文档库 最新最全的文档下载
当前位置:文档库 › Matlab diff

Matlab diff

Matlab diff
Matlab diff

ATLAB函数diff

我的例子

syms x y %定义x y 变量

>> diff(sin(x^2+y)) %默认对x求导

ans =

2*x*cos(x^2 + y)

>> diff(sin(x^2+y),y) %对y求导

ans =

cos(x^2 + y)

函数简介

在matlab中,diff函数用于求导数或者向量和矩阵的比较(详细说明参见:调用格式及说明)。在matlab的命令窗口中输入doc diff或者help diff即可获得该函数的帮助信息。

调用格式及说明

Y = diff(X)

这里求函数X的一阶导数

Y = diff(X,n)

求函数X的n阶导数

Y = diff(X,dim)

求函数X关于变量dim的偏导数

Y = diff(X,n,dim)

求函数X关于dim的n阶偏导数

若X为向量,

Y = diff(X)= [X(2)-X(1),X(3)-X(2),...,X(n)-X(n-1)]

求前后两项之差

若X为矩阵,

Y = diff(X)= [X(2:n,:) - X(1:n-1,:)]

求每行前后两项之差

相关函数

gradient, prod, sum

程序示例

>> syms x y z;

>> y=x^2+z^2;

>> diff(y)

ans =2*x

>> diff(y,z)

ans =2*z

在这个示例中,定义了三个符号变量x y z,然后令y等于x和z的平方和,然后diff(y)求关于x的偏导数,而diff(y,z) 则是对y求关于z的偏导数。

>> x=[2 3 5 7 12 23]

>> d=diff(x)

d =

1 2 2 5 11

当然X可以是一个矩阵。更多示例请参阅matlab的帮助文档。

一个简单的Matlab_GUI编程实例

Matlab GUI编程教程(适用于初学者) 1.首先我们新建一个GUI文件:如下图所示; 选择Blank GUI(Default) 2.进入GUI开发环境以后添加两个编辑文本框,6个静态文本框,和一个按钮,布置如下

图所示; 布置好各控件以后,我们就可以来为这些控件编写程序来实现两数相加的功能了。3.我们先为数据1文本框添加代码; 点击上图所示红色方框,选择edit1_Callback,光标便立刻移到下面这段代码的位置。 1. 2. 3.function edit1_Callback(hObject, eventdata, handles) 4.% hObject handle to edit1 (see GCBO) 5.% eventdata reserved - to be defined in a future version of MATLAB

6.% handles structure with handles and user data (see GUIDATA) 7.% Hints: get(hObject,'String') returns contents of edit1 as text 8.% str2double(get(hObject,'String')) returns contents of edit1 as a double 复制代码 然后在上面这段代码的下面插入如下代码: 1. 2.%以字符串的形式来存储数据文本框1的内容. 如果字符串不是数字,则现实空白内容input = str2num(get(hObject,'String')); %检查输入是否为空. 如果为空,则默认显示为0if (isempty(input)) set(hObject,'String','0')endguidata(hObject, handles); 复制代码 这段代码使得输入被严格限制,我们不能试图输入一个非数字。 4.为edit2_Callback添加同样一段代码 5 现在我们为计算按钮添加代码来实现把数据1和数据2相加的目的。 用3中同样的方法在m文件中找到pushbutton1_Callback代码段 如下; 1.function pushbutton1_Callback(hObject, eventdata, handles) 2.% hObject handle to pushbutton1 (see GCBO) 3.% eventdata reserved - to be defined in a future version of MATLAB 4.% handles structure with handles and user data (see GUIDATA) 复制代码

matlab常用计算命令

Matlab常用计算命令(部分) by sunny_疑似天人 1.多项式运算: poly2sym函数,将给定的多项式系数向量转化为符号表达式,以降幂排序。 poly函数,得到矩阵的特征多项式(首项系数为1)的系数向量,然后也可以用poly2sym函数转化为多项式的符号表达式。 roots函数,得到方程的根,调用形式为roots(a),其中a 为多项式的系数;也可以直接调用roots([1 2 1])。 compan函数与eig函数,通过compan函数建立多项式的伴随矩阵再通过eig函数求伴随矩阵特征值以得到多项式的所有根。效果与roots函数相同;同时这两个函数也可单独使用: compan函数,建立多项式的伴随矩阵,如:a=[1 2 3 ];compan(a) ans = -2 -3 1 0 eig函数,求矩阵的特征值。 conv函数,求多项式的乘积,如:pd=conv(p,d),其中p和d均为多项式系数向量,得到的同样也是多项式的系数向量。 deconv函数,求多项式的除法。 polyder函数,求多项式的微分。即求一阶导数,如果要求多项式的高阶微分,可以通过循环实现。

