文档库 最新最全的文档下载
当前位置:文档库 › 填料塔的设计完整版

填料塔的设计完整版

填料塔的设计完整版
填料塔的设计完整版

填料塔的设计

HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

目录

前言

世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。

一.设计任务书

1.设计目的

通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。

2.设计任务

试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH 3,气体处理量为1500m 3/h ,其中含氨%(体积分数),要求吸收率达到99%,相平衡常数m=。

3.设计内容和要求

1)研究分析资料。

2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。

4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。

5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。 6)对设计过程的评述和有关问题的讨论。

二.设计资料

1.工艺流程

采用填料塔设计,填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。

2.进气参数

进气流量: 1500m 3/h 进气主要成分:NH 3

空气粘度系数:h m kg s pa V ?=??=-/065.01081.15μ 298K,下,氨气在空气中的扩散系数D V =s; 298K,下,氨气在水中的扩散系数D L =*10-9m 2/s 25℃时,氨在水中的溶解度为H=m 3kpa

3.吸收液参数

采用清水为吸收液,吸收塔进口液相吸收质浓度为0。 液相密度:3/1000m kg L =ρ 液相粘度:2/1m s mN L ?=μ 液膜传质分系数k L =×10-4m/s

4.操作条件

操作温度25°C ,气压1atm

5.填料性能

矩鞍环采用连续挤出的工艺进行加工,与同种材质的拉西环填料相比,矩鞍环具有通量大、压降低、效率高等优点。矩鞍环填料床层具有较大的空隙率。矩鞍环的形状介于环形与鞍形之间,因而兼有两者之优点,这种结构有利于液体分布和增加气体通道。矩鞍环填料分为陶瓷和塑料和金属,现将规格列于下表1,以便于计算需要。

表1.国内矩鞍环填料特性参数

三.设计计算书

1.填料塔主体的计算

图1是稳定操作状态下的逆流接触吸收塔内的物流和组成。

图1 稳定操作状态下的逆流接触吸收塔内的物流和组成

V 、L 分别表示流经塔内任一单位截面的气、液通量,kmol/ );V 1、V 2分别表示流经塔底和塔顶单位截面上的气体,kmol/ );L 1、L 2分别表示流经塔底和塔顶单位截面上的液体通量,kmol/ );y1、y2分别表示流经塔底、塔顶气体中溶质A 的摩尔分率,kmol(A)/kmol(气体 );x1、x2分别表示流经塔底、塔顶液体中溶质A 的摩尔分率,kmol(A)/kmol(溶液 )。

吸收剂用量的计算

进入吸收塔气体的摩尔体积为: 进塔气体中氨的浓度为: 出塔气体中氨的浓度: 进塔清水的浓度:

假设平衡关系符合亨利定律,则最小气液比为: 则: h kmol L L /825.1018.1min =?= 吸收液浓度可依全塔物料衡算求出:

塔径的计算

吸收过程中,混合气体流量随塔减少(因吸收质不断进入液相),故计算塔径时,一般以塔底气量为依据计算。计算塔径关键在于适宜的空塔气速。如何确定适宜的

空塔气速,是气液传质设备的流体力学问题。刚出现液泛时的气速,为泛点气速;泛点气速是填料塔操作的极限气速,达到或超过此气速,填料塔即不能正常运行。操作气速或空塔气速均低于泛点气速,对不同填料,有不同参考数据。由资料可知:矩鞍形填料u=(~)uF ,因此需计算泛点气速。 烟气的平均流量: 炉气的质量流量: 烟气的密度: 清水密度: 洗涤水耗用量:

由化工手册查得mm mm mm 8.03038??矩鞍环(乱堆)的调料因子,02.821-=m φ水的粘度2/1m s mN L ?=μ,干填料因子

3

ε

a

为. 查表2的金属环矩鞍的A 值为.

表2. 不同填料的A,K 值

故用经验公式算F u 为: 将数值带入得F u =s 。 求u : 塔径为: 进行圆整,D=

核算液体喷淋密度:

因填料尺寸小于75mm ,取)/(08.0)(3min h m m L W ?=,又由表二查出该填料的比表面积32/112m m =σ。

则: )/(96.811208.023min h m m U ?=?= 操作条件下的喷淋密度U:

计算可知:U>U min ,所用填料符合要求。 圆整塔径后操作气速为: 校核:65.024

.312.2==F u u ,符合u=(~)uF 要求。

816.13038

.05.0>==d D ,所以符合要求。 填料层高度的计算

由于填料层高度=传质单元高度*传质单元数,即OG OG N H h ?=。 用脱吸因素法,可得:

因为S<~之间为宜,所以S 符合要求。 传质单元数为:

气体总传质单元高度采用修正的恩田关联式计算: 由化工手册查得,金属填料的临界表面张力

2223/972000/36001075/75h kg h kg m mN c =??==-σ

25℃时水的临界表面张力为

h kg h kg m N L /933120/3600102.7/102.72222=??=?=--σ

液体质量通量: 气体质量通量:

空气粘度系数:h m kg s pa V ?=??=-/065.01081.15μ 298K,下,氨气在空气中的扩散系数D V =s; 298K,下,氨气在水中的扩散系数D L =*10-9m 2/s 气膜吸收系数: 液膜吸收系数:

3938

.0)10001027.16.3()3600

1001.210006.3()6.35572.011212.9340(0095.0)

()()(0095.03

1

82

1

932

3

1

21

32

=??????????==---L

L L L L L w L L g D a U k ρμρμμ

由表查得填料的形状系数:19.1=ψ 因为

65.024

.312.2==F u u > 所以要使用下式进行修正:

25℃时,下,根据氨在水中的溶解度曲线查得H=m 3kpa 则气膜总传质系数:

=+

=

'+'=

9930

.261

6590.1211

111a

Hk a k a K L G G

采用上述方法计算出填料高度后,还应留出一定的安全系数,根据设计经验,填料层的设计高度一般为:

安全系数选用,所以m Z 6.332.1=?='。圆整后填料层高度为4m 。

液体沿填料层下流时,有逐渐向塔壁方向集中的趋势,形成壁流效应。成填料层气液分布不均匀,使传质效率降低。因此,设计中,每隔一定高度,需要设置液体收集再分布装置,即将填料层分段。 由表可知,矩鞍环m h D

h

h m D h o o o 48,6,8~5max ==≤=,则假定,与计算值相符,所以不需要分段。

表3. 散装填料分段高度推荐值

填料塔的总塔高主要取决于填料层h ,此外还需要考虑塔顶空间,塔底空间及再分

布器的布置等。填料塔的总塔高H 可由下式进行计算: 式中:h '为安全系数调整后的填料层高度,m; f H 为装配液体再分布器的空间高度,m ;

d H 为塔顶空间高(不包括封头部分),m ,一般取~;

b H 为塔底空间高(不包括封头部分),m ,一般取~。 取b H =,d H =,则H=+4+=。

.填料塔压降的计算

通用关联图的横坐标为5.0)(L V V L ρρωω,纵坐标为2

.02)(L L V g u μρρφ?。 横坐标:

纵坐标:

通过查图二得: 所以

图2 埃克特通用关联图

2.填料塔附属结构的类型与设计

塔的辅助构件包括填料支承板、填料压紧装置、液体分布器、液体再分布器、除雾装置及排液装置等。填料塔操作性能的好坏与塔内辅助构件的选型和设计紧密相关。合理的选型与设计可保证塔的分离效率、生产能力及压降要求。

支承板

填料的支承结构应该满足三个基本条件:①使气液能顺利通过,设计时应取尽可能大的自由截面。②要有足够的强度承受填料的重量,并考虑填料空隙中的持液重量。③要有一定的耐腐蚀性能。填料支承装置的作用是支承塔内的填料,常用的填料支承装置有栅板型、孔管型、驼峰型等。支承装置的选择主要的依据是塔径、填料种类及型号、塔内及填料的材质、气液流率等。本设计根据需要,选择用扁钢做成栅板形式。

填料压紧装置

填料上方安装压紧装置可防止在气流的作用下填料床层发生送动和跳动。填料压紧装置分为填料压板和床层限制板两大类。填料压板自由放置于填料层上端,靠自身重量将填料压紧。它适用于陶瓷、石墨等制成的易发生破碎的散装填料。床层限制板用于金属、塑料等不易发生破碎的散装填料及所有规整填料。床层限制板要固定在塔壁上,为不影响液体分布器的安装和使用,不能采用连续式的塔圈固定,对于小塔可用螺钉固定于塔壁,而大塔则用支耳固定。由于本设计的填料是金属矩鞍环,故填料塔在填料装填后于其上方安装了床层限制板。

液体分布器装置

填料塔设计中一般考虑每平方米塔板上有30个以上的喷淋密度点。常见的结构型式有:

(1) 管式喷淋器

(2) 莲蓬式喷淋器:一般用于直径600mm 以下的塔。 (3) 盘式分布器:适用于800mm 以上的塔。 (4) 槽式分布器:适用于大塔径的分布器 本次填料塔设计直径为,选择莲蓬式喷洒器。

分布点密度计算:按Eckert 建议: D=500时,取喷淋点密度为270点/2

m ,布

液点数为: 532705.04

2=??=

π

n

按分布点几何均匀与流量均匀的原则,进行布点设计 多孔型布液器布液能力的计算公式:

取φ=,?H=140mm,s m L S /00051.01000

360018

825.1013=??=

0d =7

5

.01018.41408.9256.05300051.0424-?=?

