文档库 最新最全的文档下载
当前位置:文档库 › 勾股定理的整理、拓展、归纳辅导

勾股定理的整理、拓展、归纳辅导

勾股定理的整理、拓展、归纳辅导
勾股定理的整理、拓展、归纳辅导

第八章、勾股定理 (2)

一、知识精读 (2)

(一)、勾股定理 (2)

(二). 勾股定理的应用. (2)

(三). 勾股定理的证法. (2)

(四).勾股定理的应用 (3)

(五).勾股数 (3)

(六)勾股定理的历史背景. (4)

二、中考考点分析 (4)

三、经典例题分类精讲 (6)

题型一:直接考查勾股定理 (6)

题型二:利用勾股定理测量长度 (6)

题型三:勾股定理和逆定理并用 (7)

题型四:利用勾股定理求线段长度 (7)

题型五:利用勾股定理逆定理判断垂直 (8)

题型六:旋转问题: (8)

题型七:关于翻折问题 (9)

题型八:关于勾股定理在实际中的应用: (9)

题型九:关于最短性问题 (9)

四、常见错解剖析 (10)

(一)、勾股定理只能在直角三角形中运用 (10)

(二)、运用勾股定理时要分清斜边和直角边 (10)

(三)、给定三角形要分形状运用勾股定理 (10)

(四)、不能正确区分直角边和斜边 (11)

(六)、不能仅凭模糊记忆 (11)

(七)、考虑不全造成漏解 (12)

五、发散思维点拨 (13)

(一)、方程思想 (13)

(四)、勾股定理是直角三角形的一个重要性质 (15)

六、基础练习 (16)

七、勾股定理的逆定理达标练习 (18)

八、培优辅导 (19)

(一)、例题解析 (19)

(二)、拓展练习 (27)

本章参考答案 (29)

第八章、勾股定理 一、知识精读

(一)、 勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222

a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方

(二). 勾股定理的应用.

勾股定理是直角三角形的一个重要的性质,它是把三角形由一个直角的“形”的特征转化为三边“数”的关系,因此它是数形结合的一个典范. 勾股定理能够帮助我们解决直角三角形中的边长的计算或

直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.

(三). 勾股定理的证法.

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4EFGH S S S ?+=正方形正方形ABCD

,2214()2ab b a c ?+-=,化简可证.

c

b

a

H

G F E

D

C

B

A

b

a

c

b

a

c c

a

b

c

a

b a b

c

c b

a

E D C

B

A

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为22

1

422S ab c ab c =?+=+

大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2S a b a b =+?+梯形,

2

11

2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证

(四).勾股定理的应用

①已知直角三角形的任意两边长,求第三边

在ABC ?中,90C ∠=?

,则c

,b

,a

②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题

(五).勾股数

①能够构成直角三角形的三边长的三个正整数称为勾股数,即222

a b c +=中,a ,b ,c 为

正整数时,称a ,b ,c 为一组勾股数

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:

22

1,2,1n n n -+(2,n ≥n 为正整数);

22

21,22,221n n n n n ++++(n 为正整数)

2222,2,m n mn m n -+(,m n >m ,n 为正整数)

(六)勾股定理的历史背景.

我国是最早了解勾股定理的国家之一,商朝数学家商高提出了“勾三、股四、弦五”,被记载于《周髀算经》中.在欧洲,通常把勾股定理称为毕达哥拉斯定理.

(七). 与直角三角形有关的问题.

(1)直角三角形的定义.

(2)直角三角形的性质:直角三角形中两个锐角互余;如果一个锐角等于30°,则它所对的直角边等于斜边的一半;直角三角形斜边的中线等于斜边的一半等.

(八)、中考视点

勾股定理是几何中的一条重要定理,它揭示了直角三角形三边之间的关系,中考对于这部分的考查主要是勾股定理的运用:

(1)运用勾股定理解直角三角形:已知三角形的两边求第三边.

(2)利用勾股定理证明一些具有平方的关系式.

(3)运用勾股定理在数轴上找到一些和无理数对应的点.