polyfit 函数,对数据拟合得到多项式,这个多项式即可大致代表数据变化规律。例如: x=0:pi/20:pi/2; y=sin(x); p=polyfit(x,y,5) x1=0:pi/30:pi*2; y1=sin(x1); y2=polyval(p,x1); plot(x1,y1,'b-',x1,y2,'r*') legend('原曲线','拟合曲线') axis([0 7 -1.2 4]) p = 0.0057 0.0060 -0.1721 0.0021 0.9997 0.0000 1 2 3 4 5 6 7 -1-0.500.511.522.533.54 原曲线拟合曲线 2.向量及其运算 x=linspace(a,b,n),生成一个向量x ,其中a ,b 分别是生成矢量的第一个和最后一个元素,n 是采样总点数。当n 缺省时默认生成100维的向量。

数字信号处理Matlab实现实例(推荐给学生)

数字信号处理Matlab 实现实例 第1章离散时间信号与系统 例1-1 用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。 解 MATLAB程序如下: a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 图1.1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 -4 1 3 1 5 1 -3}。 例1-2 用MATLAB计算差分方程 当输入序列为时的输出结果。 解 MATLAB程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)];

k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度') 图 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。 例1-3 用MATLAB 计算例1-2差分方程 所对应的系统函数的DTFT 。 解 例1-2差分方程所对应的系统函数为: 123 123 0.80.440.360.02()10.70.450.6z z z H z z z z -------++= +-- 其DTFT 为 23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωω ωωω--------++= +-- 用MATLAB 计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部') xlabel('\omega/\pi');ylabel('幅度')

MATLAB计算概率

一、实验名称 已知随机向量(X ,Y )独立同服从标准正态分布,D={(x,y)|a0&&e<6 if e==1

p=erchong(a,b,c,d) end if e==2 p=wangge(a,b,c,d); end if e==3 p=fenbu(a,b,c,d); end if e==4 p=mente(a,b,c,d); end if e==5 [X,Y]=meshgrid(-3:0.2:3); Z=1/(2*pi)*exp(-1/2*(X.^2+Y.^2)); meshz(X,Y,Z); end e=input('请选择: \n'); end % ===============================用二重积分计算function p=erchong(a,b,c,d) syms x y; f0=1/(2*pi)*exp(-1/2*(x^2+y^2)); f1=int(f0,x,a,b); %对x积分 f1=int(f1,y,c,d); %对y积分 p=vpa(f1,9); % ================================等距网格法function p=wangge(a,b,c,d) syms x y ; n=100; r1=(b-a)/n; %求步长 r2=(d-c)/n; za(1)=a;for i=1:n,za(i+1)=za(i)+r1;end %分块 zc(1)=c;for j=1:n,zc(j+1)=zc(j)+r2;end for i=1:n x(i)=unifrnd(za(i),za(i+1));end %随机取点 for i=1:n y(i)=unifrnd(zc(i),zc(i+1));end s=0; for i=1:n for j=1:n s=1/(2*pi)*exp(-1/2*(x(i)^2+y(j)^2))+s;%求和end end p=s*r1*r2;

MATLAB回归预测模型

MATLAB---回归预测模型 Matlab统计工具箱用命令regress实现多元线性回归,用的方法是最小二乘法,用法是:b=regress(Y,X) [b,bint,r,rint,stats]=regress(Y,X,alpha) Y,X为提供的X和Y数组,alpha为显着性水平(缺省时设定为0.05),b,bint为回归系数估计值和它们的置信区间,r,rint为残差(向量)及其置信区间,stats是用于检验回归模型的统计量,有四个数值,第一个是R2,第二个是F,第三个是与F对应的概率 p ,p <α拒绝 H0,回归模型成立,第四个是残差的方差 s2 。 残差及其置信区间可以用 rcoplot(r,rint)画图。 例1合金的强度y与其中的碳含量x有比较密切的关系,今从生产中收集了一批数据如下表 1。 先画出散点图如下: x=0.1:0.01:0.18; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]; plot(x,y,'+') 可知 y 与 x 大致上为线性关系。 设回归模型为y =β 0+β 1 x