??

? ????????=???

?

?

??πφπH g n L s m 在计算时0d =7

1018.4-?m.

液体分布器的高度计算

一般液体分布器离塔顶的距离通常大于一倍塔径,液体分布器离填料层的距离要使液体刚好全部润湿填料,可取,即400mm 。

除雾装置

设置除雾器可用于分离塔顶进出口气体中夹带的液滴,以保证传质效率,减少有价值物料的损失及改善下游设备的操作条件。

由于氨气溶于水中易于产生泡沫,为了防止泡沫随出气管排出,影响吸收效率,采用除沫装置。同时由于所设计填料塔操作气速过大,气体中带有较多雾滴,所以需在塔顶的喷淋设置上方设置除雾器。

气体分布装置

气体进口装置应能使气体分布均匀,同时还能防止液体流入进气管。常见的方式是使进气管伸入塔的中心线位置,计算塔径为,塔径小于时,向下开缺口的分布性能最好,弯管次之,斜口最差。因此,该设计中采用向下开缺口式的。

排液装置

液体从塔内排出时,一方面要能使液体顺利排出,另一方面应保证塔内气体不会从排液管排出,应选用常压操作的液封结构。

防腐蚀设计

由于氨气对材料基本没有腐蚀,所以只考虑空气中氧气对设备的腐蚀和进出料液对设备的冲蚀,为了提高填料塔的使用寿命和从长远的经济利益考虑,填料塔体选用Q235刚,塔体外壁用涂层进行防护,塔体内壁用衬里进行防腐,塔内件的设计选用奥氏体耐蚀钢,塔内各种连接部件也选用此种钢,避免电偶腐蚀。在塔内件安装时要检查是否有锈,如果有应除去铁锈再安装,避免点蚀。进出气液管也选用Q235钢,在管道转折处应尽量有一定弯曲度,减小进出气液时对管壁的冲蚀,在塔体各种开孔处用补强圈补强。适当增加腐蚀余量。填料选用的是矩鞍环,基本没有腐蚀。填料塔使用一定时间后应检修一次,保证安全和提高使用寿命。

气体进料管

取气体进出口流速为15m/s ,则可求得气体进出口内径:

根据查的国际无缝钢管的规格,选定mm mm 10190?φ的热轧无缝钢管,则 由结果知,u '=在15~20之间,所以符合标准。 气体进口压降: 气体出口压降:

进气管到塔底的空间高度D H )7.1~5.1(= ,该设计中取750mm 。

液体进料管:

常压下液体进出口管速为~3m/s ,取液体进出口流速为2m/s ,则 根据查的国际无缝钢管的规格,选定mm mm 119?φ的热轧无缝钢管,则 由结果知,在~之间,所以符合标准。

封头的选择

选择标准的椭圆形封头是较常见的填料塔的设计,且制造比较容易。由于填料塔的直径为500mm ,由下表可知,应选择曲面高度为125mm ,直边高度选择25mm 。

表5. 标准椭圆形封头尺寸

总塔高计算

填料塔的总塔高主要取决于填料层h ,此外还需要考虑塔顶空间,塔底空间及再分布器的布置等。填料塔的总塔高H 可由下式进行计算: 式中:h '为安全系数调整后的填料层高度,m; f H 为装配液体再分布器的空间高度,m ;

d H 为塔顶空间高(不包括封头部分),m ,一般取~; b H 为塔底空间高(不包括封头部分),m ,一般取~。 取b H =,d H =,则H=+4+=。

由于封头的选择,曲面高度为125mm ,直边高度选择25mm , 所以塔体总高度为:m h H H n h H H b f d 7.6)1(=++-+'+=

3.填料塔设计参数汇总

四.填料塔装配图(见附录)

五.总结

通过本次课程设计,我对填料塔的相关知识有了更为扎实的掌握,学会更好的走出课本,将课堂所学的知识运用到实践当中去,同时,我的计算能力经受了考验,得到了提高。

这次课程设计对我们的资料搜集整理能力以及计算能力要求较高,总体并不难,但需要我们查阅大量的资料,并仔细观察分析。在一开始的研究过程中,只查出了大量陶瓷以及塑料矩鞍环的相关参数,然而将我判断为可行性较高的参数代入塔径计算公式,进行校核时,发现均不符合要求。于是,无奈之下我选取了拉西环填料,在对塔径等参数进行了计算并得到了接近规定的数据后,因为考虑到科学的严谨性,我翻阅了化工手册并发现了金属矩鞍环的参数,惊喜之下,我应用金属矩鞍环的参数再次进行了塔径等相关参数的计算。然而,计算结果仍偏大,此时,考虑到所运用的泛点气速是在通用关联图上选取了较高时读出的,并未考虑实际运行

