文档库 最新最全的文档下载
当前位置:文档库 › Strontium and barium uptake in aragonitic otoliths of marine fish

Strontium and barium uptake in aragonitic otoliths of marine fish

Strontium and barium uptake in aragonitic otoliths of marine fish
Strontium and barium uptake in aragonitic otoliths of marine fish

PII S0*******(99)00419-6

Strontium and barium uptake in aragonitic otoliths of marine ?sh

G RETCHEN

E.B ATH ,1,*S IMON R.T HORROLD ,1C YNTHIA M.J ONES ,1S TEVEN E.C AMPANA ,2J AMES W.M C L AREN ,3and

J OSEPH W.H.L AM 3

1

Department of Biological Sciences,Old Dominion University,Norfolk,Virginia 23529USA 2

Marine Fish Division,Bedford Institute of Oceanography,Dartmouth,Nova Scotia,Canada B2Y 4A2

3

Institute for National Measurement Standards,National Research Council of Canada,Ottawa,Ontario,Canada K1A 0R6

(Received August 17,1999;accepted in revised form November 12,1999)

Abstract —Minor and trace element analyses of ?sh otoliths (ear stones)may provide a high-resolution reconstruction of temperature histories and trace element compositions of aquatic systems where other environmental proxies are not available.However,before otoliths can be used to reconstruct water chemistry,it is essential to validate the assumption that trace metals in otoliths are deposited in proportion to dissolved concentrations in the ambient environment.We show,using a marine ?sh (Leiostomus xanthurus )reared in the laboratory under controlled experimental conditions,that otolith Sr/Ca and Ba/Ca ratios are deposited in proportion to their respective ratios in ambient waters.Temperature signi?cantly affected Sr incorporation but did not affect Ba incorporation in otoliths.Sr/Ca partition coef?cients (D Sr )were 0.182and 0.205at 20°C and 25°C,respectively.The partition coef?cients for Ba/Ca were 0.055at 20°C and 0.062at 25°C.A nonlinearity in the relationship between D Ba and ambient Ba concentrations suggested that extrapolation beyond the Ba levels used in the experiment was not justi?ed.On the basis of our results,it should be possible to reconstruct Sr/Ca and Ba/Ca levels in environments inhabited by ?sh based on otolith chemistry.Furthermore,Sr/Ca thermometry may also be possible using ?sh otoliths,but validation of the temperature dependence of Sr/Ca in otoliths will be required.We believe otoliths represent an excellent,and as yet underused,record of the

physicochemical properties of both modern and ancient aquatic environments.Copyright ?2000Elsevier

Science Ltd

1.INTRODUCTION

Trace element studies of biogenic carbonates,such as fora-miniferal calcite and coral aragonite,have provided a wealth of information on the physicochemical properties of modern and ancient aquatic environments.Recently,several workers have proposed that the isotopic and trace element composition of ?sh otoliths,or ear stones,may provide useful proxies for recon-structing temperature histories (Patterson et al.,1993;Thorrold et al.,1997a)and,perhaps,trace element concentrations in marine and freshwater systems (Thorrold et al.,1997b,1998a,b).Otoliths are common in the fossil record from the late Cretaceous to the present (Nolf,1995),locally abundant in aboriginal middens (e.g.,Kalish 1999),and highly resistant to diagenetic processes in sediment dating to the Jurassic Period (Patterson,1999).More important,in the context of oceano-graphic and climate proxies,otoliths form periodic rings of suf?cient widths to allow sampling at a temporal resolution approaching the daily level using either micromilling (Wurster et al.,1999)or laser ablation techniques (Campana et al.,1994;Thorrold and Shuttleworth,1999).Analyses of otolith chemis-try may,therefore,allow high-resolution reconstructions of temperature and water chemistry from aquatic environments where coral or sponge skeletons are not available (e.g.,Patter-son,1998).Trace elements and isotope values in otoliths may also serve as natural tags for identifying natal location and population structure of anadromous and marine ?sh species

(Kennedy et al.,1997;Thorrold et al.,1998a,b).For instance,Swearer et al.(1999)have recently developed an approach for tracing the dispersal histories of larval reef ?sh recruits using differences in larval growth rates and otolith chemistry as a natural tag of either local retention within near-coastal waters or larval development within open ocean waters.Before otoliths can be used to reconstruct water chemistry,it is necessary to validate the assumption that trace metals in otoliths are deposited in proportion to dissolved concentrations in the ambient environment.This assumption is controversial,with good reason (Campana,1999).Otolith aragonite crystal-lizes from ?uid within the endolymphatic canal of the inner ear.Bicarbonate,calcium,and at least some trace metal ions in the endolymphatic ?uid are derived primarily from the ambient water (Farrell and Campana,1996;Thorrold et al.,1997a).However,these ions must ?rst pass from the water into the blood plasma by way of the gills,and then cross another membrane into the endolymph.There is clearly potential for decoupling of free ion concentrations across the branchial membrane,as ion barriers are essential for any organism with high osmoregulatory requirements.Variations in the levels of metal-binding proteins within the blood plasma and the en-dolymphatic ?uid may further complicate any correlation be-tween water and otolith chemistry (Kalish,1991).

Any relationship between seawater composition and otolith chemistry will be determined by the kinetics of ion transport from water to the precipitating surface,but will also be a function of the mechanism by which the trace elements are incorporated into otolith aragonite.Divalent metals,such as Sr 2?and Ba 2?that have ionic radii similar to Ca 2?,are generally considered to substitute for Ca 2?ions in the orthor-

*Author to whom correspondence should be addressed:Gretchen E.Bath,NOAA/NOS,Center for Coastal Fisheries and Habitat Research,101Pivers Island Rd.,Beaufort NC 28516(Gretchen.Bath@https://www.wendangku.net/doc/4b3454959.html,).

Pergamon

Geochimica et Cosmochimica Acta,Vol.64,No.10,pp.1705–1714,2000

Copyright ?2000Elsevier Science Ltd Printed in the USA.All rights reserved

0016-7037/00$20.00?.00

1705

微量元素

分配系数丗指一定温度下,处于平衡状态时丆组分在固定相中的浓度和在流动相中的浓度之比

partition coeffcients 出生地

滞留与成比例

hombic aragonite lattice(Speer,1983),at least in low Sr aragonite such as?sh otoliths(Greegor et al.,1997).For these elements,partitioning between aqueous and solid aragonite phases can be conveniently described by a distribution coef?-cient.Boyle(1988)and Lea and Spero(1992,1994)outline an approach that uses an empirically determined distribution co-ef?cient,termed a partition coef?cient by Morse and Bender (1990),to characterize the deposition of metal cations into biogenic carbonates.The trace metal composition of otoliths

([Me/Ca]

otolith )can be related to that of the water([Me/Ca]

H20

)

by way of this partition coef?cient(D

Me

),where

?Me Ca?

otolith ?D Me?Me Ca

?

H2O

(1)

This approach may be particularly useful in otolith and mollusc

shell studies,where depositional surfaces are not in direct contact with the water,and aragonite formation is mediated by water-soluble proteins(Asano and Mugiya,1993;Belcher et al.,1996;Falini et al.,1996).

Partition coef?cients for any carbonate system may also be a function of physical parameters such as temperature and pre-cipitation rate.Temperature is perhaps the most widely studied of these parameters in biogenic carbonates.Negative relation-ships between Sr/Ca ratios and temperature have been reported for coral skeletons(e.g.,Beck et al.,1992;Shen et al.,1996). However,the slope of this relationship is signi?cantly larger than that of inorganic aragonite(Kinsman and Holland,1969), suggesting that kinetic or vital effects must also play a role (Hart and Cohen,1996).The in?uence of rate-dependent pro-cesses on Sr incorporation is well established for inorganic carbonates(e.g.,Lorens,1981;Rimstidt et al.,1998),but it remains uncertain if precipitation rate is an important parameter controlling Sr/Ca ratios in biogenic aragonite(deVilliers et al., 1994;Shen et al.,1996).We know less about the factors determining D

Ba

in biogenic aragonite.Lea et al.(1989)and Hart and Cohen(1996)noted positive correlations between quasiannual cycles of Sr/Ca and Ba/Ca in corals,suggesting that either temperature or a correlated variable such upwelling

intensity may in?uence D

Ba

to some degree.Obviously it is necessary to characterize this relationship,if indeed any rela-tionship exists,before it will be possible to reconstruct dis-solved Ba concentrations in seawater from otolith aragonite. To calculate partition coef?cients for the uptake of Sr and Ba in?sh otoliths,and the possible effects of external variables such as temperature,the composition of the ambient water must be known.This is achieved most easily and accurately under labora-tory conditions.Lea and Spero(1992,1994),Mashiotta et al. (1997),and Lea et al.(1999)cultured planktonic foraminifera in the laboratory to calculate Mg/Ca,Sr/Ca,Cd/Ca,and Ba/Ca par-tition coef?cients for shell calcite.However,this approach has rarely been applied to the study of trace metals in otolith aragonite. In this study,we describe an experiment in which juveniles of an estuarine-dependent species of marine?sh,Leiostomus xanthurus, were reared under controlled laboratory conditions to deter-mine whether otolith Sr/Ca and Ba/Ca is proportional to con-centrations in the rearing water.We also investigate the effects of temperature on both Sr/Ca and Ba/Ca partition coef?cients. Finally,by maintaining?sh under controlled conditions we were able to quantify the amount of otolith material deposited during the experiment.These data provide a test of the in?u-ence of precipitation rate on the chemistry of otolith aragonite.

2.EXPERIMENTAL METHODS

https://www.wendangku.net/doc/4b3454959.html,rval Rearing

Spot(Leiostomus xanthurus)were spawned November22,1997,at the National Marine Fisheries Service,Southeast Fisheries Science Center in Beaufort,North Carolina,for the experiment,assuring the larvae were from the same brood stock and of known https://www.wendangku.net/doc/4b3454959.html,rvae were reared in natural seawater at a salinity of30‰salinity and in a common tank until42days after hatching,at which time they were transferred to the experimental tanks.Mortality rates of new-hatched larval?sh are generally high(?90%),and hence by rearing the?sh for a period before initiating the experiment we ensured adequate survival rates of the experimental?sh.At the outset of the experiment,?sh were randomly distributed among a total of24acid-washed20L high-density polyethylene tanks at a density of two?sh per liter and acclimated over several days to the experimental conditions of20‰salinity.

To minimize the possibility of contamination of water during the experiment,all tanks were located within a PVC frame covered with polyethylene sheeting.A continuous supply of?ltered air,provided by a0.2?m HEPA unit,maintained positive pressure within the enclosure throughout the experiment.Room temperature was maintained at18°C, and aquarium heaters within each of the tanks were used to achieve desired temperatures of either20°C or25°C.The light:dark cycle was controlled at12h:12h for the duration of the experiment.Enriched Artemia were fed to the?sh for the?rst2weeks of the experiment,and thereafter on an arti?cial diet(Hi-Pro Starter,0.5and0.7mm,Corey Feed Mills,LTD.).

We used arti?cial seawater(“Instant Ocean”)as our water source throughout the experiment.Triplicate experimental tanks were ran-domly assigned four levels of Sr/Ca corresponding to ambient and then 1.2?,1.4?and1.8?ambient levels,and Ba/Ca corresponding to ambient and then3?,6?,and10?ambient levels.The Sr and Ba spiked water was prepared by adding appropriate amounts of standard solutions(SPEX)of SrCl

2

and BaCl

2

to each of the tanks.To maintain water quality and spike levels in the tanks,water was changed at50% volume daily.The new water was spiked before being added to the tanks to ensure that dissolved Sr and Ba levels were maintained at the desired levels throughout the experiment.We collected water samples from each tank every second day of the experiment.These samples were?ltered through0.22?m cellulose nitrate membrane?lters,acid-i?ed with trace metal grade12N HCl to pH2,and then stored frozen acidi?ed for subsequent analysis.Water temperature,salinity,and pH were also recorded daily(Table1).

2.2.Otolith and Water Analyses

At the termination of the experiment,all remaining?sh were mea-sured,and then frozen in individual plastic bags.Sagittal otolith pairs were removed from the?sh and scraped clean with acid-washed glass probes in a class100clean room.Otoliths were sonicated in Milli-Q

water for7min and triple rinsed with ultrapure H

2

O

2

,followed by three sequential rinses of Milli-Q water.They were placed on acid-washed glass slides to dry for36h under a class100laminar?ow hood.After drying,otolith pairs were weighed to the nearest10?g and transferred to acid-washed1.5mL high-density polyethylene vials.Otoliths from a sample of?sh archived at the start of the experiment were also removed and weighed to determine the proportion of otolith material in the experimental?sh deposited during the initial larval rearing.Otoliths from these?sh averaged less than50?g and therefore,we concluded that conditions during the initial rearing period had little effect on the resultant otolith chemistry of the experimental?sh.