用regress 和rcoplot 编程如下: clc,clear x1=[0.1:0.01:0.18]'; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]'; x=[ones(9,1),x1]; [b,bint,r,rint,stats]=regress(y,x); b,bint,stats,rcoplot(r,rint) 得到 b =27.4722 137.5000 bint =18.6851 36.2594 75.7755 199.2245 stats =0.7985 27.7469 0.0012 4.0883 即β 0=27.4722 β 1 =137.5000 β 的置信区间是[18.6851,36.2594], β 1 的置信区间是[75.7755,199.2245]; R2= 0.7985 , F = 27.7469 , p = 0.0012 , s2 =4.0883 。可知模型(41)成立。

matlab源代码实例

1.硬币模拟试验 源代码: clear; clc; head_count=0; p1_hist= [0]; p2_hist= [0]; n = 1000; p1 = 0.3; p2=0.03; head = figure(1); rand('seed',sum(100*clock)); fori = 1:n tmp = rand(1); if(tmp<= p1) head_count = head_count + 1; end p1_hist (i) = head_count /i; end figure(head); subplot(2,1,1); plot(p1_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.3试验次数N与正面向上比率的函数图'); head_count=0; fori = 1:n tmp = rand(1); if(tmp<= p2) head_count = head_count + 1; end p2_hist (i) = head_count /i; end figure(head); subplot(2,1,2); plot(p2_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.03试验次数N与正面向上比率的函数图'); 实验结果:

2.不同次数的随机试验均值方差比较 源代码: clear ; clc; close; rand('seed',sum(100*clock)); Titles = ['n=5时' 'n=20时' 'n=25时' 'n=50时' 'n=100时']; Titlestr = cellstr(Titles); X_n_bar=[0]; %the samples of the X_n_bar X_n=[0]; %the samples of X_n N=[5,10,25,50,100]; j=1; num_X_n = 100; num_X_n_bar = 100; h_X_n_bar = figure(1);

预测控制MATLAB仿真与设计

动态矩阵控制算法实验报告 院系:电子信学院 姓名:郝光杰 学号:172030039 专业:控制理论与控制工程 导师:俞孟蕻

MATLAB环境下动态矩阵控制实验 一、实验目的: 对于带有纯滞后、大惯性的研究对象,通过动态控制矩阵的MATLAB的直接处理与仿真实验,具有较强的鲁棒性和良好的跟踪性。输入已知的控制模型,通过对参数的选择,来取的良好的控制效果。 二、实验原理: 动态矩阵控制算法是一种基于被控对象非参数数学模型的控制算法,它是一种基于被控对象阶跃响应的预测控制算法,以对象的阶跃响应离散系统为模型,避免了系统的辨识,采用多步预估技术,解决时延问题,并按照预估输出与给定值偏差最小的二次性能指标实施控制,它适用于渐进稳定的线性对象,系统动态特性中存在非最小相位特性或纯滞后都不影响算法的直接使用。 三、实验环境: 计算机 MATLAB2016b 四、实验步骤: 影响控制效果的主要参数有: 1)采样周期T与模型长度N 在DMC中采样周期T与模型长度N的选择需要满足香农定理和被控对象的类型及其动态特性的要求,通常需要NT后的阶跃响应输出值接近稳定值。 2)预测时域长度P P对系统的快速性和稳定性具有重要影响。为使滚动优化有意义,应使P 包含对象的主要动态部分,P越小,快速性提高,稳定性变差;反之,P越大,系统实时性降低,系统响应过于缓慢。 3)控制时域长度M

