文档库 最新最全的文档下载
当前位置:文档库 › 发变组保护整定计算算例

发变组保护整定计算算例

发变组保护整定计算算例
发变组保护整定计算算例

发变组保护整定计算算例

整定计算依据:

1、《DL/T 684-1999 大型发电机变压器继电保护整定计算导则》,以下简称《导则》

2、《GB/T 15544-1995 三相交流系统短路电流计算》

3、《大型发电机组继电保护整定计算与运行技术》高春如著

4、《RCS-985发电机变压器成套保护装置技术说明书》,以下简称:《说明书》

5、《厂用电系统设计》梁世康许光一著

第一章技术数据及短路电流计算

1.1发电机电气参数

1.2主变压器参数

1.3厂变参数

1.4励磁机参数

1.5系统阻抗(2011年7月16日,宁夏中调保护处提供系统参数,不含#1、#2、#3机)

计入#1、#3机组阻抗最大运行方式下归算至220kV 阻抗为0.00718,最小方式下系统阻抗为0.0174 1.6各电压等级基准值

1.7阻抗参数计算 1.7.1发电机阻抗

Xd=233.5%×

7.366100

=0.6368 Xd ′=24.5%×7.366100

=0.0668

Xd ″=15.7%×7.366100

=0.0428

X2=20.9%×7

.366100

=0.057

1.7.2主变阻抗

XT=XT0=14.02%×360

100

=0.0389 1.7.3厂高变阻抗 X T1-2′=15.5%×

40

100

=0.3875 计算用短路阻抗图,如图1-1

图1-1 #2发变组等值阻抗图

1.8短路电流计算

1.8.1最小运行方式下短路电流计算 1)d1点发生三相短路时,短路电流

发电机G 流过的短路电流(归算至220kV 侧,IB=238.6A): I (3)dmin=

"1Xd XT +×IB=0428

.00389.01

+×238.6=12.24×238.6=2920.5A

换算为18kV 侧(归算至18kV 侧,IB=3207.6A )短路电流为I (3)dmin=12.24×3207.6=39261A

I (2)dmin=0.866× I (3)dmin=0.866×2920.5A=2529.2A

换算为18kV 侧短路电流为I (2)dmin=0.866×12.24×3207.6=34000A 系统流向故障点短路电流

I (3)dmin=

(min)11Xs ×IB=0174

.01

×238.6=13713A

2)d2点发生三相短路时,短路电流

发电机G 流过的短路电流(归算至18kV 侧,IB=3207.6A ): I (3)dmin=

"

1

Xd ×IB=0428.01×3207.6=23.4×3207.6=75057.8A

系统流向故障点短路电流(归算至220kV 侧电流) I (3)dmin=

XT

Xs +(min)11

×IB=

0389

.00174.01

+×238.6=17.76×

238.6=4237.5A

3)d3点发生三相短路时,短路电流 (归算至6kV 侧,IB=9165A):

∑X =(Xs1.min+XT)//XG+Xt=(0.0174+0.0389)//0.0428+0.3875=0.0563//0.0428+0.3875=0.0

243+0.3875=0.4118

I (3)dmin=

X 1

×IB=4118.01×9165=22.3KA

I (2)dmin=0.866 ×I (3)dmin=0.866×22.3=19.31KA 1.8.2最大运行方式下短路电流计算 1)d1点发生三相短路时,短路电流

发电机G 流过的短路电流(归算至220kV 侧,IB=238.6A): I (3)dmax=

"1Xd XT +×IB=0428

.00389.01+×238.6=12.24×238.6=2920.5A

系统流向故障点短路电流 I (3)dmax=

(max )11Xs ×IB=00718

.01

×238.6=33231A

2)d2点发生三相短路时,短路电流

发电机G 流过的短路电流(归算至18kV 侧,IB=3207.6A ): I (3)dmax=

"

1

Xd ×IB=0428.01×3207.6=23.36×3207.6=74930A

系统流向故障点短路电流(归算至220kV 侧电流) I (3)dmax=

XT

Xs +(m ax )11

×IB=

0389

.000718.01

+×238.6=21.7×

238.6=5177.6A

3)d3点发生三相短路时,短路电流 (归算至6kV 侧,IB=9165A):

∑X =(Xs1.max+XT)//XG+Xt=(0.00718+0.0389)//0.0428+0.3875=0.0461//0.0389+0.3875=0.

021+0.3875=0.4085

I (3)dmax=

X 1

×IB=4085.01×9165=22.4KA

第二章

整定计算

(一)

主变差动保护

1)差动电流启动值Icdqd 整定

根据《说明书》按躲过正常运行时主变带额定负载时最大不平衡电流整定 I cdqd =K rel ×(Ker+△U+△m )Ib 2n =0.11 Ib 2n

K rel 为可靠系数,取1.3~1.5,Ib 2n 为主变二次额定电流,△U 为调压引起的误差,取0,△m 为由于电流互感器变比未完全匹配产生的误差,取0.05。Ker 为电流互感器比误差(10P 型取0.03×2,5P 和TP 型取0.01×2)

由于我公司主变高低压侧供主变差动保护使用的电流互感器不是TPY 型,并且暂态特性不可能相一致,所以按《大型发电机变压器组继电保护整定计算与运行技术》要求,取(0.5~0.7)Ib 2n ,我公司最终取0.5 Ib 2n 。

2)最小制动系数 K rel1

根据《说明书》要求,K rel1= K er =0.1, K er 为互感器比误差系数,最大取0.1。根据《大型发电机变压器组继电保护整定计算与运行技术》建议,K rel1取0.1,我公司取0.1.

