文档库 最新最全的文档下载
当前位置:文档库 › (整理)城市轨道交通工程测量规范

(整理)城市轨道交通工程测量规范

(整理)城市轨道交通工程测量规范
(整理)城市轨道交通工程测量规范

地铁测量主要工作

1 总则

1.0.1为适应城市轨道交通建设发展的需要,统一城市轨道交通工程测量技术要求,遵循技术先进、经济合理、质量可靠和安全适用的原则,制定本规范。

1.0.2本规范适用于城市轨道交通新建和旧线改造及运营期间的工程测量。1.0.3在同一城市内的轨道交通工程控制测量应满足下列要求:

1平面和高程系统应与所在城市平面和高程系统一致;

2工程建设前应在城市一、二等平面和高程控制网的基础上,建立专用平面、高程施工控制网,其与现有城市控制网重合点的坐标及高程较差,应分别不大于50mm和20mm;

3 施工前应对已建成的平面、高程控制网进行复测,建设中应对其进行检测。

1.0.4城市间的轨道交通工程控制测量除应满足本规范1.0.3条中的2、3款外,还应采用统一的坐标、高程系统,当城市间坐标、高程系统不一致时应进行相应的换算。

1.0.5线路工程控制测量应采用附合导线(网)和附合高程路线的形式。特殊情况下采用支导线、支水准路线时,必须制定检核措施。

1.0.6 在隧道贯通前,联系测量、地下平面控制测量和地下高程控制测量,随工程进度应至少独立进行三次,满足限差后应以各次测量的平均值指导隧道贯通。

1.0.7暗、明挖隧道和高架结构横向贯通测量中误差应为±50mm,高程贯通测量中误差应为±25mm。

1.0.8施工期间内和运营期一定时间内,应对线路结构和临近主要建筑、管线等进行变形监测,并应制定应急变形监测方案。

1.0.9竣工测量应按工程竣工验收要求进行,其工作内容和测量技术要求,应符合现行国家测量规范、工程验收规范以及工程资料管理相关要求。

1.0.10应根据国家有关法规,定期对测量仪器和工具进行检定。作业时应避免作业环境对仪器的影响。

1.0.11城市轨道交通工程测量除执行本规范外,还应符合国家现行的有关标准的规定。

3 地面平面控制测量

3.1 一般规定

3.1.1地面平面控制网应按城市轨道交通工程建设规划网中各条线路建设的先后次序,沿线路独立布设。布网时应根据线路延伸和与其它线路交叉状况,在线路延伸和交叉地段,必须有两个以上的控制点相重合。城市近期规划与建设的城市轨道交通线路较多构成网络且原城市控制网不能满足建设需要时,宜建立一个覆盖全部线路的整体控制网。

3.1.2 平面控制网由两个等级组成,一等为卫星定位控制网,二等为精密导线网组成,并分级布设。

3.1.3 平面控制网的坐标系统应与所在城市现有坐标系统一致。投影面高程应与城市现有坐标系统投影面高程一致,若城市轨道交通工程线路轨道的平均高程与城市投影面高程的高差影响每千米大于5mm时,应采用其线路轨道平均高程作为投影面高程。

3.1.4 向隧道内传递坐标和方位时,应在每个井(洞)口或车站附近至少布设三个平面控制点作为联系测量的依据。

3.1.5 凡符合卫星定位控制网和精密导线网要求的现有城市控制点的标石应充分利用。

3.1.6 对已建成的卫星定位控制网和精密导线网应定期进行复测。第一次复测应在开工前进行,之后应每年或两年复测1次,且应根据控制点稳定情况适当调整复测频次。复测精度不应低于初测精度。

3.2 卫星定位控制网测量

3.2.1卫星定位控制网测量前,应根据城市轨道交通线路规划设计,收集、分析线路沿线现有城市控制网的标石、精度等有关资料,并按静态相对定位原理布网。

3.2.2卫星定位控制网的主要技术指标应符合表3.2.2的规定。

3.2.3卫星定位控制网相邻点间基线精度按3.2.3式计算。

2

2)

σ(3.

=

a+

(d b

2.3)

式中б——标准差,即基线向量的弦长中误差(mm);

a——固定误差(mm);

b——比例误差系数(1×10-6);

d——相邻点间的距离(km)。

3.2.4卫星定位控制网的布设应遵守以下原则:

1卫星定位控制网内应重合3~5个现有城市一、二等控制点,控制点应均匀分布。在不同线路交叉有联络线处或同一线路前后期工程衔接处应布设2个以上的重合点,重合点坐标较差应满足表3.2.2的相关要求;

2卫星定位控制网应沿线路两侧布设,控制点宜布设在隧道出入口、竖井或车站附近,车辆段附近应布设3~5个控制点,相邻控制点应满足通视要求;

3卫星定位控制网非同步独立观测时,必须构成闭合环或附合路线。每个闭合环或附合路线中的边数不应大于6条。

3.2.5 卫星定位控制点的选点应符合以下要求:

1控制点间应有两个以上方向通视;

2当利用已有城市控制点时,应检查该点的稳定性及完好性;

3控制点应选在利于长久保存、施测方便和施工变形影响范围以外的地方;

4建筑上的控制点应选在便于联测的楼顶承重结构上;

5控制点附近不应有大面积的水域或对电磁波反射(或吸引)强烈的物体;

6控制点距无线电发射装置间距应大于200m,距高压输电线的间距应大于50m。

3.2.6卫星定位控制点均应埋设永久标石。建筑顶上的标石可现场浇注。标石宜按本规范附录A中的图A.0.1、图A.0.2、图A.0.3型式和规格埋设。埋石结束后应按本规范附录A中A.0.6绘制点之记,点位标识应牢固清楚,并应办理测量标志委托保管书。

3.2.7车站、洞口和竖井附近建筑上的卫星定位控制点上宜建造三脚钢架或竖立照准杆,三脚钢架宜按本规范附录A中的图A.0.4规格制作。

3.2.8卫星定位控制网测量作业的基本技术要求应符合表3.2.8的规定。

3.2.9作业前应对卫星定位接收机和天线等设备进行常规检查,检查内容应包括:仪器检定结果、电池容量、光学对中器和接收机内存容量等。

3.2.10观测前应根据接收机数量、控制网设计图形以及交通情况编制作业计划,观测中可根据实际情况进行必要的调整。

3.2.11卫星定位控制网观测应满足下列要求:

1天线定向标志应指向正北,且经整平、对中后,其对中误差应小于2mm;

2每时段观测前、后量取天线高各一次,两次互差小于3mm时,应取其两次平均值作为最后结果;

3应严格按规定的时间开机作业,保证同步观测同一组卫星。观测开始后,应及时记录或输入有关数据并随时注意卫星信号和信息存储情况。外业观测手薄应按本规范附录A中表A.0.5的内容逐项填写;

4每日观测结束后,应及时将存储介质上的数据进行拷贝,并应及时将外业观测记录结果录入计算机进行数据处理。

3.2.12平差前应对观测数据进行预处理。基线解算时,对于小于8km的短基线必须采用双差相位观测值和双差固定解;对8~30km长基线可在双差固定解和双差浮点解中选择最优结果。对周跳较多或数据质量欠佳的时段应进行删除或用分段处理后的数据进行解算。基线解算采用卫星广播星历坐标值作为基线解的起算数据,基线解算结果中基线长度中误差输出值不应超过2σ。

3.2.13卫星定位控制网外业观测的全部数据应经同步环、独立环及复测边检核,并应满足下列要求:

1 同步环各坐标分量及全长闭合差应满足式 3.2.13-1~式 3.2.13-5的要

求:

x W ≤

σ5

N (3.2.13-1) y W ≤σ5

N (3.2.13-2) z W ≤σ5N (3.2.13-3) 222z y x W W W W ++= (3.2.13-4)

W ≤σ5

3N (3.2.13-5) 式中 N —— 同步环中基线边的个数;

W —— 环闭合差。

2 独立基线构成的独立环各坐标分量及全长闭合差应满足式 3.2.13-6~式

3.2.13-9的要求:

x W ≤σn 2 (3.2.13-6)

y W ≤σn 2 (3.2.13-7)

z W ≤σn 2 (3.2.13-8)

W ≤σn 32 (3.2.13-9)

式中 n —— 独立环中基线边的个数。

3 复测基线长度较差应满足下式的要求:

s d ≤σn 2 (3.2.

13-10)

式中 n —— 同一边复测的次数,通常为2。

3.2.14 卫星定位控制网的平差要求应符合下列规定:

1 应将全部独立基线构成闭合图形,以三维基线向量及其相应方差协方差

阵作为观测信息,以一个点的城市现有WGS-84坐标系的三维坐标作为起算数据,在WGS-84坐标系中进行三维无约束平差,并提供WGS-84坐标系的三维坐标、坐标差观测值的总改正数、基线边长及点位和边长的精度信息。基线向量改正数的绝对值应满足式3.2.14-1~式3.2.14-3的要求:

x V ?≤σ3 (3.2.14-1)

y V ?≤σ3 (3.2.14-2)

z V ?≤σ3 (3.2.14-3)

2 应在所使用的城市坐标系中进行约束平差及精度评定,并应输出相应坐

标系中的坐标、基线向量改正数、基线边长、方位角以及相关的中误差、相对点位中误差的精度信息,转换参数及其精度信息等。基线向量的改正数与同名基线无约束平差相应改正数的较差应满足式3.2.14-4~式3.2.14-6的要求:

x dV ?≤σ2 (3.2.14-4)

y dV ?≤σ2 (3.2.14-5)

z dV ?≤σ2 (3.2.14-6)

3.2.15 进行约束平差后,当卫星定位控制点与现有城市控制点的重合点的坐标较差大于本规范表3.2.2的规定时,应检查已知点是否可靠,并对约束控制点和控制方位角进行筛选后,重新进行不同约束控制点或不同约束方位角的不同组合的约束平差。

3.2.16 卫星定位控制网测量结束后,应提交下列资料:

1 技术设计书;