M控制未来控制量的改变数目,及优化变量的个数,在P确定的情况下,M越小,越难保证输出在各采样点紧密跟踪期望输出值,系统响应速度缓慢, 可获得较好的鲁棒性,M越大,控制机动性越强,改善系统的动态性能,但是稳定性会变差。 五、实例仿真 (一)算法实现 设GP(s)=e-80s/(60s+1),采用DMC后的动态特性如图1所示,采样周期 T=20s,优化时域P=10,M=2,建模时域N=20。 MATLAB程序1: g=poly2tfd(1,[60 1],0,80);%通用传函转换为MPC模型 delt=20; %采样周期 nt=1; %输出稳定性向量 tfinal=1000; %截断时间 model=tfd2step(tfinal,delt,nt,g);%传函转换为阶跃响应模型 plant=model;%进行模型预测控制器设计 p=10; m=2; ywt=[];uwt=1;%设置输入约束和参考轨迹等控制器参数 kmpc=mpccon(plant,ywt,uwt,m,p);%模型预测控制器增益矩阵计算 tend=1000;r=1;%仿真时间 [y,u,yrn]=mpcsim(plant,model,kmpc,tend,r);%模型预测控制仿真 t=0:20:1000;%定义自变量t的取值数组 plot(t,y) xlabel(‘图一DMC控制动态响应曲线(time/s)’); ylabel(‘响应曲线’); 结果如下: Percent error in the last step response coefficient

matlab程序设计实例

MATLAB 程序设计方法及若干程序实例 樊双喜 (河南大学数学与 信息科学学院开封475004) 摘要本文通过对 MATLAB 程序设计中的若干典型问题做简要的分析和总结,并在此基础上着重讨论了有关算法设计、程序的调试与测试、算法与程序的优化以及循环控制等方面的问题.还通过对一些程序实例做具体解析,来方便读者进行编程训练并掌握一些有关MATLAB 程序设计方面的基本概念、基本方法以及某些问题的处理技巧等.此外,在文章的最后还给出了几个常用数学方法的算法程序, 供读者参考使用.希望能对初学者进行 MATLAB 编程训练提供一些可供参考的材料,并起到一定的指导和激励作用,进而为MATLAB 编程入门打下好的基础. 关键字算法设计;程序调试与测试;程序优化;循环控制 1 算法与程序 1.1 算法与程序的关系算法被称为程序的灵魂,因此在介绍程序之前应先了 解什么是算法.所谓算 法就是对特定问题求解步骤的一种描述.对于一个较复杂的计算或是数据处理的问题,通常是先设计出在理论上可行的算法,即程序的操作步骤,然后再按照算法逐步翻译成相应的程序语言,即计算机可识别的语言. 所谓程序设计,就是使用在计算机上可执行的程序代码来有效的描述用于解决特定问题算法的过程.简单来说,程序就是指令的集合.结构化程序设计由于采用了模块分化与功能分解,自顶向下,即分而治之的方法,因而可将一个较复杂的问题分解为若干子问题,逐步求精.算法是操作的过程,而程序结构和程序流程则是算法的具体体现. 1.2MATLAB 语言的特点 MATLAB 语言简洁紧凑,使用方便灵活,库函数极其丰富,其语法规则与科技人员的思维和书写习惯相近,便于操作.MATLAB 程序书写形式自由,利用其丰富