勾股定理的逆定理

●知识概要

勾股定理是将直角三角形的形的特征转化为数的特征,而勾股定理的逆定理是判定直角三角形的重要依据,是由数定形.

(1. )勾股定理的逆定理:如果一个三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.

(2.)如果两个命题的题设结论正好相反,我们把这样的两个命题叫作互逆命题.如果把其中的一个叫做原命题,那么另一个叫作它的逆命题.

(3.)如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.二、中考考点分析

勾股定理的逆定理是证明一个三角形是直角三角形的重要定理,中考中经常利用它来求角,证明线段的垂直关系以及确定三角形的形状.

教材解读

一、勾股定理的内容

勾股定理的内容是:如果直角三角形两直角边分别是a、b,斜边是c,那么a2+b2=c2.

因此,在运用勾股定理计算三角形的边长时,一要注意勾股定理的适用条件是在直角三角形中;二要注意表达式的灵活变形,即两条直角边的平方和等于斜边的平方.在直角三角形中,已知任意两条边长,可求出第三条边的长.

二、正确判定一个三角形是否是直角三角形

如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形就是直角三角形.

这一识别方法与勾股定理的条件和结论正好相反,即为勾股定理的逆定理.有了直角三角形的这一判别方法可以通过计算判断一个三角形是否为直角三角形.

要判断一个三角形是不是直角三角形,一是确定最大边,即斜边c;二是验证c2与a2+b2是否相等.若c2=a2+b2,则△ABC是直角三角形,且∠C=90°;若c2≠a2+b2,则△ABC不是直角三角形.

三、熟练掌握勾股定理在实际生活中的应用

勾股定理有着广泛的应用.如求线段的长、求角度的大小、说明线段的平方关系问题、求作长为的线段等等.以求作长为的线段为例,利用勾股定理作出长为…的线段,如下左图所示.用同样的方法我们可以在数轴上画出表示…的点,如下右图所示.

四、勾股定理逆定理的推导

勾股定理告诉我们,如果直角三角形的两直角边分别为a、b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.反之如果我们已知一个三角形的三条边长分别为a、b、c,边长之间满足关系a2+b2=c2,那么我们是否能够据此确定三角形的形状呢?

下面是3组三角形边长的数据以及根据各组数据画出的三角形,

(1)a=6,b=8,c=10;

(2)a=5,b=12,c=13;

(3)a=15,b=20,c=25.

我们观察上面给出的三组三角形的边长就会发现,上面三个三角形的边长都满足关系a2+b2=c2,我们再观察上面三个根据已知边长画出的三角形,我们发现三个三角形都是直角三角形.根据我们现在所掌握的这些个例的情况,我们可以先进行大胆的猜测:

如果一个三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.

我们的猜测是否正确呢?要确定我们根据几个特殊情况猜测得出的结论是否正确,我们必须要在一般情况中对其加以证明.

【例题】已知△ABC的三边BC=a、AC=b、AB=c且满足条件a2+b2=c2,试判断△ABC是否为直角三角形.

【思考与分析】根据前面学习的勾股定理,我们知道如果一个直角三角形以a、b为直角边,那么它的斜边c必满足c2=a2+b2,那么这个直角三角形的三边就与△ABC的三边分别对应相等,所以说如果△ABC是直角三角形,那么它必与以a、b为直角边的直角三角形全等.

解:我们作Rt△A′B′C′,∠C′=90°,A′C′=b,B′C′=a.

根据勾股定理:A′B′2=a2+b2.

又∵△ABC的三边a、b、c满足条件a2+b2=c2,

∴AB=c=A′B′.

又∵在△ABC中BC=a、AC=b、AB=c,

∴△ABC≌Rt△A′B′C′(SSS).

∴△ABC是直角三角形,∠C=90°.

【小结】探索勾股定理的逆定理的过程遵循了从特殊到一般这样一条认识事物的规律,首先我们是通过已掌握的几个有限个例来归纳猜想出结论,然后就其成立与否再在一般情况下进行证明.

中考考点指导

勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思

考的用两边的平方和与第三边的平方比较而得到错误的结论.

三、经典例题分类精讲

题型一:直接考查勾股定理

例1.在ABC ?中,90C ∠=?.