2 控制点点之记及测量标志委托保管书;

3 控制网示意图;

4 外业观测手簿及其它记录;

5 控制网平差及精度评定资料;

6 控制点成果表;

7 技术总结。

3.3 精密导线网测量

3.3.1 精密导线网测量的主要技术要求应符合表3.3.1的规定。

2 附合导线路线超长时,宜布设结点导线网,结点间角度个数不超过8个;

3 全站仪的分级标准执行本规范附录A 中表A.0.7的规定。

3.3.2 精密导线网应沿线路方向布设,并应布设成附合导线、闭合导线或结点导线网的形式。

3.3.3 选择精密导线点时应符合下列要求:

1 附合导线的边数宜少于12个,相邻边的短边不宜小于长边的1/2,个别

短边的边长不应小于100m ;

2 导线点的位置应选在施工变形影响范围以外稳定的地方,并应避开地下

构筑物、地下管线等;

3 楼顶上的导线点宜选在靠近并能俯视线路、车站、车辆段一侧稳固的建

筑上;

4 相邻导线点间以及导线点与其相连的卫星定位点之间的垂直角不应大于

30°,视线离障碍物的距离不应小于1.5m ,避免旁折光的影响;

5 在线路交叉及前、后期工程衔接的地方应布设适量的共用导线点;

6 应充分利用现有城市控制点标石。

3.3.4 在地面宜按本规范附录A 中图A.0.8的规格埋设精密导线点标石,在楼顶可按本规范附录A 中图A.0.3规格埋设标石。埋设结束后应绘制点之记。

3.3.5 导线测量前应对仪器进行常规检查与校正,同时记录检校结果。

3.3.6 导线点上只有两个方向时,其水平角观测应符合以下要求:

1 应采用左、右角观测,左、右角平均值之和与360°的较差应小于4";

2 前后视边长相差较大,观测需调焦时,宜采用同一方向正倒镜同时观测

法,此时一个测回中不同方向可不考虑2C 较差的限差;

3 水平角观测一测回内2C 较差,Ⅰ级全站仪为9",Ⅱ级全站仪为13"。

同一方向值各测回较差,Ⅰ级全站仪为6",Ⅱ级全站仪为9"。

3.3.7 在精密导线网结点或卫星定位控制点上观测水平角时应符合以下要求:

1 在附合导线两端的卫星定位控制点上观测时,宜联测两个卫星定位控制

点方向,夹角的平均观测值与卫星定位控制点坐标反算夹角之差应小于6";

2 方向数超过3个时宜采用方向观测法,方向数不多于3个时可不归零;

3 方向观测法水平角观测的技术要求应符合表3.3.6的规定。

3.3.8 附合精密导线或精密导线环的方位角闭合差,不应大于下式计算的值。

n m W ββ2±= (3.3.8)

式中 βm —— 本规范表3.3.1中的测角中误差(");

n —— 附合导线或导线环的角度个数。

3.3.9 精密导线网测角中误差应按下式计算:

??

?????±=n f f N M ββο1 (3.3.9) 式中 βf —— 附合导线或闭合导线环的方位角闭合差;

n —— 附合导线或导线环的角度个数;

N —— 附合导线或闭合导线环的个数。

3.3.10 精密导线网测距时应符合下列要求:

1 距离测量除应执行本规范表3.3.1的规定外,还应符合表3.3.10的规定;

千米计);

2 一测回指照准目标一次读数4次。

2 测距时应读取温度和气压,测前、测后各读取一次,取平均值作为测站

的气象数据。温度读至0.2°C,气压读至50pa 。

3.3.11 精密导线网边长应按下列要求进行改正:

1 气象改正,根据仪器提供的公式进行改正;也可以将气象数据输入全站

仪内自动改正。

2 仪器加、乘常数改正,应按下式计算:

S =S 0+S 0·k +C (3.3.11-1)

式中 S 0 —— 改正前的距离;

C —— 仪器加常数;

k —— 仪器乘常数。

3 利用垂直角计算水平距离时应按下式计算:

D =S·COS (α+f ) (3.3.11-2)

f =(1-k )ρ"S·COS α/(2R ) (3.3.11-3)

式中 α —— 垂直角观测值;

k —— 大气折光系数;

S —— 经气象及加、乘常数改正后的斜距(m);

R —— 地球平均曲率半径(m);

f —— 地球曲率和大气折光对垂直角的修正量(")。

3.3.12 精密导线网测距边的高程归化和投影改化,应符合下列规定:

1 归化到城市轨道交通线路测区平均高程面上的测距边长度,应按下式计

算:

??

????-+'=a 1R H H D D m p (3.3.12-1) 式中 D ’

0 —— 测距两端点平均高程面上的水平距离(m);

R a —— 参考椭球体在测距边方向法截弧的曲率半径(m);

H p —— 现有城市坐标系统投影面高程或城市轨道交通工程线路的平均高

程(m);

H m —— 测距边两端点的平均高程(m)。

2 测距边在高斯投影面上的长度,按下式计算:

?????

??++=22222421m m m z R Y R Y D D (3.3.12-2) 式中 Y m —— 测距边两端点横坐标平均值(m);

R m —— 测距边中点的平均曲率半径(m);

ΔY —— 测距边两端点近似横坐标的增量(m)。

3.3.13 精密导线网计算应采用严密平差方法,其精度应符合本规范表 3.3.1的规定。

3.3.14 精密导线网测量结束后,应提交下列资料:

1 技术设计书;

2 外业观测记录与内业计算成果;

3 导线网示意图;

4 导线点点之记;

5 导线点坐标及其精度评定成果表;

6 技术总结。

4 地面高程控制测量

4.1 一般规定

4.1.1城市轨道交通工程高程测量应采用统一的高程系统,并应与现有城市高程系统相一致。

4.1.2城市轨道交通工程高程控制网为水准网,应分两个等级布设,一等水准网是与城市二等水准精度一致的水准网,二等水准网是加密的水准网。当现有城市一、二等水准点间距小于4km时,应一次布设城市轨道交通工程二等水准网。

4.1.3水准网应沿线路附近布设成附合线路、闭合线路或结点网。二等水准点间距平均800m,联测城市一、二等水准点的总数不应少于3个,宜均匀分布。

4.1.4水准网测量的主要技术要求应符合表4.1.4的规定。

2 采用数字水准仪测量的技术要求与同等级的光学水准仪测量技术要求相同。4.1.5水准点应选在施工影响的变形区域以外稳固、便于寻找、保存和引测的地方,宜每隔3km埋设1个深桩或基岩水准点。车站、竖井及车辆段附近水准点布设数量不应少于2个。

4.1.6当水准路线跨越江、河、湖塘且视线长度小于100m时,可采用一般水准测量方法进行观测,视线长度大于100m时,应进行跨河水准测量。跨河水准测量可采用光学测微法、倾斜螺旋法、经纬仪倾角法和光电测距三角高程法等,其技术要求应符合国家标准《国家一、二等水准测量规范》GB12897的相关规定。

4.1.7水准点标石和标志应按本规范附录B中的图B.0.1、图B.0.2、图B.0.3和图B.0.4的型式和规格埋设。地层为软土的城市或地区应根据其岩土条件设计和埋设适宜水准标石。水准点也可利用精密导线点标石,墙上水准点应选在稳固的永久性建筑上。

4.1.8水准点标石埋设结束后,应绘制点之记,并办理水准点委托保管书。4.1.9对已建成的水准网应定期进行复测,第一次复测应在开工前进行,之后

应1年复测1次,且应根据点位稳定情况适当调整复测频次。复测精度不应低于原测精度,高程较差不应大于2倍高程中误差。当水准点标石被破坏时,应重新埋设,复测时统一观测。

4.2 水准网测量

4.2.1作业前,应对所使用的水准测量仪器和标尺进行常规检查与校正。水准仪i角检查,在作业第一周内应每天1次,稳定后可半月1次。一等水准测量仪器i角应小于或等于15";二等水准测量仪器i角应小于或等于20"。

4.2.2一等及二等水准网测量的观测方法应符合下列规定:

1往测奇数站上:后—前—前—后

偶数站上:前—后—后—前

2返测奇数站上:前—后—后—前

偶数站上:后—前—前—后

3 使用数字水准仪,应将有关参数、限差预先输入并选择自动观测模式,水准路线应避开强电磁场的干扰。

4 一等水准每一测段的往测和返测,宜分别在上午、下午进行,也可在夜间观测。

5由往测转向返测时,两根水准尺必须互换位置,并应重新整置仪器。4.2.3水准测量观测的视线长度、视距差、视线高度应符合表4.2.3的规定。

4.2.4水准测量测站观测限差应符合表4.2.4的规定。

差的要求。

4.2.5 往返两次测量高差超限时应重测。重测后,一等水准应选取两次异向观测的合格成果,二等水准则应将重测成果与原测成果比较,其较差合格时,取其平均值。

4.2.6 水准测量的内业计算,应符合下列规定:

1 计算取位,高差中数取至0.1mm ;最后成果,一等水准取至0.1mm ,二等水准取至1.0mm 。

2 水准测量每千米的高差中数偶然中误差按下式计算:

??

????±=L n 41M ??? (4.2.6-1) 式中 M Δ —— 每千米高差中数偶然中误差(mm);

L —— 水准测量的测段长度(km);

Δ—— 水准路线测段往返高差不符值(mm);

n —— 往返测水准路线的测段数。

3 当附合路线和水准环多于20个时,每千米水准测量高差中数全中误差应按下式计算:

??