MatLab基本运算

MatLab & 数学建模 第一讲简介及基本运算 一、简介 MATLAB名字由MATrix和 LABoratory 两词的前三个字母组合而成。那是20世纪七十年代后期的事:时任美国新墨西哥大学计算机科学系主任的Cleve Moler教授出于减轻学生编程负担的动机,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。 经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。 MATLAB以商品形式出现后,仅短短几年,就以其良好的开放性和运行的可靠性,使原先控制领域里的封闭式软件包(如英国的UMIST,瑞典的LUND和SIMNON,德国的KEDDC)纷纷淘汰,而改以MATLAB为平台加以重建。在时间进入20世纪九十年代的时候,MATLAB 已经成为国际控制界公认的标准计算软件。 在欧美大学里,诸如应用代数、数理统计、自动控制、数字信号处理、模拟与数字通信、时间序列分析、动态系统仿真等课程的教科书都把MATLAB作为内容。这几乎成了九十年代教科书与旧版书籍的区别性标志。在那里,MATLAB是攻读学位的大学生、硕士生、博士生必须掌握的基本工具。 在国际学术界,MATLAB已经被确认为准确、可靠的科学计算标准软件。在许多国际一流学术刊物上,(尤其是信息科学刊物),都可以看到MATLAB的应用。 在设计研究单位和工业部门,MATLAB被认作进行高效研究、开发的首选软件工具。如美国National Instruments公司信号测量、分析软件LabVIEW,Cadence公司信号和通信分析设计软件SPW等,或者直接建筑在MATLAB之上,或者以MATLAB为主要支撑。又如HP公司的VXI硬件,TM公司的DSP,Gage公司的各种硬卡、仪器等都接受MATLAB的支持。 MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。以下为其几个特色: ?功能强的数值运算 - 在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函数可使用,函数的标示自然,使得问题和解答像数学式子一般简单明了,让使用者可全力发挥在解题方面,而非浪费在电脑操作上。 ?先进的资料视觉化功能 - MATLAB的物件导向图形架构让使用者可执行视觉数据分,并制作高品质的图形,完成科学性或工程性图文并茂的文章。 ?高阶但简单的程式环境 - 作为一种直译式的程式语言,MATLAB容许使用者在短时间内写完程式,所花的时间约为用 FORTRAN 或 C 的几分之一,而且不需要编译 (compile)及联结 (link) 即能执行,同时包含了更多及更容易使用的内建功能。 ?开放及可延伸的架构 - MATLAB容许使用者接触它大多数的数学原使码,检视运算法,更改现存函数,甚至加入自己的函数使 MATLAB成为使用者所须要的环境。 ?丰富的程式工具箱 - MATLAB的程式工具箱融合了套装前软体的优点,与一个灵活的开放但容易操作之环境,这些工具箱提供了使用者在特别应用领域所需之许多函数。现有工具箱有:符号运算(利用Maple V的计算核心执行)、影像处理、统计分析、讯号处理、神经网路、模拟分析、控制系统、即时控制、系统确认、强建控制、弧线分析、最佳化、模糊逻辑、mu分析及合成、化学计量分析。 二、MatLab界面

灰色预测模型的MATLAB 程序及检验程序

灰色预测模型的Matlab程序及检验程序%灰色预测模型程序 clear syms a b; c=[a b]'; A=[46.232.626.723.020.018.917.516.3];%原始序列B=cumsum(A);%累加 n=length(A); for i=1:(n-1) C(i)=(B(i)+B(i+1))/2; end %计算待定参数 D=A; D(1)=[]; D=D'; E=[-C;ones(1,n-1)]; c=inv(E*E')*E*D; c=c'; a=c(1); b=c(2); %预测往后预测5个数据 F=[];F(1)=A(1); for i=2:(n+5) F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a; end G=[];G(1)=A(1); for i=2:(n+5) G(i)=F(i)-F(i-1); end t1=2002:2009; t2=2002:2014; G plot(t1,A,'o',t2,G) %灰色预测模型检验程序 function[q,c,p]=checkgm(x0,x1) %GM检验函数 %x0原始序列 %x1预测序列 %·返回值

%q–-相对误差 %c--·方差比 %p--小误差概率 e0=x0-x1; q=e0/x0; s1=var(x0); %qpa=mean(e0); s2=var(e0); c=s2/s1; len=length(e0); p=0; for i=1:len if(abs(e0(i))<0.6745*s1) p=p+1; end end p=p/len; end 等级相对误差q方差比C小误差概论P I级<0.01<0.35>0.95 II级<0.05<0.50<0.80 III级<0.10<0.65<0.70 IV级>0.20>0.80<0.60

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多,Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II)无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、数值例子 多目标优化问题 42422 11211122124224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤?二、Matlab 文件 1.适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2);2.调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄nvars=2; %变量个数lb=[-5,-5]; %下限ub=[5,5]; %上限A=[];b=[];%线性不等式约束 Aeq=[];beq=[];%线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); %最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, %停止代数stallGenLimit 为200,适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

基于Matlab的简易计算器

工程设计报告 设计题目:基于Matlab的简易计算器 学院: 专业: 班级: 学号: 姓名: 电子邮件: 日期:2015年12 月 成绩: 指导教师:

西安电子科技大学 电子工程学院 工 程设计 任务书 学生姓名指导教师职称 学生学号专业 题目基于Matlab 的简易计算器 任务与要求 任务如下: 利用MATLAB GUI 设计实现一个图形用户界面的计算器程序,实现: A.实现十进制数的加、减、乘、除、简单计算。 B. 科学计算函数,包括正弦、余弦、正切、余切、开方、指数等函数运行。 C. 有清除键,能清除操作。 要求如下: A .熟练掌握MatlabGUI 界面的设计与应用 B .最终计算器能够实现预期的相关功能 开始日期2015年 11月日完成日期2016年1月日 课程设计所在单位 本表格由电子工程学院网络信息中心编辑录入 https://www.wendangku.net/doc/4e4307262.html,. …………………………装…………………… … … … … 订 … … … … … … … … … … … …线 … …… …… …… …… …… … …… …… …… …… …… … …

摘要 基于Matlab GUI计算器设计时利用GUI的创建图像用户界面进行计算器设计。设计计算器时,主要是考虑到计算器的易用性、功能的常用程度进行计算器界面与功能的设计。通过调整控件和文本的布局及颜色,使界面简单大方、布局合理,达到界面友好的效果。 计算器设计时主要利用到get和set两个函数进行各个控件属性值的传递和设置。计算器实现的功能有:数字0~9和小数点的输入显示,平方开方和对数的输入显示。进行四则运算、正弦函数、余弦函数、正切函数以及反正弦函数、反余弦函数、反正切函数的计算等等。最后运行调试,实现基于MatlabGUI的计算器的设计。 关键词:MatlabGUI计算器 Abstracts Based on Matlab GUI calculator design using the user interface to create images of GUI calculator design.Design calculator, mainly considering the ease of use, function calculators calculator interface and function of the common level of design.By adjusting the control and the layout of the text and color, make the interface simple and easy, rational layout, to achieve the effect of friendly interface. Calculator design used to get and set two main function for each attribute value transfer and control Settings.Calculator the functions are: 0 ~ 9, according to input and decimal square root and logarithm of input.Arithmetic, sine function and cosine function, tangent function and the arcsine function,arccosine function, the calculation of the arctangent function and so on.Finally running debugging, implementation design based on Matlab GUI calculator. Keywords: Matlab GUI calculator

MATLAB模型预测控制工具箱函数

M A T L A B模型预测控制工具箱函数 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样 周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下: 2)MPC状态空间模型转换为通用状态空间模型函数mod2ss()

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 1.1 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到 j v 的权 ij w =∞ 。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1i v +,使1()min{()}i l v l v +=,v S ∈; ⑤ 1{}i S S v += ,1{}i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v - 是从1v 到n v 的最短路径,则121n v v v - 也必然是从1v 到1n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表示顶点i v 到 j v 的权 ij w ,若i v 到 j v 无边,则 realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数(1.7977e+308)。 function re=Dijkstra(ma)

基于Matlab软件的用户预测方法及流程

龙源期刊网 https://www.wendangku.net/doc/4e4307262.html, 基于Matlab软件的用户预测方法及流程 作者:郑美薇 来源:《活力》2010年第14期 [摘要]移动用户预测的准确性是前期网络规划和后续工程建设的主要依据,直接关系到工程建设的规模和投资,以及工程建成投产后的经济效益。本文根据多年的规划工作经验积累,浅谈一下网络规划中的通信用户预测方法及流程,并提出了一种基于MATLAB软件的用户交互式预测界面,用以简化预测流程,提高预测精度。 [关键词]网络规划;用户预测;matlab 一、前言 移动通信自1987年投入运营以来,用户数一直保持较高的增长率。为了满足用户不断增长的通信需求,全国各省、市都在加快通信网络的建设与扩容工程。而网络的建设既要不断引进 新的技术,满足用户日益发展的个性化需求,又要使整个网络经济适用,使工程投产后收到良好的经济效益,因此就需要准确地对移动用户的发展进行预测。用户预测结果是后续网络规划和建 设的依据,而预测结果的准确程度决定了整个规划的合理性和科学性。本文利用Matlab软件编制了一个交互式的用户预测界面,力争简化预测流程、提升预测精度,提高工作效率。 二、正文 用户的发展受到外界经济、政策、社会各方面因素的影响,所以用户预测不仅仅局限于通 过成长曲线、二次曲线、GDP及普及率等预测方法对历史数据进行趋势外推,而要综合考虑外界各方面影响因素可能对用户发展产生的影响。为了使预测结果更加科学和符合实际并能促进网络健康发展,还要通过各种与用户数有关的指标对预测结果进行修正,同时综合考虑外界因素可能对未来几年用户的发展产生的影响,对修正后结果做再次调整,以力求得出最符合未来发展的用户预测结果。 (一)用户预测的方法及流程 1.GDP及普及法: ①通过直线法预测未来5年GDP和人口数,并计算出未来五年的人均GDP; ②计算出历史数据中GDP及普及率的线性关系; ③通过步骤①、②计算得出未来五年的普及率;