Otolith pairs were prepared for Sr/Ca and Ba/Ca analysis by isotope dilution inductively coupled plasma mass spectrometry(ICP-MS). Samples were dissolved in approximately300?L of10%redistilled nitric acid solution containing the enriched isotopes of the metals

1706G.E.Bath et al.沉淀

targeted for isotope dilution along with the internal standard.The enriched spike solution contained87Sr and137Ba,along with an internal standard,69Ga,that was used to quantify Ca.All analyses were run on a Perkin-Elmer Elan6000ICP-MS equipped with a high-ef?ciency pneumatic nebulizer.The analyses were run in peak-hopping mode, and monitored46Ca,69Ga,87Sr,88Sr,137Ba,and138Ba.The estimated limits of detection(3?based on a1mg otolith weight in a0.3mL?nal volume)were500,6,and40ng/g for Ca,Sr,and Ba,respectively. Analyses of water samples collected during the experiment were also conducted using isotope dilution ICP-MS.Samples were selected at weekly intervals,including the start and end of experiment,so that a total of six samples were run from each tank.All samples were spiked with a solution containing86Sr and137Ba,along with an internal standard,45Sc,which was used to quantify Ca levels.The solutions were then aspirated directly into a Turner SOLA ICP-MS,and the peak-hopping mode was again used to monitor45Sc,46Ca,87Sr,88Sr, 137Ba,and138Ba.Analyses of water samples were conducted in either duplicate or triplicate,and values presented here are means of the replicate analyses(Figs.1and2).

We encountered two potential dif?culties with the use of arti?cial seawater.First,Sr/Ca levels of seawater made up from“Instant Ocean”salts are slightly higher,at12mmol/mol,than that found in normal seawater(typically8.5–9mmol/mol).However,we could do little to lower this value,as although dilution will lower absolute Sr levels,it will not change Sr/Ca ratios in the water.The highest Sr/Ca values in this experiment were,therefore,approximately2.5?that of normal seawater.We did not face a similar problem with ambient Ba/Ca levels, and spiked levels within the tanks spanned a range(23–230?mol/mol) that would commonly be encountered by estuarine-dependent?sh along the east coast of the United States(Coffey et al.,1997).Second, we used arti?cial seawater in an attempt to minimize variations in baseline Sr and Ba concentrations in the tanks.However,Sr/Ca levels did?uctuate to some degree throughout the experiment(Fig.1).This will have had the effect of increasing the variance of otolith Sr/Ca within individual tanks if?sh were growing at different rates during the experiment.Given the coherence in Sr/Ca levels among tanks through time,mean values of otolith Sr/Ca from each of the tanks should not have been unduly affected by this variability.

3.RESULTS AND DISCUSSION

3.1.Sr/Ca Ratios

The Sr/Ca ratios of otoliths from214juvenile L.xanthurus ranged from1.85to6.77mmol/mol,with an overall mean of 3.3mmol/mol(Appendix1).Using tanks as the appropriate unit of replication,Sr/Ca ratios in otoliths were directly pro-portional to the Sr/Ca of the water in which the?sh were raised (Fig.3).Least squares regression described a linear relationship (r2?0.84)between[Sr/Ca]otolith and[Sr/Ca]H

20

at20°C [Sr/Ca]otolith?0.165?0.052?95%CI)[Sr/Ca]H2O?0.260

?0.897?95%CI)(2)

and a linear relationship at25°C(r2?0.82)

?Sr/Ca]otolith?0.162?0.054?95%CI)[Sr/Ca]H2O?0.70

?0.954?95%CI)(3)

We calculated partition coef?cients(D

Sr

)for both of the tem-

perature treatments directly from Sr/Ca

otolith

and Sr/Ca

H20

data

for each of the individual tanks.Note that this is algebraically

equivalent to constraining regression lines through a zero in-

tercept,on the basis that?sh living in seawater without Sr

would be expected to have no Sr in their otoliths.Estimates of

D

Sr

were0.182?0.011(95%con?dence interval[CI])and

0.205?0.04(95%CI)at20°C and25°C,respectively.

It is apparent that Sr/Ca values in few,if any,inorganic or

biogenic aragonites can be explained on the basis of thermo-

dynamic considerations alone.Aragonite from hematypic coral

skeletons typically have Sr/Ca values close to that of inorganic

aragonite,with D

Sr

values of both systems ranging from1to

1.2,whereas the theoretical D

Sr(equil)

based on thermodynamic

considerations is0.095(Plummer and Busenberg,1987).This

lack of equilibration is presumably due to kinetic processes at

the crystal surface and within the solution boundary layer of

inorganic aragonite,along with unknown vital effects in coral

skeletons(Hart and Cohen,1996).Strontium uptake in otolith

aragonite is also out of equilibrium with the ambient water,

although apparently not to the extent of either inorganic ara-

gonite or coral skeletons.In a study of several marine?sh

species,Kalish(1991)estimated D

Sr

to be0.18?0.04,a value

almost identical to that found in the present study.However,

Kalish measured Sr/Ca in the endolymphatic?uid rather than

seawater,implying that Sr/Ca in the endolymph tracks accu-

rately Sr/Ca values in seawater.Partition coef?cients for ara-

gonite in mollusc shells are also lower than inorganic aragonite,

ranging from0.23to0.31(Stecher et al.,1996).Otoliths and

mollusc shells are similar in that the aragonite precipitates from

a highly regulated internal body?uid rather than seawater.

Hence,although D

Sr

of both?sh otoliths and mollusc shells are

quite close to equilibrium values,it would be premature to

conclude that these structures precipitate closer to thermody-

namic equilibrium than inorganic aragonite and coral skeletons

without more information on free ion concentrations within the

endolymphatic and extrapallial?uids.

The observation that Sr/Ca values in?sh otoliths were rea-

sonably close to thermodynamic equilibrium was surprising

given the potential for regulation of both Sr and Ca ions across

membranes and within the blood plasma.However,the obser-

Table1.Summary of average water temperature(T),pH,and dis-solved Sr/Ca(mmol/mol)and Ba/Ca(?mol/mol)levels within each of the24individual tanks during the course of the experiment.

Tank no.T(°C)pH Sr/Ca Ba/Ca 120.88.0015.21151.16 225.28.0517.4071.41 325.28.0016.0325.48 420.37.9715.1723.90 520.67.9622.36138.83 620.48.0217.6872.30 724.88.0122.74148.14 825.27.9817.8820.85 925.18.0022.4722.93 1020.37.9512.73155.85 1120.47.9112.54228.09 1225.48.0422.5070.21 1320.37.9717.7922.98 1420.37.9422.55215.56 1525.18.0412.75211.75 1625.08.0315.23144.87 1724.78.0213.0374.27 1825.57.9818.29231.45 1920.38.0017.8175.09 2024.98.0013.39142.93 2119.77.9815.0070.96 2220.48.0112.60222.20 2324.58.0115.0224.88 2420.07.9822.8023.191707

Sr and Ba uptake in?sh otoliths

vation that Sr/Ca ratios in otoliths are deposited in direct proportion to Sr/Ca in the ambient water was more important in the context of using Sr/Ca ratios in otoliths as an environmental proxy.Although there has been growing acceptance of the observation that large differences in [Sr/Ca]H 2O (i.e.,from marine to freshwater systems)are faithfully recorded by oto-liths (Campana,1999),our study suggests that more subtle variations will also be recoverable.It should be noted that there was some scatter in relationship between [Sr/Ca]otolith and [Sr/Ca]H 20within individual tanks.At least some of this vari-ance may be due to temporal changes in [Sr/Ca]H 2O of individ-ual tanks (Fig.1),despite our attempts to minimize such differences.

This experiment was not designed to calibrate the tempera-ture dependence of D Sr ,as ?sh were only reared at two tem-peratures.However,it is possible to get a ?rst-order estimate of the relationship between D Sr and temperature in otoliths based on these results.Least-squares regression of D Sr and tempera-ture (T)found a signi?cant linear relationship

D Sr ?0.0046T ?C ?0.089?r 2?0.62?

(4)

The most obvious difference between the relationship and that

found in corals is that temperature is positively,not negatively,correlated with D Sr ,although the degree of temperature depen-dence is similar.For instance,Shen et al.(1996)found the following relationship between D Sr and temperature in Porites corals:

D Sr ???0.006011T ?C ??1.2077

(5)

Results from earlier studies on the effect of temperature on Sr/Ca ratios in ?sh otoliths are contradictory,in both the direction and magnitude of the temperature dependence.Neg-ative (e.g.,Radtke et al.,1990;Townsend et al.,1995),positive (Kalish,1989;Arai et al.,1995),and no relationships (Gallahar and Kingsford,1996;Tzeng,1996)between Sr/Ca and temper-ature have been reported in the literature.Limited data from marine mollusk shells,which like otoliths are low Sr aragonite,suggest a positive relationship between Sr/Ca ratios and tem-perature (Stecher et al.,1996;reference 23in Hart and Blusz-tajn,1998),although Buchardt and Fritz (1978)found that Sr incorporation was independent of temperature in a freshwater gastropod.We reanalyzed data from a laboratory study on the effects of temperature and salinity on trace element chemistry of another species of sciaenid species,Micropogonias

undula-

Fig.1.Mean Sr/Ca ratios (?SD)at ambient (})and 1.25?(?),1.5?(s ),and 2?(●)ambient levels at 20°C (closed symbols)and 25°C (open symbols),from weekly sampling throughout the experiment,along with mean values (?SD)for each spike level/temperature combination (mean)over the duration of the experiment.

1708G.E.Bath et al.

tus (Fowler et al.,1995),assuming that there were no differ-ences in [Sr/Ca]H 2O among tanks because all had a common water source.Although only ?ve tanks at two temperatures were available,there was a signi?cant positive relationship between D Sr and temperature,

D Sr ?0.0086T ?C ?0.124?r 2

?0.85?

(6)

The relationship for M.undulatus otoliths is not signi?cantly different from that of L.xanthurus otoliths determined in the present study.Clearly,these data are preliminary and the tem-perature dependence of D Sr in ?sh otoliths will require careful calibration for individual species of interest.However,we remain cautiously optimistic that it may be possible to recon-struct temperatures from Sr/Ca ratios in otoliths where [Sr/Ca]H 2O can be adequately constrained.3.2.Ba/Ca Ratios

The Ba/Ca ratios of otoliths from juvenile L.xanthurus ranged from 1.7to 15.2?mol/mol,with an overall mean of 5.59?mol/mol.Otolith Ba/Ca ratios were directly proportional

to [Ba/Ca]H 2O of the ambient water (Fig.4)at both tempera-tures.A linear relationship (r 2?0.90)between [Ba/Ca]otolith and [Ba/Ca]H 20at 20°C was described by least squares regres-sion as:

?Ba/Ca]otolith ?0.033?0.007?95%CI ??Ba/Ca]H 2O

?1.358?1.042?95%CI)

(7)

A similar linear relationship (r 2?0.98)was found at 25°C:?Ba/Ca]otolith ?0.039?0.004?95%CI ??Ba/Ca]H 2O

?1.350?0.591?95%CI)

(8)

We again calculated D Ba directly

from the [Ba/Ca]otolith and [Ba/Ca]H 2O data,and found values of 0.06?0.06(95%CI)at 20°C and 0.06?0.07(95%CI)at 25°C.These estimates are signi?cantly lower than partition coef?cients for hematypic corals (?1.3;Lea et al.,1989),but are probably close to values Sr,in coral

Fig.2.Mean Ba/Ca ratios (?SD)at ambient (})and 1.25?(?),1.5?(s ),and 2?(●)ambient levels at 20°C (closed symbols)and 25°C (open symbols),from weekly sampling throughout the experiment,along with mean values (?SD)for each spike level/temperature combination (mean)over the duration of the experiment.

1709

Sr and Ba uptake in ?sh otoliths

Ba/Ca that were correlated with the seasonal temperature and upwelling cycles,later studies have found little evidence of a temperature effect on Ba/Ca in coral aragonite in the absence of upwelling (Sinclair et al.,1998).Rather,as with Ba/Ca in foram shells (Lea and Spero,1992,1994),Ba/Ca ratios in

otoliths appeared to be accurately recording changes in the Ba/Ca composition of the ambient water,and were not in?u-enced by temperature.