⑴已知6AC =,8BC =.求AB 的长

⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=

解:⑴10AB =

⑵8BC

题型二:利用勾股定理测量长度

A

设水深AC= x米,那么AD=AB=AC+CB=x+0.5

x2+1.52=(x+0.5)2

解之得x=2.

故水深为2米.

题型三:勾股定理和逆定理并用

题型四:利用勾股定理求线段长度

例题4 如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.

解析:解题之前先弄清楚折叠中的不变量。合理设元是关键。

详细解题过程如下:

解:根据题意得Rt△ADE≌Rt△AEF

∴∠AFE=90°, AF=10cm, EF=DE

设CE=x cm,

则DE=EF=CD-CE=8-x

在Rt△ABF中由勾股定理得:

AB2+BF2=AF2,即82+BF2=102,

∴BF=6cm

∴CF=BC-BF=10-6=4(cm)

在Rt△ECF中由勾股定理可得:

EF2=CE2+CF2,即(8-x) 2=x2+42

∴64-16x+x2=2+16

∴x=3(cm),即CE=3 cm

注:本题接下来还可以折痕的长度和求重叠部分的面积。

题型五:利用勾股定理逆定理判断垂直

例题5 如图5,王师傅想要检测桌子的表面AD边是否垂直与AB边和CD边,他测得AD

=80cm,AB=60cm,BD=100cm,AD边与AB边垂直吗?怎样去验证AD边与CD边是否垂直?

解析:由于实物一般比较大,长度不容易用直尺来方便测量。我们通常截取部分长度来

验证。如图4,矩形ABCD表示桌面形状,在AB上截取AM=12cm,在AD上截取AN=9cm(想想

为什么要设为这两个长度?),连结MN,测量MN的长度。

①如果MN=15,则AM2+AN2=MN2,所以AD边与AB边垂直;

②如果MN=a≠15,则92+122=81+144=225,a2≠225,即92+122≠a2,所以∠A不是直角。

利用勾股定理解决实际问题——

例题6 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要

移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?

解析:首先要弄清楚人走过去,是头先距离灯5米还是脚先距离灯5米,可想而知应该

是头先距离灯5米。转化为数学模型,如图6 所示,A点表示控制灯,BM表示人的高度,

BC∥MN,BC⊥AN当头(B点)距离A有5米时,求BC的长度。已知AN=4.5米,所以AC

=3米,由勾股定理,可计算BC=4米.即使要走到离门4米的时候灯刚好打

开。

题型六:旋转问题:

例1、如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△AC P′重合,

若AP=3,求PP ′的长。

变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=求△ABC 的边长. 分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中, 根据它们的数量关系,由勾股定理可知这是一个直角三角形.

变式2、如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°, 试探究2

2

2

BE CF EF 、、间的关系,并说明理由.

题型七:关于翻折问题

例1、如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.

变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.

题型八:关于勾股定理在实际中的应用:

例1、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方

向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?

题型九:关于最短性问题

例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问

壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,

假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?

四、常见错解剖析

(一)、勾股定理只能在直角三角形中运用

【例1】在△ABC中,AC=3,BC=4,则AB的长为().

A. 5

B. 10

C. 4

D. 大于1且小于7

常见错误: A.

错误分析:题意是已知三角形的两边求第三边,解题者错误地用直角三角形代替了任意三角形进行求解,没有注意题目中并没有给出直角三角形的前提条件,所以不能用勾股定理,只能用“两边之和大于第三边,两边之差小于第三边”判断出AB的范围.

正确答案: D.

(二)、运用勾股定理时要分清斜边和直角边

【例2】在Rt△ABC中,AC=9,BC=12,则AB2= .

常见错误:在Rt△ABC中,利用勾股定理,得AB2=AC2+BC2=225.

错误分析:没有区分要求的AB是直角边还是斜边,只是模糊地记住了勾股定理的原形,而没有注意到题目中并没有给出明确的条件,对此我们应该分情况讨论,如果AB是斜边,则利用勾股定理,得AB2=AC2+BC2=225;如果AB是直角边,因为BC>AC,所以BC为斜边,则利用勾股定理,得AB2=BC2-AC2=63.