3)最大制动系数K rel2

根据《说明书》和《大型发电机变压器组继电保护整定计算与运行技术》建议K rel2取0.7。

4)差动速断保护定值I cdsd

差动速断保护定值I cdsd 作为比率制动纵差保护的补充部分,应躲过变压器初始励磁涌流、区外故障或非同期合闸引起的最大不平衡电流,根据《大型发电机变压器组继电保护整定计算与运行技术》介绍360~370MW 主变一般按经验取差动速断动作电流为(3~4)Ib 2n ,根据《说明书》建议取(4~6)Ib 2n ,我公司取4 If 2n 。 灵敏度校验

最小运行方式时变压器区内短路时的短路电流:在发变组并入系统前主变高

压侧短路电流:

d1点发生三相短路时,短路电流

发电机G 流过的短路电流(归算至220kV 侧,IB=238.6A): I (3)dmin=

"1Xd XT +×IB=0428

.00389.01

+×238.6=12.24×238.6=2920.5A

换算为18kV 侧(归算至18kV 侧,IB=3207.6A )短路电流为I (3)dmin=12.24×3207.6=39261A

I (2)dmin=0.866× I (3)dmin=0.866×39261A=34000A=2.94 Ie (Ie=360/(1.732×18)=11547A )

式中:Xd 〃——发电机次暂态电抗 X T ——变压器电抗百分比

制动电流: I r =(|I 1|+|I 2|+|I 3|)/2= I (2)dmin/2=1.47 Ie 差动电流: I d =|I 1+I 2+I 3|= I (2)dmin=2.94 Ie

差动保护动作电流: I dz = Icdqd+ K rel1 (I r -I g )= 0.5Ie + 0.1×(1.47 Ie - Ie )=0.547 Ie

灵敏度:Klm= I (2)dmin / I dz =2.94 Ie /0.547 Ie =5.37>2 满足灵敏度要求

灵敏系数太高,适当增大K rel1至0.2、0.3

差动保护动作电流: I dz = Icdqd+ K rel1 (I r -I g )= 0.5Ie + 0.2×(1.47 Ie - Ie )=0.594Ie (K rel1为0.2)

差动保护动作电流: I dz = Icdqd+ K rel1 (I r -I g )= 0.5Ie + 0.3×(1.47 Ie - Ie )=0.641Ie (K rel1为0.3)

灵敏度:Klm= I (2)dmin / I dz =2.94 Ie /0.594 Ie =4.95>2 满足灵敏度要求(K rel1为0.2)

灵敏度:Klm= I (2)dmin / I dz =2.94 Ie /0.641 Ie =4.59>2 满足灵敏度要求(K rel1为0.3)

最终取K rel1为0.3

差动速断保护灵敏度计算:Klm=qu op Id nct Ik ..min .)2(?=9

.8584866

.013713??=3.45>1.2。

min .)2(Ik 为发变组并入系统后出口两相短路,系统提供的最小短路电流。

(二)

发电机过励磁保护

我公司发电机过励磁保护采用定时限保护,根据上海电机厂提供的我公司发电机过励磁能力要求,U ﹡/f ﹡=1.05,可长期运行,U ﹡/f ﹡=1.25,延时2S 解列灭磁,《宁夏电网并网发电厂涉网保护及安全自动装置运行监督管理规定》要求,过励磁保护跳闸定值U/F 不低于1.20倍、动作时限不低于3秒。我公司取过励磁保护Ⅰ段定值V/F=1.05,延时10S 发信号,过励磁保护Ⅱ段V/F=1.25,延时2S 跳闸;反时限过励磁保护退出。我公司励磁调节器V/HZ 限制保护为1.05倍V/HZ 限制动作,频率低于45HZ 时逆变,所以发电机过励磁保护与V/HZ 限制能配合。 (三) 发电机失磁保护 1) 设备参数

CT 变比:15000/5 发电机PT 变比:

318kV /3

100/3100

220kV 母线PT 变比:

3220kV /3

100

/100 发电机额定二次基准阻抗为:Zgn=Sgn Ugn 2×TV TA n n =366.7182×180

3000

Ω=14.73Ω

2) 阻抗定值Xa :

根据导则说明,按照发电机暂态电抗整定

Xa=-0.5× Xd'× Zgn =-0.5×0.278×14.73Ω=-2.05Ω

3) 阻抗定值Xb :

Xb=-(0.5× Xd'+Xd )× Zgn =-(0.5×0.278+2.335)×14.73=-2.47×14.73Ω=-36.4Ω

4) 转子低电压定值: 按照发电机(0.2~0.5)倍空载励磁电压整定,整定取0.5

倍空载励磁电压

U fd.op = Krel ×U fd0=0.5×144=72V 5) 转子空载电压定值:144V 6) 转子低电压判据系数定值:

按照《RCS-985发电机变压器成套保护装置技术使用说明书》的整定方法,

如何计算线路保护的整定值

10kV配电线路保护的整定计算 10kV配电线路的特点10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV变电所出线;有的线路上的配电变压器很小,最大不过100kV A,有的线路上却有几千kV A的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。2问题的提出对于输电线路,由于其比较规范,一般无T接负荷,至多有一、二个集中负荷的T接点。因此,利用规范的保护整定计算方法,各种情况均可一一计算,一般均可满足要求。对于配电线路,由于以上所述的特点,整定计算时需做一些具体的特殊的考虑,以满足保护"四性"的要求。3整定计算方案我国的10kV配电线路的保护,一般采用电流速断、过电流及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护(如:保护Ⅱ段、电压闭锁等)。下面的讨论,是针对一般保护配置而言的。(1)电流速断保护:由于10kV线路一般为保护的最末级,或最末级用户变电所保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。在以下两种计算结果中选较大值作为速断整定值。①