情况与这不符。于是,经与同学讨论,我们一致决定改用经验公式对泛点气速进行计算。经历了一系列艰苦的计算,尤其是恩田公式,因计算量较大较繁复,在为了保证计算正确性的前提下,我更是进行了不下十次的计算,最终,皇天不负有心人,我终于得出了正确的结论。

每次的课程设计,对我来说,或是对思考能力,或是对科学态度,或是计算能力,都是一次挑战。互联网的应用固然使我们获取知识变得更为方便,然而,获取的材料未必就是就是正确的,需要我们学会甄选,有严谨的科学态度,方能完美完成每一次的科研。

以上,便是我对本次课程设计进行的总结。

六.参考文献

[1] 赵毅.李守信有害气体控制工程,化学工业出版社,2001.

[2] 王志魁. 化工原理第三版,化学工业出版社,2004.

[3] 贾绍义,柴诚敬. 化工原理课程设计(化工传递与单元操作课程设计),

天津大学出版,2002.

附录

填料塔的结构及其工作原理

填料塔的结构及其工作原理 填料塔的作用是起到吸收作用,是化工、石油化工和炼油生产中最重要的设备之一。 以下讲一下填料塔的结构特点: 填料塔是以塔的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 填料的分类 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 1.散装填料 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。现介绍几种较为典型的散装填料: 拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料 (1)拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。

填料塔设计说明书

填 料 塔 设 计 说 明 书 设计题目:水吸收氨填料吸收塔学院:资源环境学院 指导老师:吴根义罗惠莉 设计者:海江 学号:7 专业班级:08级环境工程1班

一、设计题目 试设计一座填料吸收塔,用于脱出混于空气中的氨气。混合气体的处理为2400m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。采用清水进行吸收,吸收剂的用量为最小量的1.5倍。 二、操作条件 1、操作压力常压 2、操作温度 20℃ 三、吸收剂的选择 吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。所以本设计选择用清水作吸收剂,氨气为吸收质。水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。且氨气不作为产品,故采用纯溶剂。 四、流程选择及流程说明 逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。工业生产中多用逆流操作。 五、塔填料选择 阶梯环填料。阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种 选用聚丙烯阶梯环填料,填料规格:

六、填料塔塔径的计算 1、液相物性数 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20℃水的有关物性数据如下: 密度为:L ρ=998.2 kg/m3 粘度为:μL=0.001004 Pa·S=3.6 kg/(m·h) 表面力为σL=72.6 dyn/cm =940896 kg/h2 2、气相物性数据: 20℃下氨在水中的溶解度系数为:H=0.725kmol/(m3·kPa)。 混合气体的平均摩尔质量为: Mvm=0.05×17.03g/mol +0.95×29g/mol=28.40g/mol , 混合气体的平均密度为:ρvm =1.183 kg/m3 混合气体的粘度可近似取为空气的粘度,查手册得20℃空气的粘度为: μv=1.81×10-5 Pa·S=0.065 kg/(m·h) 3、气相平衡数据 20℃时NH3在水中的溶解度系数为H=0.725 kmol/(m3·kPa),常压下20℃时NH3在水中的亨利系数为E=76.41kPa 。 4、物料衡算: 亨利系数 S L HM E ρ= 相平衡常数 754.03 .10102.18725.02 .998=??=== P HM P E m S L ρ E ——亨利系数 H ——溶解度系数 Ms ——相对摩尔质量

填料塔计算部分

填料吸收塔设计任务书 一、设计题目 填料吸收塔设计 二、设计任务及操作条件 1、原料气处理量:5000m3/h。 2、原料气组成:98%空气+%的氨气。 3、操作温度:20℃。 4、氢氟酸回收率:98%。 5、操作压强:常压。 6、吸收剂:清水。 7、填料选择:拉西环。 三、设计内容 1.设计方案的确定及流程说明。 2.填料吸收塔的塔径,填料层的高度,填料层的压降的计算。 3.填料吸收塔的附属机构及辅助设备的选型与设计计算。 4.吸收塔的工艺流程图。 5.填料吸收塔的工艺条件图。

目录 第一章设计方案的简介 (4) 第一节塔设备的选型 (4) 第二节填料吸收塔方案的确定 (6) 第三节吸收剂的选择 (6) 第四节操作温度与压力的确定 (7) 第二章填料的类型与选择 (7) 第一节填料的类型 (7) 第二节填料的选择 (9) 第三章填料塔工艺尺寸 (10) 第一节基础物性数据 (10) 第二节物料衡算 (11) 第三节填料塔的工艺尺寸的计算 (12) 第四节填料层压降的计算 (16) 第四章辅助设备的设计与计算 (16) 第一节液体分布器的简要设计 (16) 第二节支承板的选用 (17) 第三节管子、泵及风机的选用 (18) 第五章塔体附件设计 (20) 第一节塔的支座 (20) 第二节其他附件 (20)