The relatively large standard deviations around our estimates of Ba partition coef?cients were due to a nonlinearity in the relationship between D Ba and [Ba/Ca]H 2O at both 20°C and 25°C (Fig.5).These data suggest that proportionally more Ba was incorporated in otoliths at low [BaCa]H 2O values when normalized to Ca.Although this does not affect our ability to recover dissolved Ba concentrations from Ba/Ca ratios in oto-liths over the [Ba/Ca]H 2O range in this experiment (Eqn.3),extrapolation beyond these points would be not be justi?ed without further data.It is dif?cult to speculate the cause of this nonlinearity without information on ion transport within the ?sh.It may be that proportionally more Ba,relative to Ca,was transported to the endolymphatic ?uid in the low ambient Ba treatments than those tanks with higher Ba levels,up to a threshold level at approximately 150?mol/mol.Nonlinear uptake of potentially toxic heavy metals across the branchial membrane has been documented in freshwater ?shes (Olsson et al.,1998).Alternatively,discrimination may be occurring at the crystal surface,perhaps due to saturation of kink sites suitable for Ba 2?attachment (e.g.,Watson,1996),or some other kinetic process.Distinguishing between biological and kinetic effects should be possible by examining Ba/Ca levels in blood plasma and endolymphatic ?uid,along with [Ba/Ca]otolith and [Ba/Ca]H 2O ,and we will be pursuing such experiments in future work.

3.3.Rate Effects on Otolith Sr/Ca and Ba/Ca

The effect of precipitation rate on trace metal incorporation in biogenic aragonite remains ambiguous.Rate effects

have

Fig.3.Mean Sr/Ca ratios ([Sr/Ca]otoliths ?SE)in otoliths of labo-ratory-reared Leiostomus xanthurus plotted against Sr/Ca ratios of the rearing water ([Sr/Ca]H2O ?SE)at either 20°C (s ,dashed line)or at 25°C (E ,solid line).Lines were ?tted by linear least-squares regression for each of the temperature

treatments.

Fig. 4.Mean Ba/Ca ratios ([Ba/Ca]otoliths ?SE)in otoliths of laboratory-reared Leiostomus xanthurus plotted against Ba/Ca ratios of the rearing water ([Ba/Ca]H2O ?SE)at either 20°C (s ,dashed line)or at 25°C (E ,solid line).Lines were ?tted by linear least-squares regres-sion for each of the temperature

treatments.

Fig.5.Relation between estimates (?SE)of Ba partition coef?cients (D Ba )for otoliths of laboratory-reared Leiostomus xanthurus and Ba/Ca ratios of the rearing water ([Ba/Ca]H2O )at either 20°C (s )or at 25°C (E ).

1710G.E.Bath et al.

沉淀率

generally not been found in synthetic aragonite studies (Kins-man and Holland,1969;Zhong and Mucci,1989),although they have been widely documented in synthetic calcite precip-itates (e.g.,Lorens,1981;Tesoriero and Pankow,

1996;Rim-stidt et al.,1998).It has proved similarly dif?cult to document rate effects in biogenic aragonite.Several studies have found Sr/Ca ratios correlated with coral extension rates (e.g.,Weber,1973;deVilliers et al.,1994,1995),whereas other workers have found no such relationship (e.g.,Shen et al.,1996).Data on rate effects in mollusk aragonite are sparse compared to corals,but are equally contradictory.Stecher et al.(1996)speculated that seasonal differences in shell growth rates gen-erated quasiperiodic cycles in Sr/Ca ratios in two species of bivalve mollusk.In contrast,Buchardt and Fritz (1978)found that Sr incorporation in the shells of a gastropod Limnaea stagnalis were independent of growth rate.Our data allowed a de?nitive test of the relationship between precipitation rate and Sr/Ca and Ba/Ca ratios in otoliths,as the mass of individual ?sh otoliths provided an excellent proxy for average precipitation rate during the experiment.

We detected no signi?cant correlation between otolith mass and Sr/Ca ratios (Fig.6),averaged within each of the experi-mental tanks (r ??0.314,p ?0.134),suggesting that our data were not confounded by differences in biomineralization rates among the tanks.This conclusion was strengthened by the observation that there were no signi?cant differences in otolith mass between the two temperatures (F (1,20)?0.022,p ?0.882).That is,the temperature dependence of D Sr was not driven by differences in precipitation rates among tanks.This further implied that there was also no relation between Sr incorporation and ?sh growth rate,given the high correlation between ?sh standard length and otolith mass (r ?0.902,n ?24).Rate effects may be aliased by temperature and water chemistry differences among tanks,so we also examined cor-

relations between Sr/Ca ratios and individual otolith mass within each of the tanks.These data provided some evidence of a relation between Sr/Ca and otolith mass,as 23of the 24correlations were negative.However,only one of the correla-tions was statistically signi?cant,after adjusting the experi-ment-wise error to take into account the number of correlations

performed.

Barium incorporation into otoliths is unrelated to precipita-tion rate,as evidenced by a nonsigni?cant correlation (r ?0.177,p ?0.4078)between the two variables averaged within each tank (Fig.7).Within-tank correlations were similarly weak,with only one tank of a total of 24being statistically signi?cant.As for Sr,this result implied that there was also no relation between ?sh growth and Ba/Ca ratios in otoliths.Metabolic in?uences,at least as manifested by individual ?sh growth rates,were not a principal determinant of Sr and Ba incorporation in ?sh otoliths.

4.SUMMARY

Otolith Sr/Ca and Ba/Ca ratios are deposited in proportion to their respective ratios in ambient waters.It should be possible,therefore,to reconstruct Sr/Ca and Ba/Ca levels in environ-ments inhabited by ?sh based on otolith chemistry.Evidence of a nonlinearity between D Ba and [Ba/Ca]H 2O suggests,however,that careful calibration of the relation between Ba/Ca levels in otoliths and water will be required before extrapolating the results to lower Ba/Ca environments and to other species.Our estimates of D Sr for otoliths are close to the theoretical distribution coef?cient for aragonite based on thermodynamic equilibrium,although this may be due,at least in part,to differential uptake of Ca relative to Sr across the membranes separating the otolith from the ambient environment.

Temperature was positively related to D Sr ,unlike inorganic aragonite and coral skeletons in which the temperature depen-

Fig.6.Mean otolith Sr/Ca values (?SE)from laboratory-reared Leiostomus xanthurus plotted against mean otolith weight (?SE)for each of 24rearing tanks maintained at either 20°C (s )or at 25°C (E ).

Fig.7.Mean otolith Ba/Ca values (?SE)from laboratory-reared Leiostomus xanthurus plotted against mean otolith weight (?SE)for each of 24rearing tanks maintained at either 20°C (s )or at 25°C (E ).

1711

Sr and Ba uptake in ?sh otoliths 证明

dence of D

Sr

is negative.Although we could not provide an

adequate temperature calibration for Sr/Ca ratios,we remain cautiously optimistic that temperatures can be reconstructed from juvenile L.xanthurus otoliths once this calibration has been achieved.Temperature had no detectable in?uence on

D

Ba

,suggesting that most of the variation in Ba/Ca ratios in otoliths re?ects concomitant variability in the Ba/Ca composi-tion of the environment.

We found weak,generally statistically insigni?cant,effects of precipitation rate on Sr and Ba incorporation in otoliths. Metabolic effects were similarly weak,using individual?sh growth rates as a measure of metabolic activity.Rather,Sr and Ba incorporation in otoliths is primarily a function of the chemistry of the ambient environment,as modi?ed by temper-ature in the case of Sr.We believe otoliths represent an excel-lent,and as yet underused,record of the physicochemical properties of both modern and ancient aquatic environments.

Acknowledgments—This research was supported by grants from the National Science Foundation to SRT,CMJ,and SEC(OCE–9416579).John Burke(National Marine Fisheries Service,Southeast Fisheries Science Center,Beaufort,NC)provided spawning and initial ?sh rearing.David Gray(Elemental Research Inc.,Vancouver,British Columbia)performed the water analyses.Brian Wells and Barbara McClellan volunteered additional support with the daily maintenance of the experiment.Additional support was provided to GEB through a grant-in-aid from the International Women’s Fishing Association. Helpful comments from Bill Patterson and David Lea signi?cantly improved an earlier version of the manuscript.

REFERENCES

Arai,N.,Sakamoto,W.,and Maeda K.(1995)Correlation between ambient seawater temperature and strontium-calcium concentration ratios in otoliths of red sea bream Pagrus major.Fish.Sci.62, 652–653.

Asano M.and Mugiya Y.(1993)Biochemical and calcium-binding properties of water-soluble proteins isolated from otoliths of the tilapia,Oreochromis https://www.wendangku.net/doc/4b3454959.html,p.Biochem.Physiol.104B,201–205.

Beck J.W.,Edwards R.L.,Ito E.,Taylor F.W.,Recy J.,Rougeire F., Joannot P.,and Henin C.(1992)Sea-surface temperature form coral skeletal strontium/calcium ratios.Science257,644–647.

Belcher A.M.,Wu X.H.,Christensen R.J.,Hansma P.K.,Stucky G.D.,and Morse D.E.(1996)Control of crystal phase switching and orientation by soluble mollusc-shell proteins.Nature381,56–58. Boyle E.A.(1988)Cadmium:Chemical tracer of deepwater paleocean-ography.Paleoceanogr.3,471–489.

Buchardt B.and Fritz P.(1978)Strontium uptake in shell aragonite from the freshwater gastropod Limnaea stagnalis.Science199,291–292.

Campana S.E.(1999)Chemistry and composition of?sh otoliths: Pathways,mechanisms and applications.Mar.Ecol.Prog.Ser.188, 263–297.

Campana S.E.,Fowler A.J.,and Jones C.M.(1994)Otolith elemental ?ngerprinting for stock identi?cation of Atlantic cod(Gadus morhua)using laser ablation ICPMS.Can.J.Fish.Aquat.Sci.51, 1942–1950.

Coffey M.,Dehairs F.,Collette O.,Luther G.,Church T.,and Jickells T.(1997)The behaviour of dissolved barium in estuaries.Est. Coastal Shelf Sci.45,113–121.

deVilliers S.,Nelson B.K.,and Chivas A.R.(1995)Biological controls on coral Sr/Ca and?18O reconstructions of sea surface temperatures.Science269,1247–1249.

deVilliers S.,Shen G.T.,and Nelson B.K.(1994)The Sr/Ca-temper-ature relationship in coralline aragonite:In?uence of variability in

(Sr/Ca)

seawater and skeletal growth parameters.Geochim.Cosmo-

chim.Acta58,197–208.

Falini G.,Albeck S.,Weiner S.,and Addadi L.(1996)Control of

aragonite or calcite polymorphism by mollusk shell macromolecules. Science271,67–69.

Farrell J.and Campana S.E.(1996)Regulation of calcium and stron-tium deposition on the otoliths of juvenile tilapia,Oreochromis https://www.wendangku.net/doc/4b3454959.html,p.Biochem.Physiol.115A,103–109.

Fowler A.J.,Campana S.E.,Jones C.M.,and Thorrold S.R.(1995) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution-based ICPMS.Can. J.Fish.Aquat.Sci.52,1421–1430.

Gallahar N.K.and Kingsford M.J.(1996)Factors in?uencing Sr/Ca ratios in otoliths of Girella elevata:An experimental investigation.J. Fish.Biol.48,174–186.

Greegor R.B.,Pingitore N.E.Jr.,and Sanders M.(1997)Strontianite in coral skeleton aragonite.Science275,1452–1454.

Hart S.R.and Blusztajn J.(1998)Clams as recorders of ocean ridge volcanism and hydrothermal vent?eld activity.Science280,883–886.

Hart S.R.and Cohen A.L.(1996)An ion probe study of annual cycles of Sr/Ca and other trace elements in corals.Geochim.Cosmochim. Acta60,3075–3084.

Kalish J.M.(1989)Otolith microchemistry:Validation of the effects of physiology,age,and environment on otolith composition.J.Exp. Mar.Biol.Ecol.132,151–178.

Kalish J.M.(1991)Determinants of otolith chemistry:Seasonal vari-ation in composition of blood plasma,endolymph and otoliths of bearded rock cod Pseudophycis barbatus.Mar.Ecol.Prog.Ser.74, 137–159.

Kalish J.M.(2000)A glance at50,000years of otoliths.Proceedings of2nd Int.Symposium Fish Otolith Res.Fish.Res.(In Press). Kinsman D.J.J.and Holland H.D.(1969)The co-precipitation of cations with CaCO

3

—IV.The co-precipitation of Sr2?with arago-nite between16°and96°C.Geochim.Cosmochim.Acta33,1–17. Lea D.W.,Mashiotta T.A.,and Spero H.J.(1999)Controls on magnesium and strontium uptake in planktonic foraminifera deter-mined by live culturing.Geochim.et Cosmochim.Acta63(16), 2369–2379.