按躲过线路上配电变压器二次侧最大短路电流整定。实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定。Idzl=Kk×Id2max 式中Idzl-速断一次值Kk-可靠系数,取1.5 Id2max-线路上最大配变二次侧最大短路电流②当保护安装处变电所主变过流保护为一般过流保护时(复合电压闭锁过流、低压闭锁过流除外),线路速断定值与主变过流定值相配合。Ik=Kn×(Igl-Ie) 式中Idzl-速断一次值Kn-主变电压比,对于35/10降压变压器为3.33 Igl-变电所中各主变的最小过流值(一次值) Ie-为相应主变的额定电流一次值③特殊线路的处理:a.线路很短,最小方式时无保护区;或下一级为重要的用户变电所时,可将速断保护改为时限速断保护。动作电流与下级保护速断配合(即取1.1倍的下级保护最大速断值),动作时限较下级速断大一个时间级差(此种情况在城区较常见,在新建变电所或改造变电所时,建议保护配置用全面的微机保护,这样改变保护方式就很容易了)。在无法采用其它保护的情况下,可靠重合闸来保证选择性。b.当保护安装处主变过流保护为复压闭锁过流或低压闭锁过流时,不能与主变过流配合。c.当线路较长且较规则,线路上用户较少,可采用躲过线路末端最大短路电流整定,可靠系数取1.3~1.5。此种情况一般能同时保证选择性与灵敏性。d.当速断定值较小或与负荷电流相差不大时,应校验速断定值躲过励磁涌流的能力,且必须躲过励磁涌流。④灵敏度校验。按最小运行方式下,线路保护范围不小于线路长度的15%整定。允许速断保护保护线路全长。Idmim(15%)/Idzl≥1

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

(完整word版)继电保护定值整定计算书

桂林变电站35kV及400V设备继电保护定值整定计算书 批准: 审核: 校核: 计算: 超高压输电公司柳州局 二〇一三年十一月六日

计算依据: 一、 规程依据 DL/T 584-2007 3~110kV 电网继电保护装置运行整定规程 Q/CSG-EHV431002-2013 超高压输电公司继电保护整定业务指导书 2013年广西电网继电保护整定方案 二、 短路阻抗 广西中调所提供2013年桂林站35kV 母线最大短路容量、短路电流:三相短路 2165MVA/33783A ; 由此计算35kV 母线短路阻抗 正序阻抗 Z1= () () 63.0337833216532 2 =?= A MVA I S Ω

第一部分 #1站用变保护 一、参数计算 已知容量:S T1=800kVA,电压:35/0.4kV,接线:D/Y11,短路阻抗:U K=6.72% 计算如下表: 注:高压侧额定电流:Ie= S T1/( 3Ue)= 800/( 3×35)=13.2A 高压侧额定电流二次值:Ie2=13.2/40=0.33 A 低压侧额定电流:Ie’=S T1/( 3Ue)= 800/( 3×0.4)=1154.7A 低压侧额定电流二次值:Ie2’=1154.7/300=3.85A 短路阻抗:Xk=(Ue2×U K)/ S T1=(35k2×0.0672)/800k=103Ω保护装置为南瑞继保RCS-9621C型站用电保护装置,安装在35kV保护小室。 二、定值计算 1、过流I段(速断段)

1)按躲过站用变低压侧故障整定: 计算站用变低压侧出口三相短路的一次电流 I k(3).max= Ue /(3×Xk )=37000/(3×103)=207.4A 计算站用变低压侧出口三相短路的二次电流 Ik= I k(3).max /Nct=207.4/40=5.19A 计算按躲过站用变低压侧故障整定的过流I 段整定值 Izd=k K ×Ik k K 为可靠系数,按照整定规程取k K =1.5 =1.5×5.19=7.8A 2)校验最小方式时低压侧出口两相短路时灵敏系数lm K ≥1.5 计算站用变低压侧出口两相短路的一次电流 min ).2(Ik = Ue /〔2×(Z1 +Xk )〕 =37000/〔2×(0.63 +103)〕=178.52A 式中:Z1为35kV 母线短路的短路阻抗。 计算站用变低压侧出口两相短路的二次电流 Ik.min= min ).2(Ik =178.52/40=4.46A 校验最小方式时低压侧出口两相短路时灵敏系数 Klm= Izd Ik min .=4.46/7.8=0.57<1.5 不满足要求 3)按满足最小方式时低压侧出口短路时灵敏系数lm K ≥1.5整定 I1= lm K Ik min .=4.46/1.5=2.97A 取3.0A 综上,过流I 段定值取3.0A T=0s ,跳#1站变高低压两侧断路器。 2、 过流II 、III 段(过流)

主变非电量继电保护整定原则

主变非电量保护整定原则 1 适用范围 适用于110kV、35kV变电站主变非电量保护的整定。 2 规范性引用标准 下列标准和文献中的条款通过本原则的引用而成为本原则的条款。凡是注明日期的引用文件,其随后的所有修改单(不包括勘误的内容)或修订版本均不适应于本原则。凡是不注明日期的引用文件,其最新版本适用于本原则。 DL/T 540—1994 QJ-25、50、80型气体继电器检验规程 DL/T 572—1995 电力变压器运行规程 QG/YW-SC-20-2008 云南电网变压器(高压电抗器)非电量保护管理规定(修编) 3 整定原则 3.1 本体及有载调压开关气体继电器 3.1.1 应在定值通知单中注明轻瓦斯发信、重瓦斯跳闸(跳各侧断路器)。 3.1.2 气体继电器动作于信号的容积整定和动作于跳闸的流速整定参照DL/T 540—1994第 4.2、4.3 条设置。 ※DL/T 540—1994 QJ-25、50、80型气体继电器检验规程 4.2动作于信号的容积整定 继电器气体容积整定要求继电器在250~300ml范围内可靠动作。试验时可用调整开口杯另一侧重锤的位置来改变动作容积,重复试验三次,应能可靠动作。 4.3动作于跳闸的流速整定 4.3.1继电器流速整定范围 QJ-25型:连接管径25mm,流速范围1.0m/s。