????±=L WW N M w 1 (4.2.6-2) 式中 M W —— 每千米高差中数全中误差(mm);

W —— 附合线路或环线闭合差(mm);

L —— 计算附合线路或环线闭合差时的相应路线长度(km);

N —— 附合线路和闭合线路的条数。

4 水准网的数据处理应进行严密平差,并应计算每千米高差中数偶然中误差、高差全中误差、最弱点高程中误差和相邻点的相对高差中误差。

4.2.7 水准网测量结束后应提交下列资料:

1 技术设计书;

2 水准网示意图;

3 外业观测手簿及仪器检验资料;

4 点之记及水准点委托保管文件;

5 高程成果表和精度评定等资料;

6 技术总结。

9 联系测量

9.1 一般规定

9.1.1联系测量应包括:地面近井导线测量和近井水准测量;通过竖井、斜井、平峒、钻孔的定向测量和传递高程测量;地下近井导线测量和近井水准测量等。

9.1.2定向测量宜采用下列方法:

1联系三角形法;

2陀螺经纬仪、铅垂仪(钢丝)组合法(见附录D);

3导线直接传递法;

4投点定向法;

9.1.3传递高程测量宜采用下列方法:

1悬挂钢尺法;

2光电测距三角高程法;

3水准测量法。

9.1.4地面近井点可直接利用卫星定位点和精密导线点测设,需进行导线点加密时,地面近井点与精密导线点应构成附合导线或闭合导线。近井导线总长不宜超过350m,导线边数不宜超过5条。

9.1.5隧道贯通前的联系测量工作不应少于3次,宜在隧道掘进到100m、300m 以及距贯通面100~200m时分别进行一次。当地下起始边方位角较差小于12″时,可取各次测量成果的平均值作为后续测量的起算数据指导隧道贯通。

9.1.6定向测量的地下定向边不应少于2条,传递高程的地下近井高程点不应少于2个,作业前应对地下定向边间和高程点间的几何关系进行检核。

9.1.7 贯通面一侧的隧道长度大于1500m时,应增加联系测量次数或采用高精度联系测量方法等,提高定向测量精度。

9.2 地面近井点测量

9.2.1地面近井点包括平面和高程近井点,应埋设在井口附近便于观测和保护的位置,并标识清楚。

9.2.2平面近井点应按本规范第3章精密导线网测量的技术要求施测,最短边长不应小于50m,近井点的点位中误差应为±10mm。

9.2.3高程近井点应利用二等水准点直接测定,并应构成附合、闭合水准路线。

高程近井点应按本规范第4章二等水准测量技术要求施测。

9.3 联系三角形测量

9.3.1联系三角形测量,每次定向应独立进行三次,取三次平均值作为定向成果。

9.3.2在同一竖井内可悬挂两根钢丝组成联系三角形。有条件时,应悬挂三根钢丝组成双联系三角形。

9.3.3井上、井下联系三角形布置应满足下列要求:

1竖井中悬挂钢丝间的距离c应尽可能长;

2联系三角形锐角γ、γ'宜小于1?,呈直伸三角形;

3a/c及a'/c 宜小于1.5,a 、a'为近井点至悬挂钢丝的最短距离。

9.3.4联系三角形测量宜选用φ0.3mm钢丝,悬挂10kg重锤,重锤应浸没在阻尼液中。

9.3.5联系三角形边长测量可采用光电测距或经检定的钢尺丈量,每次应独立测量三测回,每测回三次读数,各测回较差应小于1mm。地上与地下丈量的钢丝间距较差应小于2mm。钢尺丈量时应施加钢尺鉴定时的拉力,并应进行倾斜、温度、尺长改正。

9.3.6角度观测应采用不低于II级全站仪,用方向观测法观测六测回,测角中误差应在±2.5"之内。

9.3.7联系三角形定向推算的地下起始边方位角的较差应小于12",方位角平均值中误差应在±8"之内。

9.3.8有条件时可采用两井定向等方法,地下起始边的定向精度应满足本规范第9.3.7条的要求。

9.4 陀螺经纬仪、铅垂仪(钢丝)组合定向测量

9.4.1陀螺经纬仪、铅垂仪(钢丝)组合定向测量布置宜按本规范附录D进行。

9.4.2全站仪精度应选用不低于II级的精度,陀螺经纬仪的标称精度应小于20″,铅垂仪(钢丝)投点中误差应在±3mm之内。悬挂的钢丝应符合本规范第9.3.4条的要求。

9.4.3地下定向边陀螺方位角测量应采用“地面已知边—地下定向边—地面已知边”的测量程序。地下定向边的陀螺方位角测量每次应测三测回,测回间陀螺方位角较差应小于20"。隧道贯通前同一定向边陀螺方位角测量应独立进行三次,三次定向陀螺方位角较差应小于12",三次定向陀螺方位角平均值中误差应为±8"。

9.4.4隧道内定向边边长应大于60m,视线距隧道边墙的距离应大于0.5m。9.4.5测定仪器常数的地面已知边宜与地下定向边的平面位置相接近。

9.4.6陀螺经纬仪、铅垂仪(钢丝)组合每次定向应在三天内完成。

9.4.7陀螺方位角测量可采用逆转点法、中天法等。

9.4.8陀螺方位角测量应符合下列规定:

1绝对零位偏移大于0.5格时,应进行零位校正。观测中的测前、测后零位平均值大于0.05格时,应该进行零位改正;

2测前、测后各三测回测定的陀螺经纬仪常数平均值较差不应大于15″;

3两条定向边陀螺方位角之差的角值与全站仪实测值较差应小于10″。9.4.9铅垂仪投点应满足下列要求:

1铅垂仪的支承台(架)与观测台应分离,互不影响;

2铅垂仪的基座或旋转纵轴应与棱镜轴同轴,其偏心误差应小于0.2mm;

3全站仪独立三测回测定铅垂仪的坐标互差应小于3mm。

9.5 导线直接传递测量

9.5.1导线直接传递测量应按本规范第 3.3节精密导线测量有关技术要求进行。

9.5.2导线直接传递测量应独立测量两次,地下定向边方位角互差应小于12″,平均值中误差应为±8″。

9.5.3导线直接传递测量应符合下列要求:

1宜采用具有双轴补偿的全站仪,无双轴补偿时应进行竖轴倾斜改正;

2垂直角应小于30?;

3仪器和觇牌安置宜采用强制对中或三联脚架法;

4测回间应检查仪器和觇牌气泡的偏离情况,必要时重新整平。

9.5.4导线边长必须对向观测。

9.6 投点定向测量

9.6.1可在现有施工竖井搭设的平台或地面钻孔上,架设铅垂仪(钢丝等)向井下投点,进行定向测量。投点定向测量所使用投点仪精度不应低于1/30000。

9.6.2投测的两点应相互通视,其间距应大于60m。

9.6.3架设铅垂仪进行投点定向测量时,应独立进行两次,每次应在基座旋转120?的三个位置,对铅垂仪的平面坐标各测一测回。架设钢丝时,应独立测量三次,并应按本规范第9.3.5条、第9.3.6条的要求测量钢丝的平面坐标。

9.6.4投点定向测量应按本规范第3.3节精密导线测量有关技术要求进行。9.6.5投点中误差应为±3mm。地下定向边方位角互差应小于12″,平均值中误差应为±8″。

9.7 高程联系测量

9.7.1高程联系测量应包括地面近井水准测量、高程传递测量以及地下近井水准测量。

9.7.2测定近井水准点高程的地面近井水准路线,应附合在地面二等水准点上。近井水准测量,应执行本规范第4.2节水准测量有关技术要求。

9.7.3采用在竖井内悬挂钢尺的方法进行高程传递测量时,地上和地下安置的两台水准仪应同时读数,并应在钢尺上悬挂与钢尺鉴定时相同质量的重锤。

9.7.4传递高程时,每次应独立观测三测回,测回间应变动仪器高,三测回测得地上、地下水准点间的高差较差应小于3mm。

9.7.5高差应进行温度、尺长改正,当井深超过50m时应进行钢尺自重张力改正。

9.7.6明挖施工或暗挖施工通过斜井进行高程传递测量时,可采用水准测量方法,也可采用光电测距三角高程测量的方法,其测量精度应符合本规范第 4.2节中的二等水准测量相关技术要求。

10 地下控制测量

10.1 一般规定

10.1.1地下控制测量包括地下平面控制测量和地下高程控制测量。

10.1.2地下平面和高程控制测量起算点,应利用直接从地面通过联系测量传递到地下的近井点。

10.1.3地下平面和高程控制点标志,应根据施工方法和隧道结构形状确定,并宜埋设在隧道底板、顶板或两侧边墙上。各种标志的形状和埋设位置,可在本规范附录E中选择确定。

10.1.4贯通面一侧的隧道长度大于1500m时,应在适当位置,通过钻孔投测坐标点或加测陀螺方位角等方法提高控制导线精度。

10.1.5 地下平面和高程控制点使用前,必须进行检测。

10.2 平面控制测量

10.2.1从隧道掘进起始点开始,直线隧道每掘进200m或曲线隧道每掘进100m 时,应布设地下平面控制点,并进行地下平面控制测量。

10.2.2隧道内控制点间平均边长宜为150m。曲线隧道控制点间距不应小于60m。

10.2.3控制点应避开强光源、热源、淋水等地方,控制点间视线距隧道壁应大于0.5m。

10.2.4平面控制测量应采用导线测量等方法,导线测量应使用不低于Ⅱ级全站仪施测,左右角各观测两测回,左右角平均值之和与360°较差应小于4″,边长往返观测各两测回,往返平均值较差应小于4mm。测角中误差应为±2.5″,测距中误差应为±3mm。

10.2.5控制点点位横向中误差宜符合下式要求:

m

≤mΦ×(0.8×d/D)

u

(10.2.5)

式中m u ——导线点横向中误差,单位:mm;

m

Φ——贯通中误差,单位:mm;

d——控制导线长度,单位:m;

D——贯通距离,单位:m。

10.2.6每次延伸控制导线前,应对已有的控制导线点进行检测,并从稳定的控制点进行延伸测量。

10.2.7 控制导线点在隧道贯通前应至少测量三次,并应与竖井定向同步进行。重合点重复测量坐标值的较差应小于30×d/D(mm),其中:d—控制导线长度,D—贯通距离,单位均为米。满足要求时,应取逐次平均值作为控制点的最终成果指导隧道掘进。