∴AB2为225或63.

正确答案:225或63.

(三)、给定三角形要分形状运用勾股定理

【例3】在△ABC中,AB=13,AC=15,高AD=12,求△ABC的周长.

常见错误:根据勾股定理,

BD2=AB2-AD2

=132-122

=25,

CD2=AC2-AD2

=152-122

=81,

∴BD=5,CD=9,BC=BD+CD=5+9=14.

此时,△ABC的周长为

AB+BC+AC=13+14+15=42.

错误分析:△ABC可能是锐角三角形,也可能是钝角三角形.错误答案是只讨论了△ABC是锐角三角形而忽视了它还可能为钝角三角形的情况.

正确答案:应该分情况讨论,当△ABC是锐角三角形时,解法如上.

当△ABC是钝角三角形时,其图如下,

根据勾股定理,

BD2=AB2-AD2

=132-122

=25,

CD2=AC2-AD2=152-122=81,

∴BD=5,CD=9,BC=CD-BD=9-5=4.

此时,△ABC的周长为:

AB+BC+AC=13+4+15=32.

故△ABC的周长为42或32.

(四)、不能正确区分直角边和斜边

【例4】已知一个三角形的三边长a=5,b=13,c=12,这个三角形是直角三角形吗?

错解:不是.在三角形中,利用勾股定理,a2+b2=194,c2=144. a2+b2≠c2,故此三角形不是直角三角形.

错解分析:本题中虽然a2+b2≠c2,但我们不能因此就认定这个三角形不是直角三角形,我们应该首先分析一下这三个边,边长最长的应为斜边,即b为斜边,b2=169,a2+c2=25+144=169,即a2+c2=b2,故这个三角形为直角三角形.因此我们在做题时,先找到最长边,即确定斜边,可以让我们少走弯路.

正确答案:是.

【反思】勾股定理的逆定理是利用三角形的三边之间的数量关系来判定一个三角形是否为直角三角形的定理,我们在做题的时候一定要正确区分哪条为直角边哪条为斜边.

(五)、考虑不全面造成漏解

【例5】已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.

错解:∵a2c2-b2c2=a4-b4(1)

∴c2(a2-b2)=(a2+b2)(a2-b2)(2)

∴c2=a2+b2(3)∴△ABC是直角三角形.

错解分析:本题在由第(2)步到第(3)步的化简过程中没有考虑到a2-b2=0的情况就直接在等式两边除以一个可能为0的数,从而导致了错误.

正解:∵a2c2-b2c2=a4-b4

∴c2(a2-b2)=(a2+b2)(a2-b2)

(1)当a2-b2≠0时,化简后得c2=a2+b2

∴△ABC是直角三角形.

(2)当a2-b2=0时,a=b

∴△ABC是等腰三角形.

【反思】本题结合因式分解的知识,综合考查了提公因式法、公式分解法以及勾股定理的逆定理,同时还考查了等式的性质2:在等式两边不能同时除以一个可能为0的数,这往往是我们最容易忽视的地方,应引起大家的注意.

(六)、不能仅凭模糊记忆

【例6】在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且(a+b)(a-b)=c2,则()

A.∠A为直角

B.∠C为直角

C.∠B为直角

D.不是直角三角形

错解:选B

错解分析:在解这道题的时候导致错误的原因在于对已知条件粗略地分析得出存在平方关系之后就习惯性地认为边c的对角∠C一定表示直角.该题中的条件应转化为a2-b2=c2,即a2=b2+c2,应根据这一关系进行判断.

正解:∵a2-b2=c2,∴a2=b2+c2.

∴a边所对的角∠A为直角. 故选A.

【反思】我们在判断直角三角形哪一个角是直角的时候不能因为思维定势看到数量的平方关系就得到某个角是直角的结论.

(七)、考虑不全造成漏解

【例7】已知直角三角形的两边长分别为3、4,求第三边长.

错解:第三边长为

错解剖析:因习惯了“勾三股四弦五”的说法,即意味着两直角边为3和4时,斜边长为5.但这一理解的前提是3、4为直角边.而本题中并未加以任何说明,因而所求的第三边可能为斜边,也可能为直角边.