QJ-50型:连接管径50mm,流速范围0.6~1.2m/s。 QJ-80型:连接管径80mm,流速范围0.7~1.5m/s。 4.3.2继电器动作流速整定值 继电器动作流速整定值以连接管内的流速为准,可根据变压器容量、电压等级、冷却方式、连接管径等不同参数按表1数值查得;流速整定值的上限和下限可根据变压器容量、系统短路容量、变压器绝缘及质量等具体情况决定。 表1 变压器容量 (kV A)继电器型号 连接管内径 (mm) 冷却方式 动作流速整定值 (m/s) 1000及以下QJ-50φ50自然或风冷0.7~0.8 1000~7500QJ-50φ50自然或风冷0.8~1.0 7500~10000QJ-80φ80自然或风冷0.7~0.8 10000以上QJ-80φ80自然或风冷0.8~1.0 200000以下 QJ-80φ80强迫油循环 1.0~1.2 200000及以上QJ-80φ80强迫油循环 1.2~1.3 500kV变压器QJ-80φ80强迫油循环 1.3~1.4 有载调压变压器 (分接开关用) QJ-25φ25 1.0 4.3.3流速试验方法 继电器动作流速整定值试验是在专用流速校验设备上进行的,以相同连接管内的稳态动作流速为准,重复试验三次,每次试验值与整定值之差不应大于0.05m/s,亦可用间接测量流速的专用仪器测试流速。调节继电器弹簧的长度,可改变动作流速整定值。 4.3.4流速试验设备 继电器流速整定可在固定式流速校验台上进行检验,亦可用携带式间接测量流速的校验装置(如流速测量尺)进行测试。

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

主变零序保护的原则

主变零序保护的配置原则 110kV直接接地电力网中低压侧有电源的变压器,中性点可能直接接地运行,也可能不接地运行。对这类变压器,应当装设反应单相接地的零序电流保护,用以在中性点接地运行时切除故障;还应当装设专门的零序电流电压保护,用以在中性点不接地运行时切除故障。(高压侧为单电源,低压侧无电源的降压变压器,不宜装设专门的零序保护)保护方式对不同类型的变压器又有所不同,下面分别予以说明。 一、全绝缘的变压器。 当变压器低压侧有电源且中性点可能不接地运行时,还应增设零序过电压保护。 全绝缘变压器为什么还要装设零序过电压保护?根据《电力设备过电压保护设计技术规程》SDJ 7-79,对于直接接地系统的全绝缘变压器,内过电压计算一般为3(——最高运行相电压)。当电力网中失去接地中性点并且发生弧光接地时,过电压值可达到3.0,因此一般不会使变压器中性点绝缘受到损害;但在个别情况下,弧光接地过电压值可达到3.5,如持续时间过长,仍有损坏变压器的危险。由于一分钟工频耐压大于等于3.0,所以在3.5电压下仍允许一定时间,装设零序过电压保护经0.5s延时切除变压器,可以防止变压器遭受弧光接地过电压的损害。其次,在非直接接地电力网中,切除单相接地空载线路产生的操作过电压,可能达到4.0及以上。电力网中失去接地中性点且单相接地时,以0.5s延时迅速切除低压侧有电源的变压器,还可以在某些情况下避免电力设备遭受上述操作过电压的袭击。此外,当电力网中电容电流较大时,如不及时切除单相接地故障,有发展成相间短路的可能,因此,装设零序过电压保护也是需要的。 在电力网存在接地中性点且发生单相接地时,零序过电压保护不应动作。动作值应按这一条件整定。当接地系数≤3时,故障点零电压小于等于0.6,因此,一般可取动作电压为180V。当实际系统中<3时,也可取与实际值相对应的低于180V的整定值。 二、分级绝缘的变压器。对于中性点可能接地或不接地运行的变压器,中性点有两种接地方式:装设放电间隙和不装设放电间隙。这两种接地方式的变压器,其零序保护也有所不同。 1. 中性点装设放电间隙。放电间隙的选择条件是:在一定的值下,躲过单相接地暂态电压。一般≤3,此时,按躲过单相接地暂态电压整定的间隙值,能够保护变压器中性点绝缘免遭内过电压的损害,当电力网中失去接地中性点且单相接地时,间隙放电。 对于中性点装设放电间隙的变压器,要按本规范4.0.9条的规定装设零序电流保护,用于在中性点接地运行时切除故障。 此外,还应当装置零序电流电压保护,用于在间隙放电时及时切除变压器,并作为间隙的后备,当间隙拒动时用以切除变压器。 零序电流电压保护由电压和电流元件组成,当间隙放电时,电流元件动作;拒动放电时,电压元件动作。电流或电压元件动作后,经0.5s时限切除变压器。 零序电压元件的动作值的整定与本条第一款零序过电压保护相同。 零序电流元件按间隙放电最小电流整定,一般取一次动作电流为100A。 采用上述零序电流保护和零序电流电压保护时,首先切除中性点接地变压器,当电力网中失去接地中性点时,靠间隙放电保护变压器中性点绝缘,经0.5s延时再由零电流电压保护切除中性点不接地的变压器。采用这种保护方式,好处是比较简单,但当间隙拒动时,则靠零序电流电压保护变压器,在0.5s期间内,变压器要随内过电压,如系间歇电弧接地,一般过电压值可达3.0,个别情况下可达3.5,变压器有遭受损害的可能性。 2. 中性点不装设放电间隙。对于中性点不装设放电间隙的变压器,零序保护应首先切除中性点不接地变压器。此时,可能有两种不同的运行方式:一是任一组母线上至少有一台中性点接地变压器,二是一组母线上只有中性点不接地变压器。对这两种运行方式,保护方