10.2.8隧道长度超过1500m时,除满足本规范第10.1.4条要求外,还宜将控制导线布设成网或边角锁等。

10.2.9相邻竖井间或相邻车站间隧道贯通后,地下平面控制点应构成附合导线(网)。

10.3 高程控制测量

10.3.1高程控制测量应采用二等水准测量方法,并应起算于地下近井水准点。

10.3.2高程控制点可利用地下导线点,单独埋设时宜每200m埋设一个。

10.3.3地下高程控制测量的方法和精度,应符合本规范第4.2节中二等水准测量要求。

10.3.4 水准测量应在隧道贯通前进行三次,并应与传递高程测量同步进行。重复测量的高程点间的高程较差应小于5mm,满足要求时,应取逐次平均值作为控制点的最终成果指导隧道掘进。

10.3.5相邻竖井间或相邻车站间隧道贯通后,地下高程控制点应构成附合水准路线。

11.隧道施工测量

11.4 矿山法区间隧道施工测量

11.4.1线路中线或结构中心线测设应利用地下平面控制点及施工导线点,高程控制线测设应利用地下高程控制点或施工高程点。

11.4.2线路中线或结构中心线测定宜采用不低于Ⅲ级全站仪,高程控制线宜采

用不低于DS3级的水准仪测定。隧道每掘进30~50m应重新标定中线和高程控制线,标定后应进行检查。

11.4.3曲线隧道施工应视曲线半径的大小、曲线长度及施工方法,选择切线支距法或弦线支距法测设中线点。

11.4.4利用激光指向仪指导隧道掘进时,应满足下列要求:

1激光指向仪设置的位置和光束方向,应根据中线和高程控制线设定;

2仪器设置必须安全牢固,激光指向仪安置距工作面的距离不应小于30m;

3隧道掘进中,应经常检查激光指向仪位置的正确性,并对光束进行校正。

11.4.5采用喷锚构筑法施工时,宜以中线为依据,安装超前导管、管棚、钢拱架和边墙格栅以及控制喷射混凝土支护的厚度,其测量允许误差应为±20mm。11.4.6采用弦线支距法测设曲线时,与弦线相对应的曲线矢距在下列条件下,应以弦线代替曲线:

1开挖土方和进行导管、管棚、格栅等混凝土支护施工,矢距不大于20mm;

2混凝土结构施工,矢距不大于10mm。

11.4.7隧道二衬结构施工测量前应进行贯通测量,相邻车站或竖井间的地下控制导线和水准线路应形成附合线路并进行严密平差。

11.4.8隧道二衬结构施工测量应符合下列要求:

1以平差后的地下控制点作为二衬施工测量依据,进行中线和高程控制线测量;

2在隧道未贯通前必须进行二衬施工时,应采取增加控制点测量次数(联系测量和控制点复测)、钻孔投点以及加测陀螺方位等方法,提高现有控制点的精度,并以其调整中线和高程控制线。同时应预留不小于150m长度的隧道不得进行二衬施工,作为贯通误差调整段。待预留段贯通后,应以平差后的控制点为依据进行二衬施工测量。

11.4.9用台车浇筑隧道边墙二衬结构时,台车两端的中心点与中线偏离允许误差应在±5mm之内。曲线段台车长度与其相应曲线的矢距不大于5mm时,台车长度可代替曲线长度。台车两端隧道结构断面中心点的高程,应采用直接水准测设,与其相应里程的设计高程较差应小于5mm。

11.5 盾构法区间隧道施工测量

11.5.1盾构机始发井建成后,应利用联系测量成果加密测量控制点,满足中线测设、盾构机组装、反力架和导轨安装等测量需要。

11.5.2 始发井中,线路中线、反力架以及导轨测量控制点的三维坐标测设值与设计值较差应小于3mm。

11.5.3盾构机姿态测量时,在盾构机上所设置的测量标志应满足下列要求:

1盾构机测量标志不应少于3个,测量标志应牢固设置在盾构机纵向或横向截面上,标志点间距离应尽量大,前标志点应靠近切口位置,标志可粘贴反射片或安置棱镜;

2测量标志点的三维坐标系统应和盾构机几何坐标系统一致或建立明确的换算关系。

11.5.4 盾构机就位始发前,必须利用人工测量方法测定盾构机的初始位置和盾构机姿态,盾构机自身导向系统测得的成果应与人工测量结果一致。

11.5.5盾构机姿态测量应满足下列要求:

1盾构机姿态测量内容应包括平面偏差、高程偏差、俯仰角、方位角、滚转角及切口里程;

2应及时利用盾构机配置的导向系统或人工测量法对盾构机姿态进行测量,并应定期采用人工测量的方法对导向系统测定的盾构机姿态数据进行检核校正;

3盾构机配置的导向系统宜具有实时测量功能,人工辅助测量时,测量频率应根据其导向系统精度确定。盾构机始发10环内、到达接收井前50环内应增加人工测量频率;

4利用地下平面控制点和高程控制点测定盾构机测量标志点,测量误差应在±3mm以内;

5盾构机姿态测量计算数据取位精度要求应符合表11.5.5的规定。

(新)高速铁路线下工程施工测量考试题(含答案)

宝兰客专BLTJ-10标段 铁路工程施工测量考试试题 一.单项选择(每题1分) 1、由于各项测量工作中都存在误差,导致相向开挖中具有相同贯通里程的中线点在空间不相重合,此两点在空间的连线误差在水平面垂直于中线方向的分量称为( B )。 A.贯通误差 B.横向贯通误差 C.水平贯通误差 D.高程贯通误差 2.对工程项目的关键测量科目必须实行(B)。 A.同级换手测量 B.彻底换手测量 C.施工复D.更换全部测量人员3.施工单位对质量实行过程检查,工作一般由(D)检查人员承担。 A.测量队 B.监理单位C.分包单位D.施工单位 4.线路施工测量的主要内容包括:线路复测、路基边坡放样和(B)。 A.地形测量B.横断面测量C.纵断面测量D.线路竣工测量5.桥梁施工测量的主要内容不包括:(C)。 A.桥梁控制测量B.墩台定位及轴线测量C.变形观测D.地形测量 6.下列水准仪使用程序正确的是( D ) A.粗平;安置;照准;调焦;精平;读数 B.消除视差;安置;粗平;照准;精平;调焦;读数 C.安置;粗平;调焦;照准;精平;读数 D.安置;粗平;照准;消除视差;调焦;精平;读数。 7. CPⅡ控制网复测时,相邻点间坐标差之差的相对精度限差为:( C ) A、1/55000 B、1/80000 C、1/100000 8. 下列各种比例尺的地形图中,比例尺最小的是( C )。 A. 1∶2000 B. 1/500 C. 1∶10000 D. 1/5000 9 .导线测量中横向误差主要是由( C ) 引起的。 A 大气折光 B 测距误差 C 测角误差 D 地球曲率 10.水准仪i 角误差是指水平视线与水准轴之间的( A ) A 在垂直面上技影的交角 B 在水平面上投影的交角 C 在空间的交角 11.有一台标准精度为2mm+2ppm 的测距仪,测量了一条lkm 的边长, 边长误差为( B ) A、土2mm B、土4mm C、土6mm D、土8mm 12.在三角高程测量中,采用对向观测可以消除( C ) 的影响。 A.视差 B.视准轴误差 C.地球曲率差和大气折光差 D.水平度盘分划误差 13. 测量工作要按照( B )的程序和原则进行。 A.从局部到整体先控制后碎部 B. 从整体到局部先控制碎部 C. 从整体到局部先碎部后控制 D. 从局部到整体先碎部后控制 14.设AB 距离为200.23m ,方位角为121 0 23' 36" ,则AB 的x 坐标增 量为( D )m. 。

新城市轨道交通车辆制动系统习题库

绪论 一、判断: 1、使运动物体减速,停车或阻止其加速称为制动。(×) 2、列车制动系统也称为列车制动装置。(×) 3、地铁车辆的常用制动为电空混合制动,而紧急制动只有空气制动。(√) 4、拖车空气制动滞后补充控制是指优先采用电气制动,不足时再补拖车的气制动(×) 5、拖车动车空气制动均匀补充控制是指优先采用电气制动,不足时拖车和动车同时补充气 制动(√) 6、为了保证行车安全,实行紧急制动时必须由司机按下紧急按钮来执行。(×) 7、轨道涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(√) 8、旋转涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(×) 9、快速制动一般只采用空气制动,并且可以缓解。(×) 10、制动距离和制动减速度都可以反映列车制动装置性能和实际制动效果。(√) 11、从安全的目的出发,一般列车的制动功率要比驱动功率大。(√) 12、均匀制动方法就是各节车各自承担自己需要的制动力,动车不承担拖车的制动力。(√) 13、拖车空气制动优先补足控制是先动车混合制动,不足时再拖车空气制动补充。(×) 14、紧急制动经过EBCU的控制,使BCU的紧急电磁阀得电而实现。(×) 二、选择题: 1、现代城市轨道交通车辆制动系统不包括(C)。 A.动力制动系统 B.空气制动系统 C.气动门系统 D.指令和通信网络系统 2、不属于制动控制策略的是(A)。 A.再生制动 B.均匀制动方式 C.拖车空气制动滞后补足控制 D.拖车空