Lea D.W.and Spero H.J.(1992)Experimental determination of barium uptake in shells of the planktonic foraminifera Orbulina universa at22°C.Geochim.Cosmochim.Acta56,2673–2680. Lea D.W.and Spero H.J.(1994)Assessing the reliability of paleo-chemical tracers:Barium uptake in the shells of planktonic forami-nifera.Paleoceanogr.9,445–452.

Lea D.W.,Shen G.T.,and Boyle E.A.(1989)Coralline barium records temporal variability in equatorial Paci?c upwelling.Nature 340,373–376.

Lorens R.B.(1981)Sr,Cd,Mn and Co distribution coef?cients in calcite as a function of calcite precipitation rate.Geochim.Cosmo-chim.Acta45,553–561.

Mashiotta T.A.,Lea D.W.,and Spero H.J.(1997)Experimental determination of cadmium uptake in shells of the planktonic fora-minifera Orbulina universa and Globigerina bulloides:Implications for surface water paleoreconstructions.Geochim.Cosmochim.Acta 61,4053–4065.

Morse J.W.and Bender M.L.(1990)Partition coef?cients in calcite—examination of factors in?uencing the validity of experimental re-sults and their application to natural systems.Chem.Geol.82, 265–277.

Nolf D.(1995)Studies on?sh otoliths—The state of the art.In Recent Developments in Fish Otolith Research(ed.D.H.Secor,et al.),pp. 513–544.Univ.South Carolina Press.

Patterson W.P.(1998)North American continental seasonality during the last millennium:high resolution analysis of sagittal otoliths. Palaeogeogr.Palaeoclimatol.Palaeoecol.138,271–303. Patterson W.P.(1999)Oldest isotopically characterized?sh otoliths provide insight to Jurassic continental climate of Europe.Geology 27,199–202.

Patterson W.P.,Smith G.R.,and Lohmann K.C.(1993)Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater?shes.Geophys.Monogr.78,191–202.

Plummer L.N.and Busenberg E.(1987)Thermodynamics of arago-nite–strontianite solid solutions:Results from stoichiometric solubil-ity at25and76°C.Geochim.Cosmochim.Acta51,1393–1411.

1712G.E.Bath et al.

Radtke R.L.,Townsend D.W.,Folsom S.D.,and Morrison M.A (1990)Strontium:calcium concentration ratios in otoliths of herring larvae as indicators of environmental histories.Environ.Biol.Fishes 27,51–61.

Rimstidt J.D.,Balog A.,and Webb J.(1998)Distribution of trace elements between carbonate minerals and aqueous solutions. Geochim.Cosmochim.Acta62,1851–1863.

Shen C.C.,Lee T.,Chen C.Y.,Wang C.H.,Dai C.F.,and Li L.A. (1996)The calibration of D[Sr/Ca]versus sea surface temperature relationship for Porites corals.Geochim.Cosmochim.Acta60, 3849–3858.

Sinclair D.J.,Kinsley L.P.J.,and McCulloch M.T.(1998)High resolution analysis of trace elements in corals by laser ablation ICP-MS.Geochim.Cosmochim.Acta62,1889–1901.

Speer J.A.(1983)Crystal chemistry and phase relations of orthorhom-bic carbonates.In Carbonates:Mineralogy and Chemistry(ed.R.J. Reeder),Rev.Mineral.Vol.11,pp.145–190.Mineralogical Society of America.

Stecher H.A.III,Krantz D.E.,Lord C.J.III,Luther G.W.III,and Bock K.W.(1996)Pro?les of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells.Geochim.Cosmochim. Acta60,3445–3456.

Swearer S.E.,Caselle J.E.,Lea D.W.,and Warner R.R.(1999). Larval retention and recruitment in an island population of a coral reef?sh.Nature402,799–802.

Tesoriero A.J.and Pankow J.F.(1996)Solid solution partitioning of Sr2?,Ba2?,and Cd2?to calcite.Geochim.Cosmochim.Acta60, 1053–1063.

Thorrold S.R.and Shuttleworth S.(2000)In situ analysis of trace elements and isotope ratios in otolith aragonite using laser ablation sector?eld ICPMS.Can.J.Fish.Aquat.Sci.(In Press). Thorrold S.R.,Jones C.M.,and Campana S.E.(1997a)Response of otolith microchemistry to environmental variations experienced by

larval and juvenile Atlantic croaker(Micropogonias undulatus). Limnol.Oceanogr.42,102–111.

Thorrold S.R.,Campana S.E.,Jones C.M.,and Swart P.K.(1997b) Factors determining?13C and?18O fractionation in aragonitic oto-liths of marine?sh.Geochim.Cosmochim.Acta61,2909–2919. Thorrold S.R.,Jones C.M.,Swart P.K.,and Targett T.E.(1998a) Accurate classi?cation of juvenile weak?sh Cynoscion regalis to estuarine nursery areas based on chemical signatures in otoliths. Mar.Ecol.Prog.Ser.173,253–265.

Thorrold S.R.,Campana S.E.,Jones C.M.,McLaren J.W.,and Lam J.W.H.(1998b)Trace element signatures in otoliths accurately record natal river of juvenile American shad(Alosa sapidissima). Limnol.Oceanogr.43,1826–1835.

Townsend D.W.,Radtke R.L.,Malone D.P.,and Wallinga J.P. (1995)Use of otolith strontium:calcium ratios for hindcasting larval cod distributions relative to water masses on Georges Bank.Mar. Ecol.Prog.Ser.119,37–44.

Tzeng W.N.(1996)Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel,Anguilla japonica.J.Exp.Mar.Biol.Ecol.199,111–122.

Watson E.B.(1996)Surface enrichment and trace-element uptake during crystal growth.Geochim.Cosmochim.Acta60,5013–5020. Weber J.N.(1973)Incorporation of strontium into reef coral skeletal carbonate.Geochim.Cosmochim.Acta37,2173–2190.

Wurster C.M.,Patterson W.P.,and Cheatham M.M.(1999)Advances in micromilling techniques:A new apparatus for acquiring high-resolution oxygen and carbon stable isotope values and major/minor elemental ratios from accretionary https://www.wendangku.net/doc/4b3454959.html,puters and Geo-sciences25(10),1159–1166.

Zhong S.and Mucci A.(1989)Calcite and aragonite precipitation from seawater solutions of various salinities:Precipitation rates and over-growth composition.Chem.Geol.78,283–299.

1713

Sr and Ba uptake in?sh otoliths

1714G.E.Bath et al.

Appendix1.Otolith weight(mg),Sr/Ca(mmol/mol),Ba/Ca(?mol/mol)of sagittal otoliths from juvenile lab-reared Leiostomus xanthurus. Tank no.Wt(mg)Sr/Ca Ba/Ca Tank no.Wt(mg)Sr/Ca Ba/Ca Tank no.Wt(mg)Sr/Ca Ba/Ca 10.889 2.43 5.999 1.173 4.41 2.36170.610 3.39 4.42 10.914 3.067.589 1.104 4.30 2.42170.937 2.97 3.58 1 1.362 2.40 4.6690.888 4.64 2.53170.467 3.57 5.51 1 1.537 2.55 5.159 1.153 4.41 2.33170.730 3.30 4.48 1 1.464 2.74 5.02100.895 2.13 5.65170.967 2.71 4.44 1 1.423 2.64 5.5610 1.676 1.96 5.51170.530 4.10 4.88 1 1.859 2.39 5.6110 2.184 2.09 4.3018 1.710 3.129.42 1 1.605 2.48 5.8610 1.377 2.29 5.28180.827 3.6710.50 10.725 2.99 6.29100.945 2.507.2118 1.186 3.1810.90 1 1.410 2.43 5.19100.717 2.70 6.39180.664 3.8415.18 20.691 3.72 3.77100.941 2.20 4.65180.858 3.8312.32 20.562 4.31 3.66100.885 2.77 6.0818 1.251 3.2910.60 2 1.451 4.00 4.0310 1.667 2.42 5.6918 1.313 3.109.27 20.729 3.47 3.3711 1.592 2.167.5318 1.174 3.3611.76 20.921 3.67 4.6011 1.373 1.987.31190.517 3.95 5.28 20.896 4.03 4.00110.694 3.3612.6819 1.068 3.35 4.77 2 1.058 3.66 3.7211 1.263 1.94 6.8819 1.038 3.16 4.10

2 1.40

3 3.37 3.5611 1.533 2.187.2819 1.599 2.75 3.41

3 1.818 2.47 2.5811 1.731 2.06 6.6319 1.571 2.76 3.33 3 2.437 2.4

4 1.8511 1.487 1.92 5.89190.72

5 3.39 4.92 3 1.639 2.68 2.1911 2.060 1.85 6.2119 1.295 2.8

6 4.16 3 1.961 2.35 2.5011 2.219 2.25 6.7419 1.859 2.89 3.48 3 1.18

7 2.80 2.4012 2.499 4.13 4.4219 2.110 2.6

8 3.45 3 1.391 2.50 2.8912 1.254 4.37 3.9320 1.993 2.28 4.88 30.550 3.2

9 3.03120.796 4.34 3.52200.471 2.77 6.52 3 1.699 2.61 2.5212 1.047 5.62 4.06200.743 3.147.81

3 2.513 2.50 2.4912 1.035 4.80 4.78200.831 2.82 6.58

4 1.571 2.88 2.06120.878 4.7

5 4.2520 1.361 2.48 6.79 4 1.249 2.40 1.8612 1.232 4.47 3.88200.839 3.008.15 4 1.114 2.58 1.8312 1.260 4.51 3.95200.673 3.327.80 4 1.111 3.15 2.3712 1.141 4.28 3.24200.989 2.90 6.37 4 1.847 2.69 2.0512 1.458 4.64 3.7920 1.49

6 2.31 5.49 4 1.011 2.55 1.78130.921 3.55 2.57200.518 3.14 5.69

4 1.81

5 3.02 1.90130.560 3.61 2.2521 2.003 2.47 3.20

5 1.371 4.21 5.25130.903 3.51 2.3221 1.424 2.97 3.6

6 50.909 4.44 6.79130.648 3.69 2.60210.995 2.95 3.86 50.943 4.11 6.96130.889 3.56 2.0721 1.284 3.25 4.69 5 1.754 3.6

7 5.69130.697 4.03 1.8921 1.585 2.52 3.42 5 1.093 4.607.2213 1.366 3.00 2.2921 1.301 3.02 3.22 50.337 5.178.2513 1.246 3.1

8 2.4321 1.305 3.01 3.68 50.78

9 4.617.1213 2.053 3.11 1.9421 1.093 2.96 4.01

5 1.241 2.67 4.55140.701 3.987.4921 1.404 2.61 2.77

6 1.955 2.58 3.2414 1.756 3.93 6.7321 1.320 2.78 3.80 6 1.001 3.20 4.12140.940 5.4610.58220.99

7 2.4210.79 60.49

8 3.38 3.76140.920 5.159.5422 1.584 2.399.67 60.447 4.06 4.8814 1.123 4.07 6.97220.712 2.7410.86 70.905 3.85 6.3014 1.348 4.408.6522 1.572 2.309.04 70.801 3.54 5.5214 1.174 4.549.0022 1.238 2.2310.5

9 70.647 4.987.6414 1.427 4.467.98220.977 2.5810.23 7 1.079 4.488.3314 1.230 4.317.89220.676 2.9712.11 7 1.039 4.33 6.4814 2.041 3.887.00220.644 2.8513.78 7 1.089 4.46 6.73150.541 2.8110.30220.754 2.2911.09 7 1.446 3.81 5.54150.758 2.9811.8722 1.490 2.158.62 70.943 4.07 5.79150.878 3.079.0323 1.320 2.97 1.99 70.494 6.779.5715 1.092 2.949.67230.677 3.44 2.04 8 1.836 2.92 6.92150.895 2.779.6923 1.230 3.19 2.49 8 1.728 3.499.45150.701 2.997.81230.770 3.51 2.50 8 1.351 2.968.12150.959 3.2113.2623 1.155 3.15 2.28 8 1.099 3.288.58150.634 2.8411.1223 1.294 2.66 2.20 8 1.063 3.287.9415 1.874 2.287.33230.388 4.28 2.94 80.772 3.52 6.8716 1.980 3.01 5.8623 2.157 2.38 1.89 8 1.510 4.1711.04160.684 3.498.2523 1.724 2.87 2.40 80.729 2.797.29160.822 3.39 6.33240.683 4.23 2.16 8 1.106 3.6810.3616 1.184 3.00 6.5024 1.811 3.35 1.68 8 2.104 3.257.73160.906 3.248.0024 1.864 3.21 2.03