微机型发变组保护基本原理及整定

龙源期刊网 https://www.wendangku.net/doc/433295270.html, 微机型发变组保护基本原理及整定 作者:邵子峻 来源:《中国科技博览》2018年第11期 [摘要]目前新建电厂的发变组保护装置已全部采用微机型,不管是国产还是进口的,发变组保护微机化减少了硬件设备,也使过去难以实现的保护原理通过软件设置很容易实现,从而大大降低了维护量。但随着保护装置微机化的普及,同时在定值设置上也增加了灵活性,不但要设置保护数值的大小,而且还要设置诸如CT、PT的参数、变压器参数、保护元件的运算方式等原来不需要设置的一些非传统定值量,这就为定值设置增加了难度;而值得注意的是在定值计算时计算方往往只提供传统的定值大小等数据,而忽略了一些非传统定值设置,结果把问题就留给了现场工作人员。 [关键词]微机型;保护;基本原理;整定;分析 中图分类号:TM771 文献标识码:A 文章编号:1009-914X(2018)11-0112-01 引言 随着微机继电保护技术的发展,微机型发变组保护已完全取代了电磁型、整流型、集中电路型保护,目前省内电厂机组保护基本上实现了微机化。微机型发变组保护装置显示了其独特的优点和强大的功能,在调试、运行维护方面己取得显著成果,实践证明正确动作率也是较高的。微机保护在保护配置和整定方面非常灵活,但也有厂家追求其灵活性,人为增加保护配置和整定的复杂程度,容易造成误整定。从执行保护的双重化配置反措规定,并推行强化主保护、简化后备保护的原则以来,后备保护的整定大大简化,甚至某些保护退出,逐步简化了保护的整定。本文从保护原理及结构出发,介绍微机型发变组中几种主要保护的整定方法,并且在这个基础之上提出了下文中的一些内容。 1.大型微机发变组保护主要特点 一是按规程要求,100MW以上机组电量保护按双重化保护配置,2套保护之间没有电气 联系,其工作电源取自不同的直流母线段,交流电流、电压分别取自互感器的不同绕组,每套保护出口与断路器的跳圈一一对应。二是双重化配置的2套保护均采用主后一体化装置,主保护与后备保护的电流回路共用,跳闸出口回路共用,主后一体化设计简化了二次回路、减少了运行维护工作量,装置组屏简洁方便。三是保护装置一般包含2套相互独立的CPU系统,低通、AD采样、保护计算、逻辑输出完全独立,任一CPU板故障,装置闭锁并报警,杜绝硬件故障引起的误动。四是配置整定灵活方便,适应于不同主接线方式,保护动作出口逻辑可以灵活整定,有些保护整定值按标幺值整定,大大简化了保护的整定,装置支持在线或通过调试软件离线整定。五是运行监视功能强大,实现GPSB码对时,装置能实时记录各种启动、告警、

主变保护定值计算稿

一. 主变压器系统参数 (一) 主变压器系统参数 (二)主变压 器比率制动差动保护 1、主变压 器差动: 主变压器高压侧TA 变比600/1; 主变压器低压侧TA 变比6000/1。 (1) 主变压器各侧一次额定电流: 高压侧: A U S I n b n n b 3.286242 3120000 311=?== 式中: U b1n 为主变压器高压侧额定电压;S n 为主变压器额定容量。

低压侧: A U S I n b n n b 65985 .103120000 311=?== 式中: U b1n 为主变压器低压侧额定电压;S n 为主变压器额定容量。 (2) 主变压器各侧二次额定电流: 高压侧: A n I I blh n b n b 477.01600286.3 12=== (n blh 为主变压器高压侧TA 变比600/1)。 低压侧: A n I I b l h n b n b 1.11 00 606598 12=== (n blh 为发电机机端TA 变比6000/1) 。 (3)高压侧平衡系数计算 3307.11 /60001 /060.10.5324231H 1=?=?= TAL TAH nL n phL n n U U K 其中,nH U 1为主变压器高压侧额定电压,nL U 1为主变压器低压侧额定电压,TAL n 为低压侧CT 变比, TAH n 为高压侧CT 变比。 (4) 差动各侧电流相位差与平衡补偿 主变压器各侧电流互感器二次均采用星形接线。 (5) 纵差保护最小动作电流的整定。最小动作电流应大于主变压器额定负载时的不平衡电流,即 Iop. min=Krel(Ker+ △m)I N /na= 2(0.1+0.02)X1.1=0.264 Iop.min 一般取0.2~0.3I N 式中:I N —主变压器额定电流; na —电流互感器的变比; Krel —可靠系数,取1. 5~2,取2; Ker —TA 综合误差取0.02 (6)起始制动电流Ires.o 的整定。起始制动电流宜取 Ires.o =(0.7~1.0)I N /na=0.8X1.1=0.88(A ) (7)动作特性折线斜率S 的整定。纵差保护的动作电流应大于外部短路时流过差动回路的不平衡电流。主变压器种类不同,不平衡电流计算也有较大差别, 双绕组主变压器 Iunb.max=(KapKccKer+△U+△m)Ik. max /na=(1X1X0.1+0.05+0.05)X 43936/6000 =1.464A 式中:Ker , △U , △m , na 的含意同式(5),但Ker=0.1; Kcc —电流互感器的同型系数,Kcc=1. 0;

[全]变压器主保护定值整定计算

变压器主保护定值整定计算 以下差动保护采用二次谐波制动,以二圈变压器为例,所有计算均为向量和。 ①不平衡电流产生的原因和消除方法: a.由变压器两侧电流相位不同而产生的不平衡电流; (Y/Δ-11)Y.d11 接线方式——两侧电流的相位差30°。 消除方法:相位校正。 * 二次接线调整 变压器Y侧CT(二次侧):Δ形。Y.d11 变压器Δ侧CT(二次侧):Y形。Y.Y12 * 微机保护软件调整 b.由计算变比与实际变比不同而产生的不平衡电流; c.由两侧电流互感器型号不同而产生的不平衡电流;(CT变换误差) d.由变压器带负荷调整分接头而产生的不平衡电流;(一般取额定电压) e.暂态情况下的不平衡电流; 当变压器电压突然增加的情况下(如:空载投入,区外短路切除后).