MATLAB模型预测控制工具箱函数..

MATLAB模型预测控制工具箱函数 8.2 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 8.2.1 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型;

⑤ MPC 传递函数模型。 在上述5种模型格式中,前两种模型格式是MATLAB 通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC 状态空间模型和MPC 传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC 状态空间模型之间的转换 MPC 状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod ()和mod2ss ()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC 状态空间模型函数ss2mod () 该函数的调用格式为 pmod= ss2mod (A,B,C,D) pmod = ss2mod (A,B,C,D,minfo) pmod = ss2mod (A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D 为通用状态空间矩阵; minfo 为构成MPC 状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆ minfo(1)=dt ,系统采样周期,默认值为1; ◆ minfo(2)=n ,系统阶次,默认值为系统矩阵A 的阶次; ◆ minfo(3)=nu ,受控输入的个数,默认值为系统输入的维数; ◆ minfo(4)=nd ,测量扰的数目,默认值为0; ◆ minfo(5)=nw ,未测量扰动的数目,默认值为0; ◆ minfo(6)=nym ,测量输出的数目,默认值系统输出的维数; ◆ minfo(7)=nyu ,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o ,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod 为系统的MPC 状态空间模型格式。 例8-5 将如下以传递函数表示的系统模型转换为MPC 状态空间模型。 1 2213)(232+++++=s s s s s s G 解:MATLAB 命令如下:

matlab30个案例分析案例6代码

Draw %function J=draw(individual) load best zbest individual=zbest; %函数功能:画出最优粒子对应的各种图形 %individual输入粒子 %fitness输出适应度值 w11=reshape(individual(1:6),3,2); w12=reshape(individual(7:12),3,2); w13=reshape(individual(13:18),3,2); w21=individual(19:27); w22=individual(28:36); w23=individual(37:45); rate1=0.006;rate2=0.001;%学习率 k=0.3;K=3; y_1=zeros(3,1);y_2=y_1;y_3=y_2;%输出值 u_1=zeros(3,1);u_2=u_1;u_3=u_2;%控制率 h1i=zeros(3,1);h1i_1=h1i;%第一个控制量 h2i=zeros(3,1);h2i_1=h2i;%第二个控制量 h3i=zeros(3,1);h3i_1=h3i;%第三个空置量 x1i=zeros(3,1);x2i=x1i;x3i=x2i;x1i_1=x1i;x2i_1=x2i;x3i_1=x3i;%隐含层输出 %权值初始化 k0=0.03; %值限定 ynmax=1;ynmin=-1;%系统输出值限定 xpmax=1;xpmin=-1;%P节点输出限定 qimax=1;qimin=-1;%I节点输出限定 qdmax=1;qdmin=-1;%D节点输出限定 uhmax=1;uhmin=-1;%输出结果限定 for k=1:1:200 %--------------------------------网络前向计算-------------------------- %系统输出 y1(k)=(0.4*y_1(1)+u_1(1)/(1+u_1(1)^2)+0.2*u_1(1)^3+0.5*u_1(2))+0.3*y_1(2); y2(k)=(0.2*y_1(2)+u_1(2)/(1+u_1(2)^2)+0.4*u_1(2)^3+0.2*u_1(1))+0.3*y_1(3); y3(k)=(0.3*y_1(3)+u_1(3)/(1+u_1(3)^2)+0.4*u_1(3)^3+0.4*u_1(2))+0.3*y_1(1);

相关文档
相关文档 最新文档