8 1.771 3.539.41160.765 3.567.7724 1.676 2.99 1.81

9 1.389 4.04 2.4416 1.119 3.11 6.5324 1.260 3.47 1.87 9 1.349 4.14 2.06160.472 4.159.6324 1.224 3.59 1.95 90.853 4.52 2.99170.672 2.92 4.0224 1.664 3.15 2.06 90.789 4.44 2.4517 1.000 2.76 4.8724 2.083 3.33 1.96 9 1.110 4.29 2.33170.891 2.82 5.1424 2.213 3.20 1.91

24 2.070 3.01 1.98

压敏电阻的型号及参数选用

压敏电阻的型号及参数选用 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 第一部分用字母“M” 表示主称为敏感电阻器。 第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。 第三部分用字母表示压敏电阻器的用途的特征。 第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。 例如: MYL1-1(防雷用压敏电阻器) MY31-270/3(270V/3kA普通压敏电阻器) >M——敏感电阻器 M——敏感电阻器 Y——压敏电阻器 Y——压敏电阻器 L——防雷用 31——序号 1-1——序号

270——标称电压为270V 3——通流容量为3kA 压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。被广泛应用于电子设备防雷。 主要参数 1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。 2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。 3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。 4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。而压敏电阻在吸收暂态过电压能量后自身温度升高,在此电压下能正常冷却,不会发热损坏。 压敏电阻的不足:(1)寄生电容大压敏电阻具有较大的寄生电容,一般在几百至几千微微法的范围。在高频信号系统中会引起高频信号传输畸变,从而引起系统正常运行。(2)泄漏电流的存在压敏电阻的泄漏电流指标既关系到被保护电子系统的正常运行,又关系到压敏电阻自身的老化和使用寿命。 压敏电阻的损坏形式:(1)当压敏电阻在抑制暂态过电压时能量 涠疃ㄈ萘渴保 姑舻缱杌嵋蚬 榷 鸹担 饕 硐治 搪贰⒖ 贰?br /> MYL表示防雷型压敏电阻 MYE表示高负荷型压敏电阻,也有厂家用MYT表示通用型,MYL表示防雷型. 选用方法(一般情况) 1、压敏电压值应大于实际电路的电压峰值,一般为: U1mA =K1×/K2×K3× UC U1mA ---- 压敏电压 UC ---- 电路直流工作电压(交流时为有效值) K1 ---- 电源电压波动系数,一般取1.2 K2 ---- 压敏电压误差,一般取0.85 K3 ---- 老化系数,一般取0.9 交流状态下,应将有效值变为峰值,即扩大√2倍,实际应用中可参考此公式通过实验来确定压敏电压值。 2、通流量 实际应用中,压敏电阻器所吸收的浪涌电流应小于压敏电阻的最大峰值电流,以延长产品的使用寿命。

锶型矿泉水

锶型矿泉水 矿泉水是从地下深处自然涌出的或经人工揭露的、未受污染的地下矿泉水;含有一定量的矿物盐、微量元素或二氧化碳气体;在通常情况下,其化学成分、流量、水温等动态在天然波动范围内的相对稳定。矿泉水是在地层深部循环形成的,含有国家标准规定的矿物质及限定指标。 按矿泉水特征组分达到国家标准的主要类型分为九大类:①偏硅酸矿泉水;②锶矿泉水;③锌(补锌产品,补锌资讯)矿泉水;④锂矿泉水;⑤硒矿泉水;⑥溴矿泉水;⑦碘矿泉水;⑧碳酸矿泉水;⑨盐类矿泉水。 根据身体状况及地区饮用水的差异,选用合适的矿泉水饮用,可以起到补充矿物质,特别是微量元素的作用。盛夏季节饮用矿泉水补充因出汗流失的矿物质,是有效手段。 国家标准中规定的九项界限指标包括锂、锶、锌、硒、溴化物、碘化物、偏硅酸、游离二氧化碳和溶解性总固体,矿泉水中必须有一项或一项以上达到界限指标的要求,其要求含量分别为(单位:mg/L):锂、锌、碘化物均≥0.2,硒≥0.01,溴化物≥1.0,偏硅酸≥25,游离二氧化碳≥250和溶解性总固体≥1000。市场上大部分矿泉水属于锶(Sr)型和偏硅酸型。 锶型矿泉水主要是指矿泉水中锶含量达到0.20mg/L,且锶含量较高的一类矿泉水,如昆仑山矿泉水,依云等属于这一类。 有点咸是因为里面的锶含量比较高。锶对人体的功能主要是与骨骼的形成密切相关,为人体骨骼及牙齿的正常组成部分。它能够促进骨骼发育和类骨质的形成,他的聚集程度可以作为观察骨折愈合情况,且对骨头的愈合有显著功效。人体缺乏锶,将会阻碍新陈代谢、产生牙齿和骨骼发育不正常等症状。特别是老年人和正在发育的儿童。因为含锶。锶与血管的功能及构造也有关系,其作用机制是在肠内与钠竞争吸收部位,从而减少人体对钠的吸收,增加钠的排泄。人体内钠过多容易引起高血压、高血脂、高血糖、心血管疾病,而锶能减少人体对钠的吸收。它对人体主动脉硬化具有软化作用,对高血压、高血脂、高血糖、心血管疾病、动脉硬化等都有一定的预防及医疗保健作用。因为里面有锶。现在喝水就是要喝矿泉水,而且最好是有锶的。特别是对孕妇。锶对胎儿的发育和母体的健康有显著效果。女子怀孕期间,微量元素的补充尤其重要,但由于孕妇饮食有很多禁忌,许多微量元素,如锶,锌,锰等都得不到充分的补充,这样可能会导致胎儿发育不良,营甚至造成胎儿畸形。因此,需要多补充锶、偏硅酸等微量元素。因为含锶嘛。锶与神经及肌肉的兴奋有关,临床上曾用各种化合物治疗荨麻疹和副甲状腺功能不全而引起的抽搐症。而喝含锶型矿泉水(含量≥0.2 mg/l),有益于人体健康,减缓抽搐症状,而又不会产生不良的作用。里面的锶元素具有抗氧化防衰老功效。 最新开发的鑫浪山泉位于抚松县仙人镇温泉街高丽沟子山,四周群山环抱,景色怡人,环境优美,是一处无任何污染的天然矿泉。探明允许开采量220m/d,该矿泉水中阳离子以钙、镁为主,含量分别为 60.61-62.74mg/L、13.19-15.08mg/L;阴离子以重碳酸根为主,含量为184.77-199.55mg/L,水温8C,水化学类型为重碳酸钙镁型,水中锶含量为0.40-.050mg/L(人体所有组织中都含有锶,也是骨骼及牙齿的正常组成成份,主要浓集在骨化旺盛的地方,可强壮骨骼。锶可降低人体对钠的吸收,有利心血管的正常活动,降低心血管疾病的发生率) ,已达到《饮用天然矿泉水》(GB8537-1995)国家标准规定,其它指标均符合《饮用天然矿泉水》标准的要求,为锶型矿泉水,特别适合亚洲人口味。

钛酸锶钡(BST)材料及其应用

钛酸锶钡(BST)材料及其应用 摘要 钛酸锶钡(BST)是一种电子功能陶瓷材料,广泛应用于电子、机械和陶瓷工业。本文对钛酸锶钡材料的组成、结构、性能、制备与应用等方面进行了一个比较全面的总结,重点展示了钛酸锶钡的铁电性、结构性能与掺杂改性,并详细介绍了钛酸锶钡薄膜和块体分别在微波移相器和高储能介电陶瓷中的应用。 1 BST的组成与结构 钛酸锶钡与钛酸锶、钛酸钡在结构方面具有非常高的相似性,这预示着它们之间的性能必然有着很紧密的联系。 1.1 钛酸钡简介 钛酸钡(BaTiO3)是一种强介电材料,是电子陶瓷中使用最广泛的材料之一,被誉为“电子陶瓷工业的支柱”。钛酸钡的电容率大(常温下介电常数 约2000)、非 r 线性强(可调性高),但严重依赖于温度和频率。 钛酸钡是一致性熔融化合物(即熔化时所产生的液相与化合物组成相同),其熔点为1618℃,在整个温区范围内,钛酸钡共有五种晶体结构,即六方、立方、四方、正交、三方,随着温度的降低,晶体的对称性越来越低[1]。在1460-1618℃结晶出来的钛酸钡属于非铁电的稳定六方晶系6/mmm点群;在1460-130℃之间钛酸钡转变为立方钙钛矿型结构,此时的钛酸钡晶体结构对称性极高,呈现顺电性(无偶极矩产生,无铁电性,也无压电性);当温度下降到130℃时,钛酸钡发生一级顺电-铁电相变(即居里点T c=130℃),在130-5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著的铁电性,其自发极化强度沿c轴[001]方向,晶胞沿着此方向变长;当温度从5℃下降到-90℃温区时,钛酸钡晶体转变成正交晶系mm2点群(通常采用单斜晶系的参数来描述此正交晶系的单胞,有利于从单胞中看出自发极化的情况),此时晶体仍具有铁电性,其自发极化强度沿着原立方晶胞的面对角线[011]方向;当温度继续下降到-90℃以下时,晶体由正交晶系转变为三方晶系3m点群,此时晶体仍具

贝弗利矿泉水产品手册

独特的矿物质成分 功能力量 稀有的水质 珍贵的贝弗利天然矿泉水 贝弗利高偏硅酸天然矿泉水中还同时含有一定量锶、锂、锌、硒、二氧化碳和含量适中的钾钠钙镁等多种元素,可作为上等的保健饮品。 珍贵的水源 贝弗利天然矿泉水是属于 重碳酸型、低钠富含偏硅酸的优质天然矿泉水。藏于天地之间,蕴含无限生机,颐养天和,地杰人灵。 水源地处戴云山脉北东坡面,西临闽江下游最大的支流大樟溪西岸,岸旁古榕参天,碧波荡漾经年流淌。水脉涵养于几十平方公里的原生态高山密林,经过千年深部循环,使其蕴含了丰富的珍贵成分。 良好的水源生态 除了符合国家饮用天然矿泉水标准(GB 8537-2008)之外,其偏硅酸和氡的含量更是达到国家医疗矿泉水的要求,其中偏硅酸高达80-110mg/L (>国标要求3.5倍),如此成分双达标且含量丰富的水质实属稀有。 长期饮用可有效调理身体机能;也可作为医疗保健作用,治疗多种慢性疾病。 喝出健康!从贝弗利开始

品位&精致 我司针对矿泉水的生物学效应进行研究,在省内是首创,国内也是少有。

1.37亿年火山岩地质构造 出露的地层均为约1.37亿 年前形成的晚侏——早白垩统火山岩系地层。侵入岩以燕山晚期花岗岩类为主,构造以断裂为主,伴有不同方向的裂隙节理,控制地下水的运动和赋存规律 一窑两泉双书院 贝弗利天然矿泉水深厚的文化底蕴。 “一窑” :宋代碗窑山古遗址。 “两泉”: 罕有的拥有温泉、矿泉双资源的地质特色。 “双书院”: 此地先后创办过“邦基书院”和“榕江书院”,为社会培养了不少优秀人才。 黄金元素 H 2SiO 3 1瓶>3瓶 HCO 3- >90% K 、Na 、Ca 、Mg 、Sr 、Rn 等几十种矿物质元素 达到医疗矿泉水要求 偏硅酸、氡、氟 达到医疗矿泉水标准,全国仅有。 3.5倍 + >90% 1、偏硅酸高达80-110mg/L (国标要求3.5倍以上) 喝一瓶贝弗利补充的偏硅酸大于喝三瓶普通矿泉水 2、重碳酸根比例>90% 矿泉疗法 1、矿泉饮用法:日常饮用 2、矿泉浴疗法:可分为全身浴和 半身浴。 3、矿泉吸入法:喷雾吸入或直接吸 入矿泉中的气体以达到治疗目的 4、矿泉含漱法:用矿泉水漱涤口腔, 防治口腔、咽喉疾病。 5、矿泉灌洗法:如妇科冲洗、直肠 灌洗、水下肠浴等 6、矿泉涂抹法:喷洒涂抹于皮表,用于皮肤补水、养颜作用。 一旦邂逅 一生相 随