会产生很大的励磁涌流.电流可达2-3 In,其波形具有以下特点 * 有很大的直流分量.(80%基波) * 有很大的谐波分量,尤以二次谐波为主.(20%基波) * 波形间出现间断.(削去负波后) 可采用二次谐波制动,间断角闭锁,波形对称原理 f.并列运行的变压器,一台运行,当令一台变压器空投时会产生和应涌流 所谓“和应涌流”就是在一台变压器空载合闸时,不仅合闸变压器有励磁涌流产生,而且在与之并联运行的变压器中也出现涌流现象,后者就称为“和应涌流”。其波形特点与励磁涌流差不多。 4、主变保护整定计算 (1)计算变压器两侧额定一次电流

—该侧CT变比。 注意:Kjx只与变压器本身有关,而与保护装置的CT接线形式无关。传统的差动保护装置中,变压器Y形绕组侧的CT多采用△接线,新的微机型差动保护装置中,变压器Y绕组侧的CT可以采用Y接线,微机型差动保护在装置内部实现了CT的△接线,因此在保护定值计算时可完全等同于外部△接线。 对于Y/△-11接线方式:Ia`=Ia - Ib,Ib`= Ib - Ic, Ic `= Ic –Ia 对于Y/△-1接线方式:Ia`=Ia - Ic,Ib`= Ib - Ia, Ic `= Ic - Ib (3)计算平衡系数 设变压器两侧的平衡系数分别为和,则: ①降压变压器:选取高压侧(主电源侧)为基本侧,平衡系数为 Kh=1 Kl=Inh`/Inl` ②升压变压器:选取低压侧(主电源侧)为基本侧,平衡系数为

变压器纵差动保护动作电流的整定原则是什1

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。 电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障 一般不到10%。因此,在由继电保护动作切除短路故障之后,电弧将瞬间熄灭, 绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅 提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水 平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保护又分为 近后备和远后备两种:(1)近后备保护是当主保护拒动时,由本线路或设备的 另一套保护来切除故障以实现的后备保护(2)远后备保护是当主保护或断路器 拒动时,由前一级线路或设备的保护来切除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备保护退出 运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。

(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分) 当主保护或其断路器拒动时,由相邻上一元件的保护起后备作用称为远后备。(2分)对继电保护装置有哪些基本要求? 答:根据继电保护装置在电力系统中所担负的任务,继电保护装置必须满足以下四个基本要求:选择性、快速性、灵敏性、可靠性。 微机保护硬件系统通常包括哪几部分? 答:(1)数据采集单元,即模拟量输入系统; (2)数据处理单元,即微机主系统; (3)数字量输入/输出接口,即开关输入输出系统; (4)通信接口。 为什么差动保护不能代替瓦斯保护? 答:瓦斯保护能反应变压器油箱内部的任何故障,如铁芯过热烧伤,油面降低等,但差动保护对此反应。又如变压器绕组发生少数线匝的匝短路,虽然短路匝内 短路电流很大会造成局部绕组严重过热产生强烈的油流向油枕方向冲击,但相 电流上却并不大,因此差动保护没有反应。但瓦斯保护对此却能灵敏地反应, 这就是差动保护不能代替瓦斯保护的原因。

RCS-985A发变组保护整定计算方案

发变组RCS-985A保护整定计算方案一、发变组保护配置 (一)发电机保护 1.发电机差动保护 2.发电机匝间保护---纵向零序电压保护 3.发电机定子绕组接地保护 发电机基波零序电压型定子接地保护 发电机三次谐波电压型定子接地保护 4.发电机转子接地保护 发电机转子一点接地保护 发电机转子二点接地保护 5. 发电机定子过负荷保护 定时限、反时限 6.发电机负序过负荷保护 定时限、反时限 7. 发电机失磁保护 8.发电机失步保护 9. 发电机定子过电压保护 10. 发电机过激磁保护 定时限、反时限 11. 发电机功率保护 发电机逆功率保护 发电机程序逆功率保护 12. 发电机频率保护 低频率保护 电超速保护 13.发电机起停机保护 14.发电机误上电保护 15.发电机励磁绕组过负荷保护 定时限、反时限 (二)主变压器保护 1.主变差动保护 2.主变瓦斯保护

3.主变零序电流保护 4.主变间隙零序电流、零序电压保护 5.阻抗保护 6.主变通风启动保护 7.主变断路器失灵保护(C柜)(三)高厂变保护整定 1.高厂变比率制动式纵差保护 2.高厂变瓦斯保护 3.高厂变复合电压过流保护 4.高厂变通风启动保护 5.高厂变过负荷保护 6.高厂变A分支低压过流保护 7.高厂变B分支低压过流保护 8.高厂变A分支限时速断保护 9.高厂变B分支限时速断保护 10.高厂变A分支过负荷保护 11.高厂变B分支过负荷保护 (四)发电机—变压器组保护 1.发变组差动保护 (五)非电量保护(需整定定值的) 主变冷却器全停保护 发电机断水保护 ...