第一章设计方案的简介 第一节塔设备的选型 塔设备是化工、石油化工、生物化工制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 1、板式塔 板式塔为逐级接触式气液传质设备,是最常用的气液传质设备之一。传质机理如下所述:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。溢流堰的作用是使塔板上保持一定厚度的液层。气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。在塔板上,气液两相密切接触,进行热量和质量的交换。在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。 一般而论,板式塔的空塔速度较高,因而生产能力较大,塔板效率稳定,操作弹性大,且造价低,检修、清洗方便,故工业上应用较为广泛。 2、填料塔 填料塔是最常用的气液传质设备之一,它广泛应用于蒸馏、吸收、解吸、汽提、萃取、化学交换、洗涤和热交换等过程。几年来,由于填料塔研究工作已日益深入,填料结构的形式不断更新,填料性能也得到了迅速的提高。金属鞍环,改型鲍尔环及波纹填料等大通量、低压力降、高效率填料的开发,使大型填料塔不断地出现,并已推广到大型汽—液系统操作中,尤其是孔板波纹填料,由于具有较好的综合性能,使其不仅在大规模生产中被采用,且由于其在许多方面优于各种塔盘而越来越得到人们的重视,在某些领域中,有取代板式塔的趋势。近年来,在蒸馏和吸收领域中,最突出的变化是新型填料,特别是规整填料在大直径

填料塔的设计

目录

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书 1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂, ,气体处理量为1500m3/h,其中含氨%(体积分数),吸收脱除混合气体中的NH 3

要求吸收率达到99%,相平衡常数m=。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。 6)对设计过程的评述和有关问题的讨论。 二.设计资料 1.工艺流程 采用填料塔设计,填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。 2.进气参数 进气流量: 1500m3/h 进气主要成分:NH 3

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

填料塔工艺尺寸的计算

第三节 填料塔工艺尺寸的计算 填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段 3.1 塔径的计算 1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =0.5~0.85 贝恩(Bain )—霍根(Hougen )关联式 ,即: 2213lg V F L L u a g ρμερ?? ?????? ? ???????=A-K 141V L V L w w ρρ???? ? ??? ?? (3-1) 即:1 124 8 0.23100 1.18363202.59 1.1836lg[ ()1]0.0942 1.759.810.917998.24734.4998.2F u ?????? =- ? ? ??????? 所以:2 F u /9.81(100/0.9173)(1.1836/998.2)= UF=m/s 其中: f u ——泛点气速,m/s; g ——重力加速度,9.81m/s 2 W L =5358.89572㎏/h W V =7056.6kg/h A=0.0942; K=1.75; 取u=0.7 F u =2.78220m/s

0.7631D = = = (3-2) 圆整塔径后 D=0.8m 1. 泛点速率校核:2 6000 3.31740.7850.83600 u = =?? m/s 则 F u u 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核: (1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。 (2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ?为。 ()32min min 0.081008/w t U L m m h α==?=? (3-3) 22 5358.8957 10.6858min 0.75998.20.7850.8 L L w U D ρ= ==>=???? (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。 3.2 填料层高度的计算及分段 *110.049850.75320.03755Y mX ==?= (3-5) *220Y mX == (3-6) 3.2.1 传质单元数的计算

填料塔结构设计

17.2填料塔结构设计 一、液体分布器 (喷林装置) 1、典型结构: (1)管式喷洒器 (2)莲蓬式喷洒器 (3)多孔直管分配器 (4)多孔盘管分配器 (5)溢流管式分配器 (6)筛孔盘式分配器 (7)槽式分配器 (8)排管式分配器 2、各结构特点 二、填料 自学 三、填料支承 1、支承要求 有足够的强度和刚度 而且有足够的自由截面 使支承处不发生液泛 2、类型 栅板 气体喷射式支承板 ???梁型钟罩型 四、液体再分配器 1.填料层的分段原因 P341 倒二行~~P 342 第一行 2.再分配器的作用: 收集上段填料层的液体,并使其在下段填料层重新均匀分布。 3.再分配器的类型 (1)分配锥 (2)边圈槽形分配器 (3)升气管式分配器 (4)斜板复合式分配器 五、除沫器 1.作用: 减少液体夹带,确保气体纯度,保证后续设备正常工作。 2.使用条件: 在空塔气速较大,塔顶溅液现象严重时,以及工艺过程不允许出塔气体夹带雾滴的情况下设置 3.除沫器的类型 (1)折板除沫器 (2)涤网除沫器 六、裙座结构 1.裙座的组成 座体、排净孔、基础环、筛板、盖板、人孔、管线引出孔、排气孔、保温支承圈 2.裙座与壳体的连接 (1)对接焊缝 座体外径与壳体外径相同 适用于一般情况下