中国高端矿泉水厂商介绍及分析培训课件

依云: 依云(Evian),是法国达能(Danone)旗下有200多年历史的法国矿泉水品牌,是世界上最昂贵的矿泉水之一。。每滴依云矿泉水始于汇聚在壮观的阿尔卑斯山头的雨或雪,这水要用15年的时间以每小时1.5厘米的速度缓慢渗透进位于深山的巨大自然含水层,经过天然过滤和冰川砂层的矿化形成,采撷了雪山深处千年的精华。为了保证依云水纯正的天然品质,其灌装地就是它的水源地,整个灌装过程没有任何形式的处理和加工,完全是自动化流程,一天进行300次取样化验,以确保每一瓶依云水的水质都是一样纯净。 产品十分丰富,主要分为3个系列产品,分别是:依云塑料瓶、依云玻璃瓶、依云纪念瓶。 依云品牌在中国市场已经被确立为“身份消费”的代表产品。超过50%的五星级酒店、近90%的顶级高档消费场所、95%以上的一线娱乐明星均指定依云作为其饮用水消费的唯一产品。依云品牌旗下的依云矿泉水已经成为高端消费人群的身份象征。依云产品瞄准的是中国月收入在6000元以上的年轻人市场,这一市场人数在2013年可以远远超过3000万人,其中只需要有1/3的人群成为依云的消费者,就足以确立依云品牌在华的饮用水产品的领军地位和企业高盈利地持续运作。 牌价值准确地传递出去,从而成功地征服了消费者。依云的品牌创意传播,让消费者去品味其中新颖、含蕾、深沉、厚重、巧妙或者是曲折、恢谐、风趣的韵味的创意,令消费者认同品牌主张,从而改变和影响着消费者的价值观念以及消费心理 5100 西藏5100水资源控股有限公司是中国高端瓶装矿泉水产业的领导者,以“向全世界提供品质最好的水”为企业宗旨,拥有知名品牌「5100西藏冰川矿泉水」,其销量在中国快速增长的高端水市场处于领先地位。 「5100西藏冰川矿泉水」来自西藏念青唐古拉山脉海拔5,100米的原始冰川水源地,含有锂、锶、偏硅酸等丰富的矿物质和微量元素,其含量达到天然矿泉水的中国新国标和欧盟标准,纯净清澈,口味纯正,是优质复合型矿泉水。我们采用世界先进设备,运用严谨的生产工艺在水源地灌装,保存了天然矿泉水源的优异品质。 自2007年,我们的水源经中国矿业联合会天然矿泉水专业委员会认可,成为「中国优质矿泉水源」之一,是唯一获得认可的西藏水源。2009年,我们的产品获得中华人民共和国地理标志保护,并于2010年荣获中国驰名商标。公司先后通过了ISO9001、ISO14001、HACCP 等体系认证。 公司的增长策略着重开拓团购渠道,从而建立市场领导地位。我们已经与中铁快运组成战略联盟,把产品推向数亿名高速铁路及和谐号动车乘客;和国航、中油碧辟合资公司、建银国际、工银国际及中国邮政等大型机构的合作,也将使我们的产品得到庞大的批量采购订单。此外,我们也和政府机构紧密联系,成为了许多政府活动的官方指定瓶装水供货商,其中包括2009年中华人民共和国建国60周年庆典、2007年以来举行的全国人大会议、2008年以来举行的全国政协会议以及2010年上海世博会中国展馆接待活动等重要场合。

含偏硅酸的矿泉水

矿泉水同其他水种不一样,基本上是一口泉一种水,这就对我们产品部和技术部提出了很高的要求,因为他们是负责满世界找水源地,水质越优秀,意味着产品质量越好。 在中国境内,天然矿泉水资源里,偏硅酸型储量最大。因为地形地势的原因,有些水源地就算被找到了,开采难度和运输难度会很高,最后会被弃选。 那些在市场上流通的基本上都考量过三个点: 1、水质; 2、开采量; 3、运输便利性。 基于以上行业大背景,我们再来讨论“哪种偏硅酸型的矿泉水比较好?” 先说硅有哪些好? 硅是人体维持生命的必需的微量元素之一,约占人体的0.026%。 它的生理作用主要表现在三个方面: 1、促进骨骼生长; 2、软化血管; 3、增加皮肤弹性。 那么,正常人每日应该摄入多少硅呢?目前全球都还没有一个统一标准。

水里的硅以偏硅酸的形式存在,是人体可以高效获取硅的重要途径。 02 再说什么样的水里会富含硅? 中国有句俗语叫“一方水土养一方人”,其实是非常有道理的,它说的是同一个区域或环境下,地壳和人体中的微量元素和矿物质的丰度曲线是相近的。 人需要从地壳中获得微量元素和矿物质,获取途径是饮食,一是饮,二是食。 富含硅的天然矿泉水又称为偏硅酸型天然矿泉水。除了从天而降的雨水,火山水也是形成偏硅酸型天然矿泉水的主要来源。 03 什么样的偏硅酸型矿泉水更好? 1、单位含硅量更高的天然矿泉水。 2、复合型天然矿泉水。 每一个矿泉水水源都是独一无二的,水中的微量元素和矿物质的含量和比例都不同,所以国家规定了八种物质,只要达到标准,就可以打上“天然矿泉水”的标签。 有一些水,有两项或两项以上同时达标,这样的水被称为复合型天然矿泉水,比较常见的是偏硅酸和锶同时达标。

钛酸锶钡(BST)材料及其应用知识讲解

钛酸锶钡(B S T)材料 及其应用

钛酸锶钡(BST)材料及其应用 摘要 钛酸锶钡(BST)是一种电子功能陶瓷材料,广泛应用于电子、机械和陶瓷工业。本文对钛酸锶钡材料的组成、结构、性能、制备与应用等方面进行了一个比较全面的总结,重点展示了钛酸锶钡的铁电性、结构性能与掺杂改性,并详细介绍了钛酸锶钡薄膜和块体分别在微波移相器和高储能介电陶瓷中的应用。 1 BST的组成与结构 钛酸锶钡与钛酸锶、钛酸钡在结构方面具有非常高的相似性,这预示着它们之间的性能必然有着很紧密的联系。 1.1 钛酸钡简介 钛酸钡(BaTiO3)是一种强介电材料,是电子陶瓷中使用最广泛的材料之一, ε约2000)、被誉为“电子陶瓷工业的支柱”。钛酸钡的电容率大(常温下介电常数 r 非线性强(可调性高),但严重依赖于温度和频率。 钛酸钡是一致性熔融化合物(即熔化时所产生的液相与化合物组成相同),其熔点为1618℃,在整个温区范围内,钛酸钡共有五种晶体结构,即六方、立方、四方、正交、三方,随着温度的降低,晶体的对称性越来越低[1]。在1460-1618℃结晶出来的钛酸钡属于非铁电的稳定六方晶系6/mmm点群;在1460-130℃之间钛酸钡转变为立方钙钛矿型结构,此时的钛酸钡晶体结构对称性极高,呈现顺电性(无偶极矩产生,无铁电性,也无压电性);当温度下降到130℃时,钛酸钡发生一级顺电-铁电相变(即居里点T c=130℃),在130-5℃的温区内,钛酸钡为四方晶系4mm 点群,具有显著的铁电性,其自发极化强度沿c轴[001]方向,晶胞沿着此方向变长;当温度从5℃下降到-90℃温区时,钛酸钡晶体转变成正交晶系mm2点群(通常采用单斜晶系的参数来描述此正交晶系的单胞,有利于从单胞中看出自发极化的情况),此时晶体仍具有铁电性,其自发极化强度沿着原立方晶胞的面对角线[011]方向;当温度继续下降到-90℃以下时,晶体由正交晶系转变为三方晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。 1.2 钛酸锶简介 钛酸锶(SrTiO3)具有典型的钙钛矿型结构,熔点2060℃,是一种顺电体,具有低温介电常数高、介电损耗低、热稳定性好等优点,也是一种电子功能陶瓷材料。高质量的钛酸锶粉体用来制造高压电容器、晶界层电容器、压敏电阻、热敏电阻及其它电子元件,具有高性能、高可靠性、体积小等优点[2]。纯的钛酸锶在低温 ε约300),不易发生铁电相变(居里下仍保持较高的介电常数(常温下介电常数 r 点T c=-250℃),但加入Ca、Bi等改性后出现低温弛豫现象。

矿泉水常识之矿泉水常见分类

目前,我国矿泉水企业生产的主要矿泉水类型,90%以上是含锶和偏硅酸型,品种单调。发达国家矿泉水市场近年来出现值得注意的产品种类多样化和二次再加工矿泉水产品特点,增强了矿泉水市场的活力,主要发展趋势是: (1)适合配制婴儿营养品的专用天然矿泉水受到重视。 据德国矿泉水法规规定,该类水除了符合矿泉水标准外,下列化学成分限量指标须达到:Na<25毫克/升,F<1.5毫克/升,SO4<24毫克/升,N02<0.02毫克/升,N03<10毫克/升。 (2)含碘、锌、硒等特种成份矿泉水。 这几种特殊成分天然矿泉水对人体有一定的保健作用,自然界分布较少。 (3)淡昧矿泉水更受欢迎。 尤其以矿化度在500—700毫克/升的天然矿泉水,该类水是健康人体所需天然矿物质含量最为均衡的水。德国营养学会指出,从营养生理学观点看,低钠矿泉水(钠含量低于20毫克/升)很有推荐价值,低钠、原始纯度及其成分的稳定性使低钠矿泉水成为超出本身作用的独特饮料。 (4)加气(C02、N2)和加味矿泉水。 国外饮用矿泉水按口味划分为充气和无气两种,不同国家各占比例也有差别。充C02气的矿泉水不但清凉可口,而且还有杀菌效果,抑制细菌繁殖,杀死敏感的细菌,其浓度为1.5克/升以上的效果最明显,在含重碳酸钙的矿泉水

中,C02还能阻止其与空气长时间接触后发生的碳酸钙及其他盐类沉淀。 (5)保健型矿泉水。 它是利用电磁波活化方法制取的二次再力口工矿泉水,其水质稳定性和效价都较高。世界卫生组织(WHO)提出的健康饮水必须符合六个条件,即不舍有害物质,含有适量的矿物质,硬度适中,含氧丰富,分子集团小(即小分子水),PH 值为弱碱性。天然矿泉水的身价昂贵、日益被人们重视和喜受的原因就在于它比其他饮水更符合上述健康饮水的条件。 如果利用现代科学技术,将天然矿泉水进行活化而变成小分子水,瓶装矿泉水则完全具备了上述条件。小分子活性水的制取原理,是利用天然的磁铁矿提炼物(也可根据需要加上特殊元素),用陶土烧制而成生化陶磁片(BioCERANIC),它能放射出一定波长的电磁波,使水分子运动加速(比原先299000次/分更激烈)达到再活化。 小分子活性瓶装矿泉水目前在发达国家,尤其在日本、美国、加拿大、欧洲、澳洲、东南亚等备受青睐,成为具有较高消费层次人群日常饮水的一种时尚。据报道,这种水的特点在于既完全保留了原水质的矿物质和微量元素,又增强了水的溶解力、渗透力、代谢力、扩散力,使水的生理功能接近人体细胞水,对人体有明显的保健功能。 同时在烹调食物及生物方面也有意想不到神奇效果,如用这种水煮饭,香醇可口;煮汤味道更佳;用其兑酒,口味更加醇和而不醉;养鱼不长青苔;盆栽插花可延长花期;甚至注入电瓶可使之寿命延长、电量增强等等。小分子活性瓶

国内外压敏电阻型号及参数

国内外压敏电阻型号及参数压敏电阻 220V电压的电路 国内型号:MYG14K471(对应的国外型号:US 470NR-14D) MYG05K471(对应的国外型号:US 470NR-5D) 22V左右的电路 国内型号:MYG14K470(对应的国外型号:US 470NR-14D) MYG05K470(对应的国外型号:US 470NR-5D)。

压敏电阻型号及参数 压敏电阻

百科名片 压敏电阻 “压敏电阻"是中国大陆的名词,意思是在一定电流电压范围内电阻值随电压而变,或者是说"电阻值对电压敏感"的阻器。英文名称叫“Voltage Dependent Resistor”简写为“VDR”,或者叫做“Varistor"。压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。在中国台湾,压敏电阻器称为"突波吸收器",有时也称为“电冲击(浪涌)抑制器(吸收器)”。 目录[隐藏] 1、压敏电阻电路的“安全阀”作用 2、压敏电阻的应用类型 3、保护用压敏电阻的基本性能 4. 压敏电阻的基本参数 1、压敏电阻电路的“安全阀”作用 2、压敏电阻的应用类型 3、保护用压敏电阻的基本性能 4. 压敏电阻的基本参数 [编辑本段] 1、压敏电阻电路的“安全阀”作用 压敏电阻有什么用?压敏电阻的最大特点是当加在它上面的电压低于它的阀值" UN"时,流过它的电流极小,相当于一只关死的阀门,当电压超过UN时,流过它的电流激增,相当于阀门打开。利用这一功能,可以抑制电路中经常出现的异常过电压,保护电路免受过电压的损害。 [编辑本段]