一、发电机保护整定 1.发电机差动保护 发电机中性点CT :2LH 12000/5 5P Y 接线 发电机机端CT :7LH 12000/5 5P Y 接线 1.1发电机稳态比率差动保护 1.1.1发电机一次额定电流为I f1n =11207A 1.1.2 发电机二次额定电流计算: I f2n =I f1n /n CT =11207/(12000/5)=4.67(A ) 1.1.3差动电流起动定值I cdqd 整定 保护的最小动作电流按躲过正常发电机额定负载时的最大不平衡电流整定。 ∵ 5P 级电流互感器在额定一次电流下的变比误差为0.01 ∴I cdqd =K rel ×2×0.03I f2n 或 I cdqd = K rel ×I unb.0 式中:I f2n —发电机二次额定电流; K rel —可靠系数,取1.5; I unb.0—发电机额定负荷下,实测差动保护中的不平衡电流. 根据《大型发电机变压器继电保护整定计算导则》(以下简称《导则》),可取(0.20~0.30)I n ,一般宜取I op.0=(0.10~0.20)I n 。 结合以往运行经验,故此处取I cdqd =0.2I n (=0.2×4.67=0.943A ) 1.1.4比率制动系数的整定 1.1.4.1变斜率比率差动起始斜率计算: K bl1=K cc K er =0.1×0.5 式中: K er ---互感器比误差系数,取0.1; K cc —互感器同型系数,取0.5; 厂家建议K bl1---变斜率比率差动起始斜率一般取0.05~0.1,故取K bl1=0.1 1.1.4.2变斜率比率差动最大斜率计算: 最大不平衡电流,不考虑同型系数 I unb.max =K ap ×f er ×I k ·max =2×0.1×5.73I e =1.146I n 式中:K ap —非周期分量系数,取2.0 ; K er ---互感器比误差系数,最大取0.1; I k ·max —发电机最大外部三相短路电流周期分量,小于4倍额定电流时取4倍额定电流。 查短路计算结果,#1发电机机端三相短路时#1发电机提供的最大短路电流为5.73I f1n . 变斜率比率差动最大斜率为: K bl2=(I unb.max*-I cdqd*-2 K bl1)/(I k.max*-2) =(1.146-0.15-2×0.07)/( 5.73-2)=0.23 式中, I unb.max*、I cdqd*、I k.max*均为标么值(发电机额定电流). 根据厂家建议取 K bl2=0.5 按上述原则整定的比率制动特性,当发电机机端两相金属性短路时,差动保护的灵敏系数一定满足K sen ≥2,因此不必校验灵敏度. 最大比率制动系数时的制动电流倍数,装置部固定为4。 1.2差动速断保护: 差电流速断是纵差保护的一个补充部分,一般需躲过机组非同期合闸产生的最大不平衡电流,对于大机组,一般取3~4倍额定电流, 根据厂家建议取5倍额定电流.即: I cdsd =5I f2n (=5×4.67=23.35A) 1.3 TA 断线闭锁比率差动控制字整定: 因为发变组保护实行双主双后保护独立配置,且与传统保护相比,微机保护TA 断线

保护定值详细计算

一、说明:甘河变2#主变保护为国电南瑞NSR600R,主变从 齐齐哈尔带出方式。 二、基本参数: 主变型号:SF7—12500/110 额定电压:110±2×2.5%/10.5KV 额定电流:65.6099/687.34A 短路阻抗:Ud% = 10.27 变压器电抗:10.27÷12.5=0.8216 系统阻抗归算至拉哈110KV母线(王志华提供): 大方式:j0.1118 小方式:j0.2366 拉哈至尼尔基110线路:LGJ-120/36, 阻抗36×0.409/132.25=0.1113 尼尔基至甘河110线路:LGJ-150/112, 阻抗112×0.403/132.25=0.3413 则系统阻抗归算至甘河110KV母线: 大方式:0.1118+0.1113+0.3413=0.5644 小方式:0.2366+0.1113+0.3413=0.6892 CT变比: 差动、过流高压侧低压侧间隙、零序 1#主变2×75/5 750/5 150/5 三、阻抗图 四、保护计算: (一)主保护(NSR691R)75/5

1.高压侧过流定值 按躲变压器额定电流整定 I dz.j =1.2×65.6099/0.85×15=6.1750A 校验:变压器10KV 侧母线故障灵敏度 I (2)d.min =0.866×502/(0.6892+0.8216)=287.7495A Klm=287.7495/6.2×15=3.0941>1.25 满足要求! 整定:6.2A 2.桥侧过流定值 整定:100A 3.中压侧过流定值 整定:100A 4.低压侧过流定值 按躲变压器额定电流整定 I dz.j =1.2×687.34/0.85×150=6.4690A 校验:变压器10KV 侧母线故障灵敏度 I (2)d.min =0.866×5500/(0.6892+0.8216)=3152.6344A Klm=3152.6344/6.5×150=3.2335>1.5 满足要求! 整定:6.5A 5.CT 断线定值. 整定范围0.1~0.3Ie (P167) 312500 8.66003112311065.60995 CTh K SN Ie A UL N IL N I N ??= = =??÷??÷ 取0.1Ie =8.6600×0.1=0.866A 整定:0.8A 6.差动速断定值 躲变压器励磁涌流整定

变电站保护压板投、退原则

变电站倒闸操作分为一次设备和二次设备, 保护压板投、退是二次设备操作的主要项目。保护压板也叫保护连片, 是保护装置联系外部接线的桥梁和纽带, 关系到保护的功能和动作出口能否正常发挥作用, 因此非常重要。变电站运行人员应了解各类保护压板的功能和投、退原则, 特别是当现场运行方式发生变化时, 有些保护的压板也要作相应的切换, 避免由于误投或漏投压板造成保护误动或拒动等人为误操作事故的发生。 1 保护压板的分类 按照压板接入保护装置二次回路位置的不同,可分为保护功能压板和出口压板两大类。 保护功能压板实现了保护装置某些功能(如主保护、距离保护、零序保护等的投、退) 。该压板一般为弱电压板, 接直流24 V。也有强电功能压板, 如BP22B 投充电保护、过流保护等, 接直流220 V 或110 V。但进入装置之前必经光电耦合或隔离继电器隔离, 转化为弱电开入, 其抗干扰能力更好。 出口压板决定了保护动作的结果, 根据保护动作出口作用的对象不同, 可分为跳闸出口压板和启动压板。跳闸出口压板直接作用于本开关或联跳其他开关, 一般为强电压板。启动压板作为其他保护开入之用, 如失灵启动压板、闭锁备自投压板等,根据接入回路不同, 有强电也有弱电。 2 保护压板投、退一般原则 当开关在合闸位置时, 投入保护压板前需用高内阻电压表测量两端电位, 特别是跳闸出口压板及与其他运行设备相关的压板, 当出口压板两端都有电位, 且压板下端为正电位、上端为负电位, 此时若将压板投入, 将造成开关跳闸。应检查保护装置上动作跳闸灯是否点亮, 且不能复归, 否则有可能保护跳闸出口接点已粘死。如出口压板两端均无电位, 则应检查相关开关是否已跳开或控制电源消失。只有出口压板两端无异极性电压后, 方可投入压板。 除了与二次回路直接连接的保护硬压板之外,某些厂家还设置了保护软压板, 便于监控后台机、调度后台机远方投、退保护。软压板与硬压板组成“与”的关系来决定保护功能的投、退, 只有两种压板都投入且控制值整定为投入时, 保护功能才起作用, 任一项退出, 保护功能将退出。保护软压板一般设置在投入状态, 运行人员只能操作硬压板。 正常运行方式下所有保护功能压板按定值整定要求投、退, 所有出口压板均投入。当一套保护装置的主保护和后备保护共用跳闸出口时, 退出这套保护装置中的某些保护时只能退其功能压板, 而不能退出口压板, 否则该套保护装置中的其他保护将失去作用。 3 压板投、退注意事项 3.1 主变保护压板投、退 3.1.1 高、中压侧零序保护及间隙零序保护压板 220 kV 变压器星形接线侧(一般为高、中压侧) 的零序保护压板和间隙零序保护压板的投、退, 由主变中性点接地方式决定。当中性点地刀合上时, 应投入主变相应侧后备保护零序保护压板,退出间隙零序保护压板; 当中性点地刀拉开时, 应投入主变相应侧后备保护间隙零序保护压板, 退出零序保护压板。目前东莞供电局500 kV 主变压器的高、中压侧中性点直接接地, 不存在零序保护及间隙零序保护压板切换的问题。 3.1.2 变压器高、中、低压侧退出压板 该压板正常应退出, 当主变某一侧后备保护TV 断线时应投入。此时保护装置不考虑该电压,可有效避免TV 断线后, 对本侧和其他侧后备保护的影响。 3.1.3 双母线双母联双分段接线方式 主变运行方式改变时应切换相应压板。以图1为例, 当主变接于220 kV I 母线运行时, 主变后备保护跳母联2012 压板, 跳分段2015 压板应投入,跳分段2026 压板应退出。若倒母线, 当主变接于Ⅱ母线运行时, 应退出跳分段2015 压板, 投入跳分段2026 压板, 许多运行人员在这种情况下容易忽略压板的切换, 造成主变后备保护动作时跳错了开关。