(2)搭接焊缝 座体内径与壳体外径相同 由于受力较差对小塔或受力较小的情况下用 3.裙座的材料 采用普通碳钢考虑操作条件载荷封头材料等的因素取 七、管口结构及其他 1.进气管口 2.液体出口管 D大小取人、手孔倾斜安装 3.填料出口按N 4.其他结构同一般的容器相同 填料塔结构原理 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。 的塔身是一直立式圆筒(如上图所示), 塔身 底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

填料塔设计

xxxxx 大学 化工原理课程设计任务书 专业: 班级: 组长: 成员: 设计日期: 设计题目: 空气丙酮填料塔的吸收 设计条件: 空气-丙酮体系 ●混合气:丙酮蒸气和空气 ●吸收剂:清水(25℃) ●处理量:1500m3/h(标准状态) ●相对湿度:70% ●温度:20O℃ ●含量:进塔混合气中含丙酮:1.82%(V%)

●要求:丙酮回收率:90% ●操作条件:常压操作 ●厂址地区:任选 ●设备型式:自选 设计内容:相关说明 1.设计方案的选择及流程说明 2.工艺计算 3.主要设备工艺尺寸设计 (1)塔径的确定 (2)填料层高度计算 (3)总塔高、总压降及接管尺寸的确定 4.辅助设备选型与计算 5.设计结果汇总 6.工艺流程图及换热器工艺条件 指导教师: xxxx 目录 第一节概述------------------------------------------4

1.1吸收技术概况------------------------------------------4 1.2吸收设备的发展------------------------------------------4 1.3吸收过程在工业生产中的应用------------------------------------------5 1.4丙酮的相关资料------------------------------------------6 第二节设计方案的确定-----------------------------------------7 2.1吸收剂的选择--------------------------------------------7 2.2吸收流程的选择----------------------------------------8 2.3吸收塔设备及填料的选择-------------------------------------------------9 2.4操作参数的选择------------------------------------------9 2.5设计模型图------------------------------------------10 第三节吸收塔的工艺计算----------------------------------------11 3.1基础性数据--------------------------------------------11 3.2物料计算-------------------------------11 3.3填料塔工艺尺寸的计算--------------------------------------------12 第四节设计后的感想-------------------------------------------------18 4.1对设计过程的评述和有关问题的讨论-------------------------------------------------18 4.2设计感想-------------------------------------------------------------------------------------------18 附录:参考文献-----------------------------------------------------------------------------------20

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

填料塔的计算.doc

一、设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 1.2装置流程的确定 1.3填料的类型与选择 1.4操作温度与压力的确定 45℃常压 (二)填料吸收塔的工艺尺寸的计算 2.1基础物性数据 ①液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据

7.熔 根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数 表面张力б=72.6dyn/cm=940896kg/h 3 ②气相物性数据 混合气体的平均摩尔质量为 M vm = y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347 混合气体的平均密度ρvm = =??=301 314.805 .333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3 混合气体粘度近似取空气粘度,手册28℃空气粘度为

μV =1.78×10-5Pa ·s=0.064kg/(m ?h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数: 在水中亨利系数E=2.6?105kPa 相平衡常数为m=1.25596 .101106.25 =?= P E 溶解度系数为H=)/(1013.218 106.22.9973 45 kPa m kmol E M s ??=??= -ρ 2.2物料衡算 进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式 计算,即 2 121min /X m Y Y Y )V L ( --= 对于纯溶剂吸收过程,进塔液组成为X2=0 2 121min /X m Y Y Y )V L ( --==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581