解读天然矿泉水

当我们不再以不合格的自来水作为主要饮水时,我们一般会选择市场上供应量最大的纯净水种,但是长期饮用单一水种,可能会导致某些矿物质或微量元素摄入不足,因此就需要适当的改变自己的饮水结构,将天然矿泉水作为日常饮用水,是改善身体健康的手段之一。 天然矿泉水(drinking natural mineral water)是从地下深处自然涌出的或钻井采集的,含有一定量的矿物质、微量元素或其他成分,在一定区域未受污染并采取预防措施避免污染的水,其化学成分、流量、水温等动态指标在天然周期波动范围内相对稳定。所以能被命名为天然矿泉水,水源必须是未受污染,且要满足一种或多种微量元素的限量指标。 天然矿泉水按照国标规定的八项界限指标,可分为偏硅酸、锶、锂、锌、硒、碘、碳酸和盐类这矿泉水。按照矿化度的高低可分为低矿化度、中矿化度、高矿化度型矿泉水这三大类型。 这么多的品种,我们如何选择呢? 一般来说我们选择天然矿泉水时要注意6大关键因素: 1.天然矿泉水的微量元素含量 即上述的八项界限指标,如想针对性的补充某一微量元素,可选择相应品种的矿泉水。比如女性想要增加皮肤弹性,那么选择偏硅酸矿泉水是比较合适的,因为偏硅酸有促进骨骼发育,软化血管,增加皮肤弹性的功效;如想要减少动脉硬化的风险,那么选择锶矿泉水是比较合适的,因为锶具有防止动脉硬化,防止血栓形成的功能。 2天然矿泉水有害物指标要低于国标 一般而言水中有害物指标包括18项限量指标和6项污染物指标。其中我们最为需要注意的是五项污染物指标:化学耗氧量(<3.0 mg/L),铅(<0.0030 mg/L),镉(<0.0002 mg/L),锰(<0.00046)和硝酸盐(<45mg/L)。敏感人群(婴幼儿与儿童少年、孕妇、老年人)对水中污染物有很高的风险,因此选择天然矿泉水时要特别注意,这五项指标最好远低于国标最严值。如果瓶上未标出,消费者可向生产商索要,确保自己喝的水安全健康。 3.溴酸盐含量为0 溴酸盐并不是天然存在于水中的,矿泉水企业为了达到1995年《饮用天然矿泉水》标准中规定的灌装产品菌落总数低于每毫升50单位的要求,普遍采用国际上早已淘汰了的落后的臭氧杀菌工艺,随之极易产生溴酸盐。2008年,矿泉水国标为了与国际矿泉水标准接轨,同时为了控制溴酸盐,在GB8537-2008中,将溴酸盐的含量限制在0.01mg/L,同时将溴化物从天然矿泉水九项限值指标中删除。这种做法在一定程度上控制了溴酸盐的含量,但是治标不治本,溴酸盐依旧存在,人们依旧有致癌风险。 溴酸盐的生成归根结底是因为矿泉水企业使用了臭氧灭菌工艺,过度消毒造成的。饮用天然矿泉水标准中规定了水中不能出现任何菌,包括致病菌和非致病菌,为了达到国标要求,大多数矿泉水企业使用了臭氧消毒工艺,试验表明,臭氧几乎对所有细菌、病毒、真菌及原虫、卵囊都具有明显的灭活效果,且工艺成熟,投资小。但臭氧氧化水中溴化物成为溴酸盐,溴酸根已被国际癌症研究机构定为2B级潜在致癌物,这是不容忽视的食品安全问题。国标中虽然严格规定了饮用天然矿泉水中溴酸盐的含量,但是溴酸盐超标事件依旧频频发生。 溴酸盐的多少是由原水中溴化物的量决定,且溴酸盐在后期的处理中是无法去除的,那么对于以天然矿泉水为原水的企业来讲,水中的溴化物含量是无法控制的,导致溴酸盐的含量无法严格控制在国标规定的范围内,这就造成了溴酸盐成为水中的结构性风险。 GB8537-2008中规定,溴酸盐的含量需控制在0.01mg/L以内。实验表明,只要原水中溴离子低于每升0.1毫克,一般不会产生溴酸盐超标的问题。可事实是,水中的溴离子含量是自然存在的,是根据各地区的水质来决定的,随时存在着溴酸盐超标的风险。

硒锶型天然饮用矿泉水

巴马百年高锶天然泉水,源自“长寿之乡”广西巴马长寿山,是目前为止广西巴马境内,国家认证唯一锶型水源地。这被确认为“长寿之乡”百岁老人不断涌现的关键。“巴马百年高锶天然泉水”最显著的特点是:高锶、弱碱性、小分子团水。常饮,能强化骨骼、调节三高、中和酸毒、美容养颜、健康长寿。 【巴马百年功效】 一、改善睡眠:坚持饮用能调节植物神经,促进人的深度睡眠; 二、呵护眼睛:长期配合护眼液使用,能促进眼病快速康复; 三、健康减肥:每天饮用2000ml以上,调内分泌,消脂减肥; 四、消除便秘:每天空腹饮500ml,提胃气,排毒素,除便秘; 五、解除疲劳:长期饮用能平衡代谢,恢复体力,促精力旺盛; 六、消除色斑:易被皮肤吸收,淡化色斑,修复肌肤,润肤美白。 七、平稳降压:小分子团水进入脱水细胞,打开毛细血管床,血液循环畅通,调节血压。 八、预防动脉硬化、心肌梗塞:充分补充钙、锶、镁、偏硅酸,防止血管变硬,减少血液黏度,畅通心脏的营养、氧气供给通道。 九、消除体寒、肩酸:增加血液供氧量,加快血液流动,排除肩部乳酸,使手脚暖和。 十、消除多种炎症:小分子团水穿透力强,直接进入细胞,滋养细胞,强力对抗细菌微生物,打通微循环障碍,消除咽喉炎、支气管炎、胃炎、肠炎等多种炎症。 我们常饮的是什么水? 自来水 水处理厂采用基础的过滤方法,用氯气从受污染的水中去除微生物和污染物。这一过程使水“安全”,因为它杀死了大部分微生物和细菌,同时它也破坏了水所具有的生命属性。 氯气对水不好,因为它有很强的离子拉力,很容易破坏水中益于健康的水晶结构。氯气对身体也不好。氯气与心脏病、癌症和动脉硬化都是有联系的。沸水不能去除氯气它只能把氯气变为一种叫做叁卤代甲烷的致癌物质。另外一个问题是自来水的PH值往往反复无常(低到5.5或者高到10),这样容易打乱身体的自然酸/硷度PH7.35这个值。 把水放入不流动的储水池,然后穿过几英里的管子,这就会除去它自然的能量和氧气,破坏六角形水分子团。当您用到自来水时,水已经不具有任何益于健康的属性了。 过滤水

压敏电阻作用参数及选型

压敏电阻选用的基本知识 什么是压敏电阻器及其分类与参数? 压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。它在电路中用文字符号“RV”或“R”表示,图1-21是其电路图形符号。 (一)压敏电阻器的种类 压敏电阻器可以按结构、制造过程、使用材料和伏安特性分类。 1.按结构分类压敏电阻器按其结构可分为结型压敏电阻器、体型压敏电阻器、单颗粒层压敏电阻器和薄膜压敏电阻器等。 结型压敏电阻器是因为电阻体与金属电极之间的特殊接触,才具有了非线性特性,而体型压敏电阻器的非线性是由电阻体本身的半导体性质决定的。 2.按使用材料分类压敏电阻器按其使用材料的不同可分为氧化锌压敏电阻器、碳化硅压敏电阻器、金属氧化物压敏电阻器、锗(硅)压敏电阻器、钛酸钡压敏电阻器等多种。 3.按其伏安特性分类压敏电阻器按其伏安特性可分为对称型压敏电阻器(无极性)和非对称型压敏电阻器(有极性)。 (二)压敏电阻器的结构特性与作用 1.压敏电阻器的结构特性压敏电阻器与普通电阻器不同,它是根据半导体材料的非线性特性制成的。 图1-22是压敏电阻器外形,其内部结构如图1-23所示。 普通电阻器遵守欧姆定律,而压敏电阻器的电压与电流则呈特殊的非线性关系。当压敏电阻器

两端所加电压低于标称额定电压值时,压敏电阻器的电阻值接近无穷大,内部几乎无电流流过。当压敏电阻器两端电压略高于标称额定电压时,压敏电阻器将迅速击穿导通,并由高阻状态变为低阻状态,工作电流也急剧增大。当其两端电压低于标称额定电压时,压敏电阻器又能恢复为高阻状态。当压敏电阻器两端电压超过其最大限制电压时,压敏电阻器将完全击穿损坏,无法再自行恢复。 2.压敏电阻器的作用与应用压敏电阻器广泛地应用在家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 图1-24是压敏电阻器的典型应用电路。 (三)压敏电阻器的主要参数 压敏电阻器的主要参数有标称电压、电压比、最大控制电压、残压比、通流容量、漏电流、电压温度系数、电流温度系数、电压非线性系数、绝缘电阻、静态电容等。 1.压敏电压: MYG05K规定通过的电流为0.1mA,MYG07K、MYG10K、MYG14K、MYG20K 标称电压是指通过1mA直流电流时,压敏电阻器两端的电压值。 2.最大允许电压(最大限制电压):此电压分交流和直流两种情况,如为交流,则指的是该压敏电阻所允许加的交流电压的有效值,以ACrms表示,所以在该交流电压有效值作用下应该选

含锶偏硅酸天然矿泉水项目可行性研究报告新

含锶偏硅酸天然矿泉水项目可行性研究报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (18) 2.1项目提出背景 (18) 2.2本次建设项目发起缘由 (20) 2.3项目建设必要性分析 (20) 2.3.1促进我国含锶偏硅酸天然矿泉水产业快速发展的需要 (21) 2.3.2加快当地高新技术产业发展的重要举措 (21) 2.3.3满足我国的工业发展需求的需要 (22) 2.3.4符合现行产业政策及清洁生产要求 (22) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (22) 2.3.6增加就业带动相关产业链发展的需要 (23) 2.3.7促进项目建设地经济发展进程的的需要 (23) 2.4项目可行性分析 (24) 2.4.1政策可行性 (24) 2.4.2市场可行性 (24) 2.4.3技术可行性 (24) 2.4.4管理可行性 (25) 2.4.5财务可行性 (25) 2.5含锶偏硅酸天然矿泉水项目发展概况 (25) 2.5.1已进行的调查研究项目及其成果 (26) 2.5.2试验试制工作情况 (26) 2.5.3厂址初勘和初步测量工作情况 (26)

海南岛热矿水与矿泉水

海南岛热矿水与矿泉水 矿产地矿业权信息

海南省地质环境监测总站 2002.10.22

海南岛热矿水与矿泉水矿产地矿业权信息 一、热矿水矿产地信息 海南岛热矿水类型主要有两类,一类为孔隙型层状热矿水,主要分布在琼北自流盆地及崖城自流斜地中,另一类为裂隙型带状热矿水,主要受断裂控制,分布在海南岛四周的断裂构造中。 孔隙型层状热矿水:以琼北自流盆地为主。在琼北自流盆地深度约500m以下第三系的5、6、7层承压含水层中的地下水,为水温在40℃以上的热水。其中第7层水温高达59℃。热水中偏硅酸含量等达到医疗热矿水命名浓度,命名为医疗热矿水,适用于浴疗,有较高的旅游开发价值。目前对5、6、7层承压含水层的揭露,除80年代中期施工的以监测科研为目的钻孔外,主要是90年代以来以开采热矿水为目的服务于宾馆的开采井。据统计,目前的开采井数达29眼,主要集中分布在市中心区。 裂隙型带状地热田热矿水:裂隙型带状地热田热矿水的分布严格受到相关断裂构造的控制。主要与东西向的深大断裂和北西向(330~340°)的断裂关系密切,且往往是此两组断裂交汇部位形成热田的富水集热地带。地下水一般为氟、硅型医疗热矿水。 海南岛裂隙型带状热矿水地热田矿产地共29处,其中有7处已获得采矿权。其余22处未获采矿权,在22处未获采矿权的地热田中,根据其勘查、开发及利用情况分为以下几个类别,另见表1。 类别Ⅰ:只在该地进行过调查、普查工作,无出资单位,尚未进行详