发变组保护整定计算算例

发变组保护整定计算算例 整定计算依据: 1、《DL/T 684-1999 大型发电机变压器继电保护整定计算导则》,以下简称《导则》 2、《GB/T 15544-1995 三相交流系统短路电流计算》 3、《大型发电机组继电保护整定计算与运行技术》高春如著 4、《RCS-985发电机变压器成套保护装置技术说明书》,以下简称:《说明书》 5、《厂用电系统设计》梁世康许光一著 第一章技术数据及短路电流计算 1.1发电机电气参数

1.2主变压器参数 1.3厂变参数

1.4励磁机参数 1.5系统阻抗(2011年7月16日,宁夏中调保护处提供系统参数,不含#1、#2、#3机) 计入#1、#3机组阻抗最大运行方式下归算至220kV 阻抗为0.00718,最小方式下系统阻抗为0.0174 1.6各电压等级基准值 1.7阻抗参数计算 1.7.1发电机阻抗 Xd=233.5%× 7.366100 =0.6368 Xd ′=24.5%×7.366100 =0.0668 Xd ″=15.7%×7.366100 =0.0428 X2=20.9%×7 .366100 =0.057 1.7.2主变阻抗

XT=XT0=14.02%×360 100 =0.0389 1.7.3厂高变阻抗 X T1-2′=15.5%× 40 100 =0.3875 计算用短路阻抗图,如图1-1 图1-1 #2发变组等值阻抗图 1.8短路电流计算 1.8.1最小运行方式下短路电流计算 1)d1点发生三相短路时,短路电流 发电机G 流过的短路电流(归算至220kV 侧,IB=238.6A): I (3)dmin= "1Xd XT +×IB=0428 .00389.01 +×238.6=12.24×238.6=2920.5A 换算为18kV 侧(归算至18kV 侧,IB=3207.6A )短路电流为I (3)dmin=12.24×3207.6=39261A I (2)dmin=0.866× I (3)dmin=0.866×2920.5A=2529.2A 换算为18kV 侧短路电流为I (2)dmin=0.866×12.24×3207.6=34000A 系统流向故障点短路电流

大型发变组保护整定计算培训算例

大型发变组保护整定计算培训算例

目录 概述 (4) 1、继电保护整定计算的目的和任务 (4) 2、继电保护整定计算前的准备工作 (4) 3、继电保护整定计算的技巧和应注意的几 个问题 (5) 4、整定计算步骤 (6) 第一部分发电机变压器组继电保护整定计算.. 7 一、计算说明: (7) 二、设备参数 (8) 三、发变组保护整定计算 (17) 1、发电机差动保护 (17) 2、发电机负序过流保护(不对称过负荷) 19 3、发电机电压制动过流保护 (20) 4、发电机基波定子接地保护 (22) 5、发电机100%定子接地保护 (23) 6、发电机失磁保护 (24) 7、发电机逆功率及程序逆功率保护 (26) 8、发电机误上电保护 (28) 9、发电机匝间保护 (28) 10、发电机失步保护 (29)

11、发电机过激磁保护 (32) 12、发电机频率异常保护 (33) 13、发电机低阻抗保护 (34) 14、发电机过负荷 (35) 15、发电机过电压保护 (37) 16、发电机PT断线闭锁保护 (37) 17、主变(厂变、励磁变)差动保护 (37) 18、主变(厂变)通风 (41) 19、主变压器高压侧PT断线闭锁保护 (41) 20、高厂变复合电压过流 (42) 21、高厂变BBA(B)分支零序过流 (43) 22、BBA(B)工作分支过流保护 (44) 23、励磁变过负荷 (46) 24、励磁变速断 (47) 25、励磁变过流 (48) 26、其它保护 (48) 27、主变(厂变)非电量保护 (49) 28、发电机非电量保护 (49) 第二部分、厂用电系统继电保护整定计算 (50) 一、高压电动机 (50) 1.1、电动机额定电流 (50) 1.2、速断过电流保护 (50)

相关文档
相关文档 最新文档