产生的控制难度是人类对其控制能力的有力挑战,更是因 为在实现其稳定控制的过程中,众多的控制理论和方法被不断应用,新的控制 理论和方法因而层出不穷。各种控制理论和方法都可以在倒立摆这个控制对象 平台上加以实现和检验,并可以促成控制理论和方法相互间的有机结合,进而 使得这些新方法、新理论可以应用到更加广泛的受控对象中。 1.1 倒立摆系统的分类 随着倒立摆系统控制方法研究的不断深入,倒立摆系统的种类也逐渐发展 为多种形式。目前研究的倒立摆大多为在二维空间仁即平面)内摆动的摆。 考虑倒立摆的不同结构形式,倒立摆系统可以分为以下几种类型 1)小车倒立摆系统仁或称为“直线倒立摆系统”) 小车倒立摆系统主要由小车和摆杆两部分构成。其中,摆杆可以是一级、 两级、三级、四级甚至多级。摆杆的级数越多,控制难度越大,而摆杆的长度 也可能是变化的。控制目标一般是通过给小车施加一个水平方向的力,使小车 在期望的位置上稳定,而摆杆达到竖直向上的动态平衡状态。 2)旋转倒立摆系统仁或称为“环形倒立摆系统”) 旋转倒立摆系统是在小车倒立摆系统的基础上发展起来的。与小车倒立摆不同,旋转倒立摆将摆杆安装在与电机转轴相连的水平旋臂上,通过电机带动 旋臂在水平面的转动来控制摆杆的倒立,摆杆可以在垂直平面内旋转。旋转倒 立摆将小车倒立摆的平动控制改为旋转控制,使得整个系统更为复杂和不稳定,增加了控制的难度。

Lyapunov方程求解(附件)

广西大学实验报告纸 学院:电气工程学院 专业:自动化 成绩: 组员:陈平忠(1302120238) 黄智榜(1302120237) 班级: 实验地点:808实验室 2015年12月 18日 实验内容:Lyapunov 方程求解 【实验目的】 1、掌握求解Lyapunov 方程的一种方法,了解并使用MATLAB 中相应函数。 【实验设备与软件】 1、硬件:PC 机一台;软件:MATLAB/Simulink 。 【实验原理】 1、线性定常系统渐进稳定的Lyapunov 方程判据 线性定常连续系统为渐进稳定的充要条件是:对给定的任一个正定对称阵Q ,都存在唯一的对称正定阵P ,满足如下矩阵Lyapunov 方程: Q PA P A T -=+ 该条件在传递函数最小实现下等价于:全部特征根都是负实数或实部为负的复数,亦即全部根都位于左半复平面。 线性定常离散系统为渐进稳定的充要条件:对给定的任一个正定对称阵Q ,都存在唯一的对称正定阵P ,满足如下矩阵Lyapunov 方程: Q P PG G T -=- 该条件在传递函数最小实现下等价于:全部特征根的摸均小于1,即都在单位圆内。 2、在MATLAB 控制工具箱中,函数lyap 和dlyap 用来求解lyapunov 方程。 P =lyap (T A ,Q )可解连续时间系统的lyapunov 方程,其中,Q 和A 为具有相同维数的方阵(A 是系统矩阵)。如果Q 是对称的,则解P 也是对称的。 P =dlyap (T G ,Q )可解离散时间系统的lyapunov 方程,其中,Q 和G 为具有相同维数的方阵(G 是系统矩阵)。如果Q 是对称的,则解P 也是对称的。 3、连续情况下的最小相位系统:系统的零点均在左半复平面,但系统首先是稳定的,其他情况为非最小相位系统。 【实验内容、方法、过程与分析】 题目1实验内容: 输入连续状态空间模型()∑=D C,B,A,:

一级倒立摆分析.

一级倒立摆的极点配置及仿真 摘要 倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的。 本文主要研究的是一级倒立摆,首先应用动力学方程建立一级倒立摆的非线性数学模型,采用小偏差线性化的方法在平衡点附近局部线性化得到线性化的数学模型。然后通过输入单位阶跃信号分析系统的开环稳定性,由线性化得到的状态方程判断系统的能控性和能观性,结合系统的稳定性条件、调整时间以及超调量找到合适的极点,运用极点的配置方法(Matlab的acker函数)算出状态反馈增益矩阵K,运用状态空间分析方法,采用状态反馈为倒立摆系统建立稳定的控制律,并判断加入反馈矩阵K后的能观性和能控性是否改变。最后应用Matlab中的Simulink建立相应框图,得到输出变量水平位置和角度随时间的变化曲线,验证加入反馈矩阵K后一级倒立摆系统的稳定性。 关键词:一级倒立摆状态反馈极点配置Matlab Simulink

目录 1、一级倒立摆系统简介 (3) 2、一级倒立摆系统的数学模型 (4) 2.1、数学模型的建立 (4) 2.2、运动分析 (5) 2.2.1、沿水平方向运动(直线运动) (5) 2.2.2、绕轴线的转动(旋转运动) (7) 3、状态空间极点配置 (9) 3.1、系统开环稳定性分析 (9) 3.2、开环系统的能控性分析 (11) 3.3、开环系统的能观性分析 (12) 3.4、系统极点配置 (13) 3.5、闭环系统的能控性和能观性分析 (16) 4、一级倒立摆系统Matlab仿真 (17) 4.1、系统开环Simulink搭建及仿真 (17) 4.2、系统极点配置后的Simulink仿真 (20) 5、总结 (24) 6、参考文献 (25)

相关文档
相关文档 最新文档