查与勘探工作。主要包括三亚林旺、文昌官新、三亚半岭地热田,其中三亚半岭与文昌官新已获探矿权。林旺、官新、半岭三处地热田水温分别为69.5℃、62~70℃、60~77℃。泉流量文昌官新296.4m3/d、三亚半岭563.3m3/d,其中官新地热田为小型地热田,半岭地热田为中型地热田。通过对上述各处地热田的地质水文地质条件、水质水量、开发利用情况的初步调查与研究,肯定了各处地热田的良好的开发利用前景,为下一步的详查与勘探工作打下了坚实的基础。 类别Ⅱ:已进行勘探工作,勘探报告已通过储委评审通过。现已开发利用而未获采矿权。主要包括保亭县七仙岭地热田和三亚南田地热田。其中保亭七仙岭地热田热矿水水温较高66~95℃、储量4040 m3/d,南田地热田热矿水水温57℃、储量7000 m3/d。 类别Ⅲ:已有出资单位进行过勘探或调查工作,目前尚未开发利用。包括万宁县东兴油甘地热田、陵水南平地热田,水温分别为33~62℃、68~75℃,东兴油甘储量为658 m3/d、陵水南平泉流量为1497.31 m3/d。 类别Ⅳ:根据《海南岛区域水文地质普查报告》(1:20万),过去调查过,目前尚未进行任何工作的热泉点,共15处,详见表1。 二、矿泉水矿产地信息 海南岛地下水水质优良,矿泉水资源非常丰富,几乎所有泉点都有一项达标指标。目前我省已勘探的或评价的矿泉水点已达50处,详见表2。按其矿业权情况、勘查及开发利用情况可分为以下几个类别。 类别Ⅰ:已获得采矿权,目前正在生产或间接生产的矿泉水点共12处,其中桂林洋椰浪、琼海上涌已获探矿权。见表2。

中国天然矿泉水品牌大全

中国天然矿泉水品牌大全 近几年,食品安全问题成为人类关注的焦点,尤其是在国内。面对如此惨痛的食品安全,消费者对“健康”的重视程度与日俱增,健康、高品质成为主要的追求。 水,乃生命之源。近段时间,畅销国内的农夫山泉被推上了风口浪尖,各种问题不断被曝出。水源地污染,充斥垃圾;执行地标,不符合国标等等问题层出不穷,不禁令人深思:水被污染了,人类将如何生存? 健康环保低碳的生活方式逐渐成为主流。在选择饮品问题上越来越多的人倾向于天然矿泉水。矿泉水正是以其纯净、无糖、低热和有益元素含量丰富成为人们首选饮品之一,市场消费观念和科学饮水观念的提高,消费者对健康好水的需求更加明显,瓶装水市场高端好水的销量也逐渐上升,整体呈现高端化趋势。 现在小编汇总了国内知名天然矿泉水,供大家参考。 1:昂思多青藏天然涌泉 "昂思多"藏语意为"水源地" / "河谷上游"之意。原为藏族放牧地,水草丰美。马阴山,藏语意为"右旋莲花山",因山顶积雪终年不融,古称"雪岭"。昂思多天然矿泉水源地位于青藏高原海拔3650米气势磅礴的化隆县境内玛燕山下的昂思多镇,这里天高气爽、空气洁净、风景宜人,水资源十分丰富且水质优良。这里的泉水在地壳数千米以下独特的地质条件里,经过长期深循环与围岩相互作用,沿地层断裂带上升溢出地表形成了一种矿化度富含锶、偏硅酸型矿泉水。 昂思多天然涌泉得天地造化而生,历经200000年前岩层磨砺和数十年深循环作用蕴化后,自地质层深处升涌出地表,水体清冽、水质卓绝,属罕见的矿泉水。它的各项指标均符合饮用天然矿泉水国家标准。中国矿泉水专委会评定其为“重碳酸钙镁型富锶,偏硅酸型矿泉水”,其特征性指标锶,偏硅酸两项微量元素同时达标。 经青海省地质检测中心、青海省放射卫生检测所、青海省卫生防疫站、国家地质实验测试中心等单位测试,该地区矿泉水特殊化学组分的指标、污染物限量指标、微生物限量指标及感官指标均符合《GB8537-95》饮用天然矿泉水国家指标。

天然弱碱性锶型矿泉水有益于人体健康

天然弱碱性锶型矿泉水有益于人体健康 根据国土资源部长沙矿产资源监督检测中心所出具的检测报告显示,水样中含有K+、Na+、Ca2+、Mg2+、Fe3+、Cl-、SO42-、HCO3-、F-、偏硅酸等各种阴阳离子和Li、Sr、Zn、Se等多种有益于人体健康的微量元素,同时,水样PH 值为7.62,实属十分宝贵的优质弱碱性天然锶型饮用矿泉水,经检测含锶量为0.227毫克/升,超过国标界限0.20毫克/升,水源周围自然生态优良,山青水秀、林木繁茂,远离城镇和居民生活区,无污染。 一、弱碱性水的好处 对于人体而言,健康安全的饮用水除了要杜绝污染外,还必须要是纯天然的弱碱性水(PH值大于7.0)。医学研究表明,人体血液为弱碱性(PH值为7.35—7.45),它会随着健康的恶化和衰老而逐渐酸化,在医学界有“血液酸化是百病之源”的说法。弱碱性水在体内与体液结合成碱性化合物,对维持人体血液的酸碱平衡起到至关重要的作用,而人工生产的纯净水、蒸馏水等,则呈酸性(PH值在6.5左右),长期饮用会导致血液酸碱性下降。其作用有:1、弱碱性水多为小分子团,溶解力和渗透力强,可以将体内和血管里的废物溶解排除体外,加速体内毒素排泄,改善人体微循环,是

人体细胞更具有活力,新城代谢更旺盛,增强免疫力,活化细胞;2、弱碱性水具有负电位和还原性,可以清除体内过剩的自由基(过氧化物)。自由基是促进人体衰老,产生疾病的主要因素,因此饮用弱碱性水具有防病抗衰老的作用。 二、天然锶型矿泉水中微量元素和成分对人体的作用 随着人民生活质量的提高,富含人体必需多种微量元素的纯天然矿泉水已经成为日常消费品。作为人体必需的十几种微量元素,虽然主要来源于食物,但水中的微量元素多以离子状态存在,更易渗入细胞被人体吸收。食物中的微量元素由于受植物纤维和植酸的影响,吸收多数不到30%,有的不足10%,而溶于矿泉水中的微量元素吸收率高达90%,而且人一天的饮水量要大于食量,所以不足部分必须靠饮水来补充,根据身体状况和地区饮用水的差异。选用合适的矿泉水饮用,是补充矿物质微量元素的有效手段。主要的微量元素对人体有哪些作用呢? 锶(Sr):我国饮用天然矿泉水国家标准明确规定锶含量大于0.2毫克/升为锶型矿泉水,其限量指标为不大于5毫克/升。锶对人体的功能主要是与骨骼的形成密切相关,为人体骨骼及牙齿的正常组成部分。它能够促进骨骼发育和类骨质的形成,聚集程度可以作为观察骨折愈合情况,且对骨头的愈合有显著功效。人体缺乏锶,将会阻碍新陈代谢、产生牙齿和骨骼发育不正常等症状,特别是老年人和正在发育的儿

压敏电阻器基本知识

压敏电阻器的基本知识 这一节简单介绍压敏电阻器 压敏电阻器。压敏电阻器(VSR)是电压灵敏电阻器的简称,它是一种新型过压保护元件。压敏电阻器是以氧化锌为主要材料而制成的金属-氧化物-半导体陶瓷元件,构成压敏电阻的核心材料为氧化锌,氧化锌又包括氧化锌晶粒和晶粒周围的晶界层,氧化锌晶粒的电阻率很低,而晶界层电阻率很高,相接触的两个晶粒之间形成一个相当于齐纳二极管的势垒,成为一个压敏电阻单元,许多单元通过串联,并联组成压敏电阻器基体。压敏电阻器在工作时,每个压敏电阻单元都承担浪涌能量,而这些压敏电阻单元是大体上均匀分布在整个电阻体内的,也就是整个电阻体都承担能量,而不像齐纳二极稳压管那样只是结区承担电功率,这就是陶瓷压敏电阻器具有比齐纳二极稳压管大得很多的通流和能量定额的原因。其电阻值随端电压而变化。压敏电阻器的主要特点是工作电压范围宽(6—3000伏,分若干档),对过压脉冲响应快(几至几十纳秒),耐冲击电流的能力强(可达100安培-20千安培),漏电流小(低于几至几十微安),电阻温度系数小,性优价廉,体积小,是一种理想的保护元件。由它可构成过压保护电路,消噪电路,消火花电路,吸收回路。压敏电阻的电路符号,外形和内部结构见图1。 压敏电阻的结构就象两个特性一致的背靠背联接的稳压管,其性质基本相同。压敏电阻的主要特性是,当两端所加电压在标称额定值以内时,它的电阻值几乎为无穷大,处于高阻状态,其漏电流<50微安,当它两端的电压稍微超过额定电压时,其电阻值急剧下降,立即处于导通状态,工作电流增加几个数量级,反应时间仅在毫微秒级。压敏电阻在国外俗称“斩波器”和”限幅器”,这是从它的实际作用而得名的。

矿泉水公司简介

单位基本情况 福建省润和矿泉水有限公司成立于1995年,自成立以来始终坚持以优质的水资源服务于“成功人士”和“商务用水”, 用“旋风”的速度,“尽善尽美”的服务理念, 保证客户在其中享用到公司极至服务的水。 我司生产基地及水源地坐落于南屿镇龙泉村门前山,地处戴云山脉北东坡面,毗邻闽江下游最大的支流大樟溪西岸,岸旁古榕参天,碧波荡漾经年流淌。水源腹地是山峦叠嶂的戴云山脉延伸段,满山遍野的轻松翠竹。水源地质出露的地层为晚侏罗——早白垩统(约1.35亿年前)火山岩系地层,侵入岩以燕山晚期花岗岩类为主,构造以断裂为主,伴有不同方向的裂隙节理,控制地下水的运动和赋存规律。 我司生产的贝弗利矿泉水,主要以330mL、550mL、1.5L、4.5L、15L等规格的矿泉水为主;我司矿泉水含有钾、钠、钙、镁、锶、偏硅酸等几十种与人体健康息息相关的矿物元素。其中偏硅酸的含量高达80~110mg/L,是国家矿泉水标准界限值25mg/L的3倍以上。 我司非常重视水与健康事业,始终坚持以先进的工艺、严格的要求生产饮用天然矿泉水,积极开展水知识的宣传和普及。近年来我司不断投入大量资金和精力对原有的厂房设备及工艺进行升级改造,建立了具有自主特性和创新性的生产基地,实现了水源地零距离、全密闭、全自动、无菌灌装,保证每一瓶水都是高品质原汁原味的优质天然矿泉水。 以下简单介绍我司在技术工艺和水知识方面的努力与进步。 一、源水防护:我司是省内第一家能够对源水、矿井内壁及矿井内的空气同时进行密闭式循环清洗和消毒的企业,且消毒后无有害残留。 二、创新工艺:经过一年多的研究、多次实验、检测和中试,我司投入大量资金与精力会同广东设备厂家、杭州埃尔高科技公司共同研发的具有水源特异性的水处理设备,是我省行业首家将电渗析技术应用于矿泉水工艺中的企业;此工艺能够根据工艺要求,按需特异性的去除卤族元素中的溴、氟等离子,可将臭氧消毒产生的溴酸盐风险做到“0风险”;此工艺解决了长期困扰行业的溴酸盐控制与臭氧消毒不好互相共存的大难题,对行业具有开创性的借鉴意义。 三、健康科研:我司与福建医科大学一起成立了由省科技厅立项的科研课题“高偏硅酸天然矿泉水生物学效应的应用研究”,该科研课题多年来持续以贝弗利高偏硅酸天然矿泉水为实验材料,研究水与健康的关系,前期已得技术总计报告一份,发表国家级论文三篇,录用择期待发国家级一篇,修回待发国家级三篇,确定能发表七篇,其中CSCD6篇,出版相关专著《水的科学与健康》一本。这是

相关文档
相关文档 最新文档