正解:(1)当两直角边为3和4时,第三边长为

(2)当斜边为4,一直角边为3时,第三边长为.

(八)、理解流于形式,造成思维定势

【例8】已知三角形的三边为,c=1,这个三角形是直角三角形吗?

错解:∵a2=,b2=,c2=1,而a2+b2≠c2,

∴该三角形不是直角三角形.

错解剖析:虽然a2+b2≠c2,但不能急于否定这个三角形就不是直角三角形,因为我们发现有a2+c2=b2,所以这个三角形是直角三角形.

正解:这个三角形是直角三角形.

(九)、混淆勾股定理与逆定理

【例9】在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?

错解:甲船航行的距离为BM=8×2=16(海里),乙船航行的距离为BP=15×2=30(海里).

∵=34 (海里)且MP=34(海里)

∴△MBP为直角三角形.

∴∠MBP=90°.

∴乙船是沿着南偏东30°方向航行.

错解剖析:虽然最终判断的结果也是对的,但忽略了对使用勾股定理的前提条件的证明,犯了运用上的错误.

正解:甲船航行的距离为BM=8×2=16(海里),乙船航行的距离为BP=15×2=30(海里). ∵162+302=1156,342=1156,

∴BM2+BP 2=MP2.

∴△MBP为直角三角形.

∴∠MBP=90°.

∴乙船是沿着南偏东30°的方向航行的.

五、发散思维点拨

(一)、方程思想

【例1】如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,那么△AED 的面积为______.

【分析与解】由△ABF的面积为30cm2,

可得BF=12cm.

则在Rt△ABF中,AB=5cm,BF=12cm,

根据勾股定理可知AF=13cm.

再由折叠的性质可知AD=AF=13cm.

所以FC=1cm.

可设DE=EF=x,则EC=5-x.

在Rt△EFC中,可得:

12+(5-x)2=x2.

解这个方程,得x=.

所以S△AED=××13=16.9(cm2).

(2)、化归思想

【例2】如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短路径长为()

【分析与解】求几何体表面的最短距离,可联系我们学过的圆柱体的侧面展开图,化“曲面”为“平面”,再寻找解题的途径.

如上右图,可得展开图中的A B′的长为4π÷2=2π,B′S′的长为4÷2=2.

在Rt△AB′S′中,根据勾股定理,

得AS′=.

所以动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短路径长为

.故选A.

(三)、分类讨论思想

【例3】在△ABC中,AB=15,AC=20,AD是BC边上的高,AD=12,试求出BC边的长.

【分析与解】此题没有给出图示,又由于三角形的高可能在三角形内部也可能在三角形外部,所以其高的位置应分两种情况来求.如下图所示,△ABC有两种情况.

当BC边上的高AD在△ABC的内部时,如图1.

由勾股定理,分别在Rt△ABD和Rt△ADC中,得BD2=AB2-AD2=152-122=81,

则BD=9.

CD2=AC2-AD2=202-122=256,

则CD=16.

所以BC=9+16=25.

当BC边上的高AD在△ABC的外部时,如图2.

同样由勾股定理可得BD=9,CD=16.

这时BC=16-9=7.

综上可得BC边的长为25或7.

【例4】如图所示,在△ABC中,AB=15,BC=14,AC=13.求△ABC的面积.

【思考与分析】要求△ABC的面积,现在已经知道三边的长,我们只要再知道一边上的高就可以了,这就需要作一边的垂线.构造直角三角形ABD和直角三角形ACD,然后利用勾股定理求出高AD,进而求出△ABC的面积.

解法一:过点A作AD⊥BC于D,

则∠ADB=∠ADC=90°.

设DC=x,则BD=14-x.

在Rt△ABD中,由勾股定理得:AD2=AB2-BD2=152-(14-x)2.①在Rt△ADC中,由勾股定理得:AD2=132-x2.②由①=②,解得x=5.

所以AD2=132-x2=169-25=144,故AD=12.

所以S△ABC=BC·AD=×12×14=84.

解法二:设AD=x,则在Rt△ABD中,由勾股定理得:BD2=AB2-AD2=152-x2.