气制动优先补足控制 3、直通空气制动机作为一种制动控制系统( A )。 A.制动力大小靠司机操纵手柄在制动位放置时间长短决定,因此控制不太精确 B.由于制动缸风源和排气口离制动缸较近,其制动和缓解不再通过制动阀进行, 因此制动和缓解一致性较自动制动机好。 C.直通空气制动机在各车辆都设有制动、缓解电空阀,通过设置于驾驶室的制动 控制器使电空阀得、失电 D.直通空气制动机是依靠制动管中压缩空气的压力变化来传递制动信号,制动管 增压时缓解,减压则制动 4、三通阀由于它和制动管、副风缸及制动缸相通而得名( B ) A.充气缓解时,三通阀内只形成以下一条通路:①制动管→充气沟i→滑阀室→副 风缸; B.制动时,司机将制动阀操纵手柄放至制动位,制动管内的压力空气经制动阀排 气减压。三通阀活塞左侧压力下降。 C.在制动管减压到一定值后,司机将制动阀操纵手柄移至保压位,制动管停止减 压。三通阀活塞左侧压力继续下降。 D.当司机将制动阀操纵手柄在制动位和保压位来回扳动时,制动管压力反复地减 压——保压,三通阀则反复处于冲压位。 5、城市轨道交通在运行过程中,乘客负载发生较大变化时,一般要求制动系统( B ) A.制动功率不变 B.制动率不变 C.制动力不变 D.制动方式不变. 6、下列不属于直通式空气制动机特点的是:(B) A.列车分离时不能自动停车B.制动管增压缓解,减压制动 C.前后车辆的制动一致性不好D.制动力大小控制不精确 7、下列制动方式中,不属于黏着制动的是:(C) A.空气制动B.电阻制动C.轨道涡流制动D.旋转涡流制动 8、下列制动方式中,属于摩擦制动的是:(A ) A.磁轨制动B.电阻制动C.再生制动D.轨道涡流制动 三、填空题:

城市轨道交通技术规范

为贯彻执行国家技术经济政策,规范城市轨道交通的基本功能和技术要求,依据有关法律、法规,制定本规范。 1.0.2 本规范适用于城市轨道交通的建设和运营。本规范不适用于高速磁浮系统的建设和运营。 1.0.3 城市轨道交通的建设和运营应满足安全、卫生、环境保护和资源节约的要求,并应做到以人为本、技术成熟、经济适用。 1.0.4 城市轨道交通应经验收合格后,才可投入使用。 1.0.5 本规范是城市轨道交通建设和运营的基本要求,城市轨道交通的建设和运营,尚应符合法律、法规和有关标准的规定。 2.0.1 城市轨道交通urban rail transit 采用专用轨道导向运行的城市公共客运交通系统,包括地铁系统、轻轨系统、单轨系统、 有轨电车、磁浮系统、自动导向轨道系统、市域快速轨道系统。 2.0.2 建设constru ction 新建、改建和扩建城市轨道交通工程项目的规划、可行性研究、勘察设计、施工安装、 调试验收和试运行,包括车辆和机电设备的采购、制造。 2.0.3 运营opera tion 为实现安全有效运送乘客而有组织开展的各种活动的总称。 3.0.1 城市轨道交通规划应符合城市总体规划和城市综合交通规划。 3.0.2 城市轨道交通规划应明确城市轨道交通的功能定位、与其他交通方式的关系、发展模式和不同规划期的发展目标,提出网络规划布局以及线路和设施等用地的规划控制要 求。 3.0.3 城市轨道交通的建设和运营应以乘客需求为目标,应做到资源共享和方便乘客使用。 3.0.4 城市轨道交通在设计使用年限内,应确保正常使用时的安全性、可靠性、可用性、可维护性的要求。 3.0.5 城市轨道交通应采用质量合格并符合要求的材料与设备。 3.0.6 城市轨道交通应具有消防安全性能,应配备必要的消防设施,应具备乘客和相关人员安全疏散及方便救援的条件。 3.0.7 城市轨道交通应采取有效的防淹、防雪、防滑、防风雨、防雷等防止自然灾害侵害的措施。 3.0.8 车辆和机电设备应满足电磁兼容要求,投入使用前,应经过电磁兼容测试并验收

工程测量规范

工程测量规范 工程测量规范GB50026-93 第1章总则 第2章平面控制测量 一般规定 设计、选点、造标与埋石 水平角观测 距离测量 内业计算 第3章高程控制测量 一般规定 水准测量 电磁波测距三角高程 第4章地形测量

一般规定 图根控制测量 一般地区地形测图 城镇居住区地形测图第四节城镇居住区地形测图工矿区现状图测量 水域地形测量 地形图的修测 第5章线路测量 一般规定 铁路、公路测量 架空索道测量 自流和压力管线测量 架空送电线路测量 第6章绘图与复制 一般规定

绘图 编绘 晒蓝图、静电复印与复照 翻版、晒印刷版与修版 打样与胶印 第7章施工测量 一般规定 施工控制测量 工业与民用建筑施工放样 灌注桩、界桩与红线测量 水工建筑物施工测量 第8章竣工总图的编绘与实测一般规定 竣工总图的编绘 竣工总图的实测

第9章变形测量 一般规定 水平位移监测网 垂直位移监测网 水平位移测量 垂直位移测量 内业计算及成果整理 附录一本规范名词解释 附录二平面控制点标志及标石的埋设规格 附录三方向观测法度盘和测微器 附录四高程控制点标志及标石的埋设规格 附录五建筑物、构筑物主体倾斜率和按差异沉降推算主体倾斜值的计算公式 附录六基础相对倾斜值和基础挠度计算公式 附录七本规范用词说明 工程测量规范-总则

工程测量规范 第1章总则 第1.0.1 条为了统一工程测量的技术要求,及时、准确地为工程建设提供正确的测绘资料,保证其成果、成图的质量符合各个测绘阶段的要求,适应工程建设发展的需要,制订本规范。 第条本规范适用于城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。其内容包括控制测量,采用非摄影测量方法的1∶500~1∶5000比例尺测图、线路测量、绘图与复制、施工测量、竣工总图编绘与实测和变形测量。 对于测图面积大于50K㎡的1∶5000比例尺地形图,在满足工程建设对测图精度要求的条件下,宜按国家测绘局颁发的现行有关规范执行。 第条工程测量作业前,应了解委托方对测绘工作的技术要求,进行现场踏勘,并应搜集、分析和利用已有合格资料,制定经济合理的技术方案,编写技术设计书或勘察纲要。工程进行中,应加强内、外业的质量检查。工程收尾,应进行检查验收,做好资料整理、工程技术报告书或说明书的编写工作。 第条对测绘仪器、工具,必须做到及时检查校正,加强维护保养、定期检修。

城市轨道交通车辆制动技术题库

城市轨道交通车辆制动技术 题库 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 防滑控制系统主要由、和防滑动作机械部件组成。 2. 上海地铁基础制动装置采用制动机厂生产的。 3. BCU和BECU分别是和系统的缩写。 4. 上海地铁和广州地铁使用的电气指令制动控制系统为式电气指令式制动控制系统。 5. 模拟转换阀是上海地铁车辆KNORR制动系统中使用的一个电磁阀,它由三部分组成:电磁进气阀、和组成。 6. EP阀又称阀,是SD数字式制动控制单元中的一个转换阀。 7. 空压机的驱动电机一般有电机和电机。 8. 经空气压缩机压缩输出的空气压力单位,一般用bar来表示,1bar等于MPa。 9. 空气干燥塔可以将从空气压缩机输出的高压压缩空气中的和分离出去,以达到各用气系统对压缩空气的要求。 10. 空气压缩机组一般由、、、等装置组成。 11. 上海地铁knorr公司的空气压缩机,在进行压缩空气时一般经过两级冷却,分别为冷却和冷却。 12. 除空气制动系统用气外,城市轨道列车还有以下部件需要用到压缩空气:、、、等。 13. 空气压缩机组一般采用方式进行润滑。 14. 空气干燥器一般做成塔式的,有和两种。 15. 电阻制动所采用的制动电阻,材料一般采用合金带钢条,这种合金带钢条不仅具有稳定的,而且具有相当大的。 16. 再生制动失败,列车主电路会自动切断反馈电路转入制动电路。 17. 直流斩波器按列车控制单元及制动控制单元的指令,不断调节斩波器的,无级、均匀地控制,使制动力和再生制动电压持续保持恒定。 18. 电动车组中既有动车又有拖车,拖车没有电动机,只能使用制动,动车带有电动机,可以进行制动。 19. 一般列车在高速时,常用制动都先从制动开始,最后在列车10km/h 以下低速时,由制动将车停止。 20. 动轮与钢轨间切向作用力的最大值与物理学上的最大静摩擦力相比要(大or小)一些,情况要更复杂一点,其主要原因是由于的存在所导致。 21. 伴随着蠕滑产生静摩擦力,轮轨之间才能传递。 22. 一般城市轨道车辆的制动方式主要有三类:、和电磁制动。 23. 电磁制动有两种形式:和。 24. 轮对在钢轨上运行,一般承受载荷、载荷和载荷。 25. 城市轨道交通系统都有明确的车辆运行规程,对于列车制动能力,上海地铁规定,列车在满载乘客的条件下,任何运行速度时,其紧急制动距离不得超过米。 26. 现代城市轨道车辆的制动系统一般都应该具有以下组成部分:、和。 27. 城市轨道车辆制动技术正朝着、、和的目标不断前进。 28. 最近几十年来,制动技术取得了很大进展,出现使电气再生制动成为可能,使制动防滑系统更加精确完善。

高速铁路-施工测量考试题(含答案)