填料塔器设计资料

6 填料塔的结构设计 I. 塔径计算 计算公式: D = ① 塔填料选择 须知: 相对处理能力:拉西环<矩鞍<鲍尔环<阶梯环<环鞍(填料尺寸相同,压降相同) 对于规整填料,分离能力:丝网类填料>板波纹类填料,板波纹填料较丝网类有较大的处理量和较小的压降。250Y ——250指的是填料的比表面积,Y 指的是波纹倾角为45o ,X Y 指的是波纹倾角为30o 填料选择的三步骤:选材质→选类型→选尺寸(径比应保持不低于某一下限值,以防止产生较大的壁效应,造成塔的分离效率下降。) 选尺寸说明:填料尺寸大,成本低,处理量大,但效率低。一般大塔常使用50mm 的填料。 塔径/mm 填料尺寸/mm D<300 20~25 300900 50~80 ② 计算方法 泛点气速法 ----散堆填料 (0.5~0.8) f u u = a. Eckert 关联图法 20.5 0.2f u ()() Y=G G L V L L W X W g ρφ?ρμρρ= 由X 值和泛点压降线查取Y 值进而求得液泛气速 b. Bain-Hougen 泛点关联式 20.20.250.125f 3u log[] 1.75()() G G L L L V L W A g W ρραμερρ=- 填料特性:比表面积、空隙率、泛点压降因子 ---规整填料 a. Bain-Hougen 泛点关联式 20.20.250.125f 3 u log[] 1.75()() G G L L L V L W A g W ρραμερρ=- 250Y 金属板波纹填料:A=0.297,CY 型丝网填料:A=0.30 b. 泛点压降法 Kister and Gill 等压降曲线(匡国柱.化工单元过程与设备课程设计.北京:化学工业出版社.2002,264-265) 泛点压降与填料因子间的关系:0.7 /40.9p Z Fp ?= Pa/m; Fp —填料因子

化工原理填料塔课程设计说明书

皖西学院化学与生命科学系 化工原理课程设计说明书 题目:设计一台填料塔用于吸收小合成氨厂精炼在生气中的氨专业:应用化工技术 班级:0702班 学生姓名:章文杰 学号: 指导教师:徐国梅 设计成绩: 完成日期: 2009年6月19日 目录 一、文献综述 (4) (一)、引言 (4) (二)、填料塔技术 (5) (三)、填料塔的流体力学性能 (8) (四)、填料的选择 (9) (五)、填料塔的内件 (10) (六)、工艺流程的现状和发展趋势 (11) 二、设计方案简介 (12) 三、工艺计算 (13) (一)、基础物性数据 (13) 1、液相物性的数据 (13) 2、气相物性数据 (13) 3、气液相平衡数据 (13) 4、物料衡算 (14) (二)、填料塔的工艺尺寸的计算 (15) 1、塔径的计算 (15) 2、填料层高度计算 (16) 3、填料层压降计算 (18) 4、液体分布器简要设计 (20) 四、辅助设备的计算及选型 (21) 五、设计一览表 (24) 六、心得体会 (26) 七、参考文献………………………………………………………… 八、主要符号说明……………………………………………………

九、附图(带控制点的工艺流程简图、主体设备设计条件图) 文献综述 关键词:填料塔;聚丙烯;吸收 摘要: 填料塔洗涤吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。本文简述聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。 (一)引言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。从塔填料、塔内件以及工艺流程,特别是塔填料三方面对填料塔技术的现状与发展趋势作了介绍,说明了塔填料及塔内件在填料塔技术中的重要性。与板式塔相比,新型的填料塔性能具有如下特点:(1)生产能力大;(2)分离效率高;(3)压降小;(4)操作弹性大;(5)持液量小。 聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能差。研究表明,聚丙烯填料的有效润湿面积仅为同类规格陶瓷填料的 40 % ,由于聚丙烯填料表面润湿性能差,故传质效率较低,使应用受到一定的限制.为此,对聚丙烯填料表面进行处理,以提高其润湿及传质性能的研究日益受到人们的重视. 近年来,国内外一些学者做了该方面的研究工作,研究结果表明,聚丙烯填料经表面处理后,润湿及传质性能得到了较大的提高。 聚丙烯阶梯环填料为外径是高度的两倍的圆环 ,在侧壁上开出两排长方形的窗孔 , 并在一端增加了一个锥形翻边,被切开的环壁的一侧仍与壁面相连 ,另一侧向环内弯曲 ,形成内伸的舌叶 ,各舌叶的侧边在环中心相搭。鲍尔环由于环壁开孔 ,大大提高了环内空间及环内表面的利用率 ,气流阻力小 ,液体分布均匀。阶梯环与鲍尔环相比 ,其高度减少了一半 ,并在一端增加了一个锥形翻边。(二)填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等

填料塔的结构及其工作原理

填料塔得结构及其工作原理 填料塔得作用就是起到吸收作用,就是化工、石油化工与炼油生产中最重要得设备之一。 以下讲一下填料塔得结构特点: 填料塔就是以塔内得填料作为气液两相间接触构件得传质设备。填料塔得塔身就是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌得方式放置在支承板上。填料得上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层得空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中得趋势,使得塔壁附近得液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器与液体再分布器两部分,上层填料流下得液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合得物料;对侧线进料与出料等复杂精馏不太适合等。 填料得分类 填料得种类很多,根据装填方式得不同,可分为散装填料与规整填料。 1.散装填料 散装填料就是一个个具有一定几何形状与尺寸得颗粒体,一般以随机得方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。现介绍几种较为典型得散装填料: 拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料 (1)拉西环填料于1914年由拉西(F、 Rashching)发明,为外径与高度相等得圆环。拉西环填料得气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。