高速铁路施工测量考试试题 姓名职务单位得分 一.单项选择(每题1分) 1、由于各项测量工作中都存在误差,导致相向开挖中具有相同贯通里程的中线点在空间不相重合,此两点在空间的连线误差在水平面垂直于中线方向的分量称为( B )。 A.贯通误差 B.横向贯通误差 C.水平贯通误差 D.高程贯通误差 2.对工程项目的关键测量科目必须实行(B)。 A.同级换手测量 B.彻底换手测量 C.施工复D.更换全部测量人员3.施工单位对质量实行过程检查,工作一般由(D)检查人员承担。 A.测量队 B.监理单位C.分包单位D.施工单位 4.线路施工测量的主要内容包括:线路复测、路基边坡放样和(B)。 A.地形测量B.横断面测量C.纵断面测量D.线路竣工测量5.桥梁施工测量的主要内容不包括:(C)。 A.桥梁控制测量B.墩台定位及轴线测量C.变形观测D.地形测量 6.下列水准仪使用程序正确的是( D ) A.粗平;安置;照准;调焦;精平;读数 B.消除视差;安置;粗平;照准;精平;调焦;读数 C.安置;粗平;调焦;照准;精平;读数 D.安置;粗平;照准;消除视差;调焦;精平;读数。 7. CPⅡ控制网复测时,相邻点间坐标差之差的相对精度限差为:( C ) A、1/55000 B、1/80000 C、1/100000 8. 下列各种比例尺的地形图中,比例尺最小的是( C )。 A. 1∶2000 B. 1/500 C. 1∶10000 D. 1/5000 9 .导线测量中横向误差主要是由( C ) 引起的。 A 大气折光 B 测距误差 C 测角误差 D 地球曲率 10.水准仪i 角误差是指水平视线与水准轴之间的( A ) A 在垂直面上技影的交角 B 在水平面上投影的交角 C 在空间的交角 11.有一台标准精度为2mm+2ppm 的测距仪,测量了一条lkm 的边长, 边长误差为( B ) A、土2mm B、土4mm C、土6mm D、土8mm 12.在三角高程测量中,采用对向观测可以消除( C ) 的影响。 A.视差 B.视准轴误差 C.地球曲率差和大气折光差 D.水平度盘分划误差 13. 测量工作要按照( B )的程序和原则进行。 A.从局部到整体先控制后碎部 B. 从整体到局部先控制碎部 C. 从整体到局部先碎部后控制 D. 从局部到整体先碎部后控制 14.设AB 距离为200.23m ,方位角为121 0 23' 36" ,则AB 的x 坐标增 量为( D )m. 。 A.-170.919 B.170.919 C.104.302 D.-104.302

城市轨道车辆制动系统设计毕业设计(开题报告)

毕业设计(论文) 开题报告 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

1. 选题的目的和意义 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 在我国城市轨道交通迅速发展的同时,其运营安全保障已成为目前面临的重要问题。车辆作为城市轨道交通运输的载体,由于速度快、载客量大、环境复杂,其运行安全状况不容乐观——车辆故障不断出现、事故常有发生,这些故障不但严重的影响到正常运营,一旦引发事故将会带来巨大的人员伤亡和经济损失。制动系统是城市轨道交通车辆的关键系统,直接影响其安全运行,为提高车辆运行的安全性,对制动系统的设计便显得尤为关键。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮 踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类型制动系统作了技术比较。分析了我国自主研发城市轨道车辆制动系统的技术基础,指出国内技术与产品和国外相比存在着系统理念、设计经验和系统可靠性方面的差距,同时指出自主研发城市轨道车辆制动系统存在的问题,并提出了建议。邹金财(2010)《一种轨道车辆空气制动系统优化及仿真》[4]利用Simulationx 仿真软件对工矿窄轨土渣车的空气制动系统的改进前以及改进方案进行仿真,在与试验真实值对比后得到了正确的结论,通过对该空气制动系统优化中仿真手段应用过程的阐述,为机车车辆系统优化方法提供了参考。师蔚,方宇(2010)《城

高速铁路工程测量规范-2009-12(附录).

95 附录A 控制点埋石图及标志注字方法 本附录所规定的各级平面水准点标石的埋设规格均为一般地区普通标石的埋设(标石可采用混凝土预制桩或现场浇注),对于特殊地区的标石埋设,应根据线路所在地区的土质、地质构造及区域沉降等因素,进行特殊地区的控制点埋设(如基岩点、深埋点等)。 A.1 控制点标志 A.1.1 金属标志制作材料为铸铁或其它金属。规格应符合图A.1.1的规定,图中“××××××”处为测量单位名称。 A.1.2 不锈钢标志可采用直径为12~20mm ,长度为20~30mm 不锈钢材料,下部采用普通钢筋焊接而成。规格应符合图A.1.2的规定。 不锈钢

普通钢 图A.1.1 金属标志(单位:mm )图A.1.2 不锈钢标志(单位:mm ) A.2 平面控制点标石的埋设 A.2.1 建筑物顶上设置标石,标石应和建筑物顶面牢固连接。建筑物上各等平面控制点标石设置规格应符合图A.2.1-1、图A.2.1-2的规定。 图A.2.1-1 建筑物CP0平面控制点标石(单位:mm ) 96 图A.2.1-2 建筑物上CPI 、CPII 平面控制点标石(单位:mm ) A.2.2 CP0控制点标石埋设规格应符合图A.2.2的规定。 图A.2.2 CP0控制点标石埋设图(单位:mm ) 注:1-盖;2-土面;3-砖;4-素土;5-冻土;6-贫混凝土 A.2.3 二等导线/三角形网/GPS平面控制点标石埋设规格应符合图A.2.3的规定。 97

图A.2.3 二等导线/三角形网/GPS平面控制点点标石埋设图(单位:mm ) 注:1-盖;2-土面;3-砖;4-素土;5-冻土线;6-贫混凝土 A.2.4 三等导线/三角形网/GPS平面控制点标石埋设规格应符合图A.2.4规定。 图A.2.4 三等及以上导线/三角形网/GPS平面控制点点标石埋设图(单位:mm ) 注:1-盖;2-土面;3-砖;4-素土;5-冻土;6-贫混凝土

城市轨道交通自荐信

城市轨道交通自荐信 城市轨道交通自荐信篇一 尊敬的领导: 您好!我是xxx学院,2012届城市轨道交通运营管理专业的毕业生。珍贵的大学生活已接近尾声,感觉非常有必要总结一下大学生活的得失,从中继承做得好的方面改进不足的地方,使自己回顾走过的路,也更是为了看清将来要走的路。 思想方面,我追求上进,思想觉悟有了很大的提高。我热爱祖国,热爱人民,坚决拥护共产党领导和社会主义制度。我觉得一个人的价值是由他对社会对别人所做的贡献来衡量的,我认真学习党的各种理论,并努力把他们付之于实践,对党有了更加清晰的认识。 学习方面,我觉得大学生的首要任务还是学好文化知识。虽然我的学习成绩不是非常好,但我却在学习的过程中收获了很多。首先是我端正了学习态度。在我考进大学时,脑子里想的是好好放松从重压下解放出来的自己,然而很快我就明白了,大学仍需努力认真的学习。看到周围的同学们拼命的学习,我也打消了初衷,开始大学的学习旅程。我认为学习是学生的职业,这份职业同样需要有智慧、毅力和恒心。在当今这个快速发展的信息时代,我们只有不断汲取新知识,才不会落伍。 大学校园就是一个大家庭。在这个大家庭中,我们扮演着被

培养对象的角色。老师是我们的长辈,所以我对他们尊敬有加。同学们就像兄弟,我们一起学习,一起娱乐,互帮互助,和睦的相处。集体生活使我懂得了要主动去体谅别人和关心别人,也使我变得更加坚强和独立。我觉得自己的事情就应该由自己负责,别人最多只能给你一些建议。遇到事情要冷静地思考,不要急躁。不轻易的承诺,承诺了就要努力去兑现。生活需要自己来勾画,不一样的方式就有不一样的人生。 作为一名大学应届毕业生,我所拥有的是年轻和知识。年轻也许意味着欠缺经验,但是年轻也意味着热情和活力。 恕冒昧,如果我能成为贵公司的一员,我定当用我的热情和能力投入到我的工作中去。请相信:你们所要实现的正是我想要达到的!如果我能喜获您的赏识,我一定会尽职尽责地用实际行动向您证明:您的过去,我来不及参与;但您的未来,我愿奉献我的心血和汗水! 此致 自荐人: 城市轨道交通自荐信篇二 尊敬的上海铁路局领导: 您好!衷心感谢您在百忙之中阅读我的自荐信。我叫周志明,是一名即将毕业于上海工程技术大学,机械工程及自动化(城市轨道交通车辆工程)的学生。我怀着一颗赤诚的心,毛遂自荐,愿意接受贵方的考核和挑选。

城市轨道交通车辆技术规范

上海市工程建设规范 城市轨道交通车辆技术规范 Technical specification of rail traffic Vehice for urban rail transit DGJ08—106—2003 主编单位:上海市城市交通管理局 批准部门:上海市建设和管理委员会 施行日期:2003年10月1日 2003上海

上海市建设和管理委员会文件 沪建建[2003]618号 关于批准《城市轨道交通车辆技术规范》 为上海市工程建设规范的通知 各有关单位: 由上海市城市交通管理局主编的《城市轨道交通车辆技术规范》,经有关专家审查和我委审核,现批准为上海市工程建设规范,其中3.1.1、3.1.6、3.2.16第2、11、13、14、15、16、17款,3.2.17第1、2款,4.1.3第8款,4.5.3、4.9.3、4.9.4为强制性条文。该规范统一编号为DGJ08—106—2003,自2003年10月1日起实施。 该规范由上海市建设工程标准定额管理总站负责组织实施,上海市城市交通管理局负责解释。 上海市建设和管理委员会 二00三年八月十六日

前言 本规范是根据市建设和管理委员会沪建建[2003]87号文的要求,由上海市城市交通管理局会同上海地铁运营有限公司、上海地铁建设有限公司等单位编制完成。 本规范编制组在总结近年来城市轨道交通车辆运营、维修实践经验及深入调研和广泛听取有关单位和专家意见、建议的基础上,充分考虑了上海城市轨道交通发展的整体目标和特点,适当吸取和借鉴了部分国外标准,以满足技术先进、安全适用、确保质量、经济合理、促进成熟的要求,编制了本规范。 本规范提出了对城市轨道交通车辆的设计、选型及安全性、适用性等方面的基本性能指标和技术要求。为上海城市轨道交通车辆资源的合理配置和列车功能的合适设置,保证运营和服务的基本需要提供了依据。 本规范的主要技术内容为:1总则;2术语;3车辆性能;4车辆技术要求;5试验与验收。 本规范以黑体字标注的条文为强制性条文,必须严格执行。 本规范在编制中,自始至终得到上海市发展计划委员会、上海市建设和管理委员会的指导和关心,以及其它有关单位和专家的大力支持,在此表示衷心感谢!请各有关单位在实施过程中,注意积累,总结经验。在执行本规范时有何意见和建议,请及时告知上海市城市交通管理局规划建设处(地址:上海市延安东路34号,邮编:200002),以供修编时修改和补充。 主编单位:上海市城市交通管理局 参编单位:上海地铁运营有限公司 上海地铁建设有限公司

高速铁路工程施工测量技术方案

高速铁路工程施工测量技术方案 一技术依据 《客运专线无渣轨道铁路工程测量技术暂行规定》; GB/T18314-2001《全球定位系统(GPS)测量规范》; BT10054-97《全球定位系统(GPS)铁路测量规范》。 二施工控制测量 2.1 测量组织管理形式 针对本项目的特点及高速铁路的高标准要求,测量组织机构本着人尽其责、物尽其力的原则,建立了一支精干高效、组织纪律严明的管理队伍来进行项目的测量管理工作。 工区经理部的测量工作由工区总工程师总负责,由测量工程师具体负责日常工作。对于测量方案设计、测量成果的整理以及测量放样数据的计算等工作,须经测量工程师复核,总工程师审核合格后上报项目经理部工程管理审核,审核合格后报送监理单位审批,所有内业计算资料须经监理单位审查合格后方可投入使用。 2.2 施工测量控制点的复测及加密 2.2.1 测量人员: 2.2.2 测量设备:莱卡GPS一套、 GTS-711全站仪、苏光水准仪、 SOKKI ∧ C32Ⅱ水准仪 2.2.3 加密点的选布 加密桩选点时应充分利用设计单位的CPI、CPII控制点,并结合施工放样的要求,加密点应按少而精的选择分布。 加密点应选埋在便于施工放样和保存的地方,应在设计单位的CPI或者CPII 控制点之间进行加密,两相邻加密点间的距离不应短于300米;相邻点之间要求通视,为便于GPS测量,加密点应埋设在开阔地带,远离高压线、发射塔、树木、房屋等遮盖物。选点位置直接影响GPS测量的观测质量,点位务必选在高度角15°以上无障碍物遮挡的地方。

2.2.4 加密点的埋设 ****高速铁路施工工期较长,为保证控制点长期保存,避免锈蚀,加密点标心应采用不锈钢桩头,十字丝刻划,标石采用混凝土现场浇注,标石面规格为40cm*40cm. 2.2.5 加密点命名原则 为防止加密点点名命名重复,在使用时造成混淆,以距离设计单位CPI、CPII 点最近的点名为基础,点名加后缀,如在某个设计控制点附近加密两个点,沿线路桩号加大方向第一个点名后缀为:“-1”,第二个点名后缀为:“-2”,依次类推。水准和平面共用点的在编号前加G。点名应标识清楚,便于识别和保存。 2.3 施工平面控制点加密技术要求 2.3.1 测量方法 采用GPS测量的方法进行施工控制点的加密测量。测量等级和技术标准按《客运专线无渣轨道铁路工程测量暂行规定》和《全球定位系统(GPS)铁路测量规程》执行,按C级网的精密度要求进行复测。 2.3.2 GPS测量作业的基本要求 2.4 水准点加密测量技术要求 2.4.1 加密水准点的布置 水准点加密和平面控制网并网。点位规格参照四等水准点的规格实施。水准

高铁常用规范2016年

高铁常用规范 序号规范名称价格 1 铁路混凝土工程施工质量验收标准TB10424-2010 27 2 高速铁路路基工程施工质量验收标准TB10751-2010 49 3 高速铁路桥涵工程施工质量验收标准TB10752-2010 36 4 高速铁路轨道工程施工质量验收标准TB10754-2010 32 5 高速铁路通信工程施工质量验收标准TB10755-2010 40 6 高速铁路信号工程施工质量验收标准TB10756-2010 26 7 高速铁路电力工程施工质量验收标准TB10757-2010 31 8 高速铁路电力牵引供电工程施工质量验收标准TB10758-2010 24 9 高速铁路工程测量规范TB10601-2009 22 10 《高速铁路工程测量规范》条文说明TB10601-2009 19 11 既有线施工监理工作手册(TD.9787113128067) 20 12 路基施工监理工作手册TD.9787113128050 18 13 桥梁施工监理工作手册TD.9787113128074 20 14 铁路工程基本作业施工安全技术规程(TB10301-2009)25 15 铁路路基工程施工安全技术规程(TB10302-2009)18

16 铁路桥涵工程施工安全技术规程(TB10303-2009)26 17 铁路轨道工程施工安全技术规程(TB10305-2009)22 18 铁路通信、信号、电力、电力牵引供电工程施工安全技术规程(TB10306-2009)26 19 中国铁路总公司安全管理规定2015 16 20 高速铁路工程静态验收技术规范TB10760-2013 20 21 高速铁路工程动态验收技术规范TB10761-2013 18 22 中国高速铁路动态验收铁路总公司主编35 23 铁路建设项目现场管理规范Q/CR9202-2015 12 24 铁路建设工程监理规范TB/0402-2007 12 25 建设工程监理规范GB/50319-2013 14 26 铁路建设项目资料管理规程TB10443-2010 15 27 铁路建设项目档案工作指南35 28 铁路站场工程施工质量验收标准(TB 10423-2014)26 29 建筑工程施工质量验收统一标准GB50300-2001 10.00 30 混凝土结构试验方法标准 GB/T50152-2012 21.00 31 混凝土强度检验评定标准GB/T50107-2010 10.00 32 混凝土结构工程施工质量验收规范GB/T50204-2002(2010年版)20.00 33 地下防水工程质量验收规范GB50208-2011 28.00 34 砌体结构工程施工质量验收规范GB50203-2011 15.00 35 建设工程施工现场供用电安全规范GB50194-93 12.00 36 钢筋焊接及验收规程JGJ18-2012 19.00 37 钢筋机械连接技术规程JGJ107-2010 10.00 38 建筑钢结构焊接技术规程(JGJ81-2002J218-2002) 32.00

城市轨道交通车辆制动技术题库

1. 防滑控制系统主要由、和防滑动作机械部件组成。 2. 上海地铁基础制动装置采用制动机厂生产的。 3. BCU和BECU分别是和系统的缩写。 4. 上海地铁和广州地铁使用的电气指令制动控制系统为式电气指令式制动控制系统。 5. 模拟转换阀是上海地铁车辆KNORR制动系统中使用的一个电磁阀,它由三部分组成:电磁进气阀、和组成。 6. EP阀又称阀,是SD数字式制动控制单元中的一个转换阀。 7. 空压机的驱动电机一般有电机和电机。 8. 经空气压缩机压缩输出的空气压力单位,一般用bar来表示,1bar等于MPa。 9. 空气干燥塔可以将从空气压缩机输出的高压压缩空气中的和分离出去,以达到各用气系统对压缩空气的要求。 10. 空气压缩机组一般由、、、等装置组成。 11. 上海地铁knorr公司的空气压缩机,在进行压缩空气时一般经过两级冷却,分别为冷却和冷却。 12. 除空气制动系统用气外,城市轨道列车还有以下部件需要用到压缩空气:、、、等。 13. 空气压缩机组一般采用方式进行润滑。 14. 空气干燥器一般做成塔式的,有和两种。 15. 电阻制动所采用的制动电阻,材料一般采用合金带钢条,这种合金带钢条不仅具有稳定的,而且具有相当大的。 16. 再生制动失败,列车主电路会自动切断反馈电路转入制动电路。 17. 直流斩波器按列车控制单元及制动控制单元的指令,不断调节斩波器的,无级、均匀地控制,使制动力和再生制动电压持续保持恒定。 18. 电动车组中既有动车又有拖车,拖车没有电动机,只能使用制动,动车带有电动机,可以进行制动。 19. 一般列车在高速时,常用制动都先从制动开始,最后在列车10km/h以下低速时,由制动将车停止。 20. 动轮与钢轨间切向作用力的最大值与物理学上的最大静摩擦力相比要(大or 小)一些,情况要更复杂一点,其主要原因是由于的存在所导致。 21. 伴随着蠕滑产生静摩擦力,轮轨之间才能传递。 22. 一般城市轨道车辆的制动方式主要有三类:、和电磁制动。 23. 电磁制动有两种形式:和。 24. 轮对在钢轨上运行,一般承受载荷、载荷和载荷。 25. 城市轨道交通系统都有明确的车辆运行规程,对于列车制动能力,上海地铁规定,列车在满载乘客的条件下,任何运行速度时,其紧急制动距离不得超过米。 26. 现代城市轨道车辆的制动系统一般都应该具有以下组成部分:、和。 27. 城市轨道车辆制动技术正朝着、、和的目标不断前进。 28. 最近几十年来,制动技术取得了很大进展,出现使电气再生制动成为可能,使制动防滑系统更加精确完善。 29. 20世纪初早期的城市轨道交通车辆制动系统一般采取和等安全性和舒适性均较差的方式来进行制动。

城市轨道交通车辆的主要技术参数

城市轨道交通车辆的主要技术参数 1、自重、载重。空车时,车辆自身的全部质量称为车辆的自重。车辆允许的最大装载质量称为车辆的载重。 2、最高试验速度与最高运行速度。最高试验速度指车辆设计时,安全及结构强度等条件所允许的车辆最高行驶速度。最高运行速度指除满足上述安全及结构条件外,还必须满足的使车辆有良好的运行性能的行驶速度。 3、轴重。轴重是车辆总重(自重+载重)和轴数的比值,是指车轴可以承受的最大总质量(包括轮对自身的重量)。 4、通过最小曲线半径。通过最小曲线半径是指车辆在站场或车辆段内调车时所能安全通过的最小曲线半径。当车辆在此曲线区段上行驶时不得出现脱轨、倾覆等危及行车安全的事故,也不允许转向架与车体底架或与车下其他悬挂物相碰。 5、轴配置或轴列数。轴配置或轴列数是指车辆所配的转向架动轴或非动轴配置情况。例如,4轴动车设两台动转向架,其轴配置记为B-B;6轴单铰轻轨车,两端为动力转向架,中间为非动力铰接转向架,其轴配置记为B-2-B。 6、车辆全长。车辆前、后两车钩连挂中心线之间的距离称为车辆全长。 7、车体长度和底架长度。车体长度是指车体两外端墙板(非压筋处)外表面间的水平距离。底架长度为底架两端梁外表面间的水平距离。 8、车辆宽度与车辆最大宽度。车辆宽度是指车辆两侧最外凸出部位之间的水平距离。车辆最大宽度是指车辆侧面最外凸出部位与车体纵向中心线间的水平距离的两倍。 9、车辆高度与最大高度。车辆高度是指空车时车体上部外表面至轨面的距离。最大高度是指空车时车辆上部最高部位至轨面的距离。 10、车体内部主要尺寸。车体内长是指车体两端墙板内表面间的水平距离;车体内宽是指车体两侧墙板内表面间的水平距离;车体内侧面高是指地板上平面至侧墙上侧梁的上平面间的距离;车体内中心高是指地板上平面至车顶中央部内表面的距离。