填料塔设计

化工原理课程设计 -填料塔的设计说明书 院(系)别:化学与化工学院 专业:应用化学 年级班: 09级3班 姓名: 学号: 指导老师:

前言: 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 经过学习,我知道,填料塔吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。这次课程设计我把聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。

目录 一、设计任务 (5) 二、设计条件 (5) 三、设计方案 (5) 1、吸收剂的选择 (5) 2、吸收过程的选择 (5) 3、流程图及流程说明 (5) 4、塔填料选择 (6) 四、工艺计算 (6) 1、物料衡算,确定塔顶、塔底的气液流量和组成 (7) 2、塔径计算 (8) 3、填料层高度计算 (9) 4.填料层压降计算 (11) 五、液体分布装置 (12) 1、液体分布器的选型 (12) 2、分布点密度计算 (12) 六、吸收塔塔体材料的选择 (13) 1、吸收塔塔体材料:Q235-B (13) 2、吸收塔的内径 (13) 3、壁厚的计算 (13) 4、强度校核 (14) 七、封头的选型依据,材料及尺寸规格 (14) 1、封头的选型:标准的椭圆封头 (14) 2、封头材料的选择 (14) 3、封头的高 (14) 4、封头的壁厚 (15) 八、液体再分布装置 (15) 九、气体分布装置 (16) 十、填料支撑装置 (16) 十一、液体分布装置 (16) 十二、除沫装置 (17) 1、设计气速的计算 (17) 2、丝网盘的直径 (17) 3、丝网层厚度H的确定 (18) 十三、管结构 (18) 1、气体和液体的进出的装置 (18) 2、填料卸出口 (19) 3、塔体各开孔补强设计 (19) 十四、填料塔高度的确定(除去支座) (20) 1吸收高度 (20) 2、支持圈高度 (20) 3、栅板高度 (20) 4、支持板高度 (20)

填料塔工艺尺寸的计算

填料塔工艺尺寸的计算 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第三节 填料塔工艺尺寸的计算 填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段 塔径的计算 1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~ 贝恩(Bain )—霍根(Hougen )关联式 ,即: 2213lg V F L L u a g ρμερ?? ?????? ? ???????=A-K 14 18 V L V L w w ρρ???? ? ??? ?? (3-1) 即:1124 8 0.23100 1.18363202.59 1.1836lg[ ()1]0.0942 1.759.810.917998.24734.4998.2F u ?????? =- ? ? ??????? 所以:2 F u /(100/3)()= UF=3.974574742m/s 其中: f u ——泛点气速,m/s; g ——重力加速度,9.81m/s 2 W L =㎏/h W V =7056.6kg/h A=; K=; 取u= F u =2.78220m/s 0.7631D = = = (3-2) 圆整塔径后 D=0.8m 1. 泛点速率校核:2 6000 3.31740.7850.83600 u = =?? m/s 则 F u u 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核: (1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。

(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ?为。 ()32min min 0.081008/w t U L m m h α==?=? (3-3) 22 5358.8957 10.6858min 0.75998.20.7850.8L L w U D ρ= ==>=???? (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。 填料层高度的计算及分段 *110.049850.75320.03755Y mX ==?= (3-5) *220Y mX == (3-6) 3.2.1 传质单元数的计算 用对数平均推动力法求传质单元数 12 OG M Y Y N Y -= ? (3-7) ()* *1 1 22*11*22 () ln M Y Y Y Y Y Y Y Y Y ---?= -- (3-8) = 0.063830.00063830.03755 0.02627ln 0.0006383 -- = 3.2.2 质单元高度的计算 气相总传质单元高度采用修正的恩田关联式计算: () 0.75 0.10.05 2 0.2 2 21exp 1.45/t c l L t L L V t w l t l L U U U g ασαρσαασαμρ-????????? ? =--?? ? ? ??? ????? ?? ? (3-9) 即:αw/αt =0. 液体质量通量为:L u =WL/××=10666.5918kg/(㎡?h ) 气体质量通量为: V u =60000×=14045.78025kg/(㎡?h)

填料塔课程设计

目录 1.前言 (4) 2.设计任务 (6) 3.设计方案说明 (6) 4.基础物性数据 (6) 5.物料衡算 (6) 6.填料塔的工艺尺寸计算 (8) 7.附属设备的选型及设备 (14) 8.参考文献 (19) 9.后记及其他 (20)

1.前言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能。 1.1填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 1.2 填料的类型 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

相关文档