城市轨道交通车辆

《城市轨道车辆工程》 学习中心: 专业: 学号: 姓名:

一、填空 1.铁风挡,立橡胶胶囊总成,横橡胶胶囊总成,防晒板总成,橡胶垫,渡板总成,缓冲装置 2.司机操纵台,启动,加速,运行,制动,停车 3.可减少弹簧装置的合成刚度,增大其总静挠度,以改善机车车辆沿铅垂方向的运行平稳性,减少机车车辆对线路的动作用力 4.铸铁,铸钢,锻钢,合成材料,粉末冶金,环境污染 5.固定附属装置,辅助设备,车电,通风,取暖,空调,座椅,拉手 6.重量轻,运动灵活,无阻尼 7.水平,轨距,高低,方向 8.帘线,材质 9.车钩、缓冲器、钩尾框 10.帘布,橡胶 11.牵引梁,枕梁,缓冲梁,各种横梁 12.有心盘(或有牵引销)转向架,无心盘(或无牵引销)转向架,铰接式转向架(亦称雅可比转向架) 13.振幅增幅系数,相对阻尼率 14.轮轨作用力经弹性元件缓冲后再传给齿轮和电动机 15.力电机、功电机,能电机 16.轴盘式,轮盘式 17.直线振荡电动机,直线电磁螺旋管电动机,直线电磁泵 18.固定线路,铺设固定轨道,配备运输车辆,服务设施 19.曲线阻力,隧道空气附加阻力 20.构架轮对 21.内、外橡胶层,帘线层,成型钢丝圈 22.交流直线感应电动机,交流直线同步电动机,直线直流电机,直线步进(脉冲)电动机 23.能显著地改善车辆走行部分的工作条件,减少燃油的惯性事故,减轻维护和检修工作,降低运营成本 24.齿轴套(外齿轴套),半联轴节(内齿套筒),鼓形齿式,左右基本对称 二、名词解释

1. 能电机:能电机是指运动构件在短时间内所能产生的极高能量的驱动电机,它主要是在短时间、短距离内提供巨大的直线运动能。 2. 单位基本阻力:列车在平直道上牵引运行时的阻力。一般表示为:单位基本阻力=列车总阻力/列车重量。 三、计算题 1.如下图所示,设动轴轴重为Q ,动轮半径为R ,该动轴获得的扭矩为M ,忽略其他内摩擦力 1) 试以一个动轴为隔离体进行受力分析 2) 求出动车做匀速直线运动时,作用在该动轴上的轮周牵引力 已知动轴轴重为Q ,动轮半径为R ,该动轴获得的扭矩为M ,则当忽略其他内摩擦力时,可列出以下方程: M F R J ε'-= 式中:J ——轮对的转动惯量; ε——轮对的角加速度。 当动车做变速运动时,0ε≠;当动车做匀速运动时,=0ε。 若=0ε,则有: 0M F R '-= 故有: = M F R ' 上式即为一个动轴的轮周牵引力。 可见,整个一辆动车的轮周牵引力为: =nF n F ''∑(为整车动轴数) 2.设p a 为列车在满载情况下由速度0加速到最大速度max V 过程中的平均加速度,试按加速到max V 时的平均加速过程估算牵引电动机功率(G 为列车总重,n 为整列车所安装的牵引电动机总台数,η为牵引齿数等的机械传动效率) 已知p a 为列车在满载情况下由速度0加速到最大速度max V 过程中的平均加速度,则有:

高速铁路工程测量有关技术问题

高速铁路工程测量有关技术问题 发表时间:2019-02-25T14:32:46.607Z 来源:《防护工程》2018年第32期作者:鲁军[导读] 工作人员才会具有高度责任心的工作态度,并且能够认真完成自己的工程测量任务,进而促进我国高铁工程事业的快速发展。摘要:交通运输业与国家经济的发展有很大的联系,在高速发展的今天,我国大力发展高铁建设,国家对高速铁路工程测量的要求也不断提高,对高速铁路测量中应用到的技术要求也越来越高。一般情况下,传统的测量技术都存在一些不足,甚至跟不上时代发展得脚步,因 此,这就需要将先进的测量技术应用到高速铁路工程测量中。我国的高速铁路工程测量技术在不断提高,以适应我国高速铁路建设的发展,只有保证了工程测量的精度要求,才能够很好的满足高速铁路发展需求。关键词:高速铁路;工程测量;技术问题 1、高速铁路测量技术概述 1.1工程测量的作用及方式 铁路工程测量的主要目的是为铁路工程的设计、施工、运营管理以及养护等工作提供有效的测量数据支持。根据测量方式进行划分,可分为高程控制网测量、平面控制网测量两种类型。铁路工程测量中,最为常用的测量方式便是平面控制网测量。 1.2要求解析 铁路工程测量中运用平面控制网测量方式时,主要是按照逐级控制、分级布网原则来进行实际测量。平面控制网测量的具体步骤包括六个方面。第一,框架控制网。采取卫星定位测量技术构建而成的三维控制网,是铁路全段的坐标起算基准。第二,基础平面控制网。主要通过采取卫星定位测量技术,为铁路工程勘测设计、施工、运营管理与养护提供准确的坐标基准。第三,线路平面控制网。其主要作用是为铁路勘测、施工提供准确的控制基准。第四,轨道控制网。其主要作用是为轨道铺设、铁路工程的运营维护提供准确的控制基准。第五,施工测量。主要为铁路工程的施工提供可靠的测量数据,包括桥梁控制网、施工控制网加密、隧道控制网、施工放样、线路中线贯通、建筑物变形以及竣工测量等。第六,运营管理及维护。主要为铁路工程的运营管理及维护提供可靠的测量数据,包括构筑物变形测量、各级控制网的复测、轨道几何状态测量以及沉降地段变形测量等。 2、高速铁路工程测量技术存在问题2.1测量仪器导致的质量问题 在实际铁路工程测量中,测量仪器的质量问题以及使用不当是导致工程测量数据不准确的一个重要因素,主要表现在:①测量仪器相对落后,达不到当前工程测量的标准要求。在一些工程施工中,为了节省成本,不能及时的换新的仪器,还在使用比较老式的测量仪器,这样难保证测量精度;②测量人员在使用测量仪器进行工程测量时,往往凭借自己的经验对工程测量,没能够按照相关的规范来使用仪器,这很可能使测量的数据与实际不符,最终导致铁路工程出现质量问题;③没能按照相关的规定来管理仪器,造成仪器失真。而对于工程测量仪器来说,其管理及保养都需要专业人员来进行,不能让其他人员随意使用或放置,以防仪器失去精度。 2.2未能控制好测量质量 对于高速铁路工程质量监控来说,它既涉及到铁路工程的质量问题,又涉及到人们的生命和财产安全问题,不仅需要相关部门的监察,更加需要政府的职能监督。政府及社会监理要和相关部门协同进行工程验收,高铁质量重中之重不可忽视。然而,许多工程监理没能担负起应尽的责任,没有按照监理要求对工程质量进行评估。其次有一些监理人员未使得当的测量仪器进行工程监理,这会很大程度上影响监理质量。 2.3工程测量产生误差 2.3.1GPS测量误差 (1)与控制段相关的误差,包括星历误差和卫星时钟误差,指的是在卫星传播过程中导航电文的参数值产生误差。(2)与接收机有关的误差,一般是接收机噪声引起的误差。(3)与卫星信号有关的误差,指信号受到接收机和卫星之间的传播介质的影响而造成的误差。 2.3.2CPⅢ控制测量误差 CPⅢ控制网测量方式是采用后方交会全站仪自由设站的形式。误差来源主要是:(1)由观测值误差产生的自由设站点误差,主要原因是出现了方向观测误差;(2)两相邻测站在平面位置和高程产生的相对误差;(3)全站仪测量轨道各点的误差。 3、高速铁路工程测量技术的主要内容和要求3.1检查工作 为了可以做好测量放线工作,提高施工质量,开工前的放线测量工作必须要严谨且精准,只有检测以及检查合格之后,才可以开始后续测量工作。具体检测内容如下:在开展测量放线工作之前,需要检测使用仪器的精准度以及破损程度;仪器安置完成以后,需要对三脚架的牢固性以及架腿伸缩的灵活性进行检测;对各种脚螺旋、对光螺旋以及微调螺旋和制动螺旋的有效性予以精确检测;对读数显微镜和望远镜呈现的清晰程度予以精确检测;检测仪器竖轴与照准部水准管轴、仪器横轴与十字丝、横轴与视准轴、仪器竖轴与横轴的垂直情况。 3.2重复测量水准点和导线点坐标项目部在开展施工之前,需要复测设计单位以及业主提供的控制点,复测的时候需要采用同精度等级的测量标准,复测内容主要包括水准点和导线,通过复测可以对设计单位以及业主所提供材料与桩位的精读、准确度的吻合程度、交桩点位的精确度进行检测。复测结果若是与设计单位提供的资料存在较大的差异,则需要二次复测。如果二次复测结果依旧与设计单位提供的资料不相符,则需要与相关单位进行沟通,联合分析该问题,并予以有效且合理的解决。 3.3高速铁路精密工程测量平面控制

相关文档
相关文档 最新文档