在Rt△ADC中,由勾股定理得:CD2=132-x2,

再根据题意,知BC=BD+DC,

(四)、勾股定理是直角三角形的一个重要性质

这个定理反映了直角三角形三条边之间的关系,它是把三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.下面就让我们通过一道例题来体会一下.

【例5】已知:在△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则△ABC是等腰三角形吗?

【思考与分析】先画出图形,如图,求出BD=5cm,利用直角三角形的判定方法,说明AD⊥BC,然后在△ADC中,利用勾股定理求出AC,从而得到AB=AC.

解:由AD是BC边上的中线,

得BD=CD=BC=×10=5(cm).(由形到数)

在△ABD中,有AD2+DB2=122+52=132 =AB2,

所以△ABD是直角三角形,

其中∠ADB=90°,

∠ADC=90°. (由数到形)

在Rt△ADC中,AC2=AD2+DC2=122+52=169,

又因为AC>0,所以AC=13(cm).(由形到数)

即AB=AC. 故△ABC是等腰三角形.(由数到形)

【反思】此题综合运用了勾股定理及直角三角形的判定方法,充分体现了由“形”到“数”,再由“数”到“形”的数形结合的思想,从中你可以体会到数形结合的奥妙.

【例6】小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()

A. 2m

B. 2.5m

C. 2.25m

D. 3m

【思考与分析】为了顺利解决此题,我们首先要根据题中叙述的条件画出草图如上,则有BD=1.5m,AF=CE=0.5m,AD=BF=BE=水深,在Rt△ABD中,设河水的深度BF=xm,则有AB=(0.5+x)m,AD=xm,BD=1.5m,根据勾股定理,列方程(0.5+x)2=1.52+x2,解之即可.

解:如上图所示,在Rt△ABD中,设河水的深度BF=xm,则有AB=(0.5+x)m,AD=xm,BD=1.5m.根据勾股定理,列方程:(0.5+x)2=1.52+x2,解得x=2. 所以河水的深度为2m.故答案选A.

【小结】本题是数学问题在生活中的实际应用,我们首先要通过分析,画出草图,把实际问题转化成数学问题,运用我们所学的数学知识来求解.这种通过分析题意,画出图形,将实际问题抽象成纯数学问题来求

解的数学思想方法,我们一般称为建模的数学思想方法.本题在画出草图,把题意抽象成纯数学问题后,实际上就是建立起“解直角三角形的数学模型(如上图)”,在此基础上,借助勾股定理来进行求解.解这种实际应用题的一般策略为:

另外,在此题中还运用了方程的数学思想,勾股定理的数学表达式是一个含有平方关系的等式,求线段的长度时,可通过设未知数,建立方程进行求解,运用方程思想,有时可大大简化求解过程.

六、基础练习

一.填空题,

1、 在Rt △ABC 中∠C=0

90 则 (1)a=5 b=12 则 c=______

(2) b=8 c=17 则 a=______

2、 如果梯形低端离建筑物9m 那么15m 长的梯形可达到建筑物的高度是________

3、 直角三角形的两直角边长分别为3m 4m 则斜边长为________ 斜边上的高为_______

4、 在Rt △ABC 中∠C=090 若 a:b=3:4 c=20 则a=________ b=_______

5、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高______米

6、如图所示,要从电线杆高4m 的点

处向地面斜拉一根长5m 的缆绳 固 定点A 到电线杆底部B 的距离AB=_____

7、一个直角三角形的三边长是不大于

10的三个连续的偶数,则它的周长是__________ 8、 一个三角形的三边长分别是 12

-m 、 2m 、 12

+m 则三角形中最大的角是________ 9、 若三角形的三边a b c 满足2

2

2

c a b -= 则边______所对的角是直角

10、 在三角形ABC 中 若三边分别是 9 、 12 、 15 则以两个这样的三角形所拼成的矩形面积为_________ 二 选择题

1、 下列各组数为勾股数的是( )

A 7 、12、 13

B 3、 4 、7

C 8、 15、 17

D 1.5 、2 、2.5 2、下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( )

A

A 、a=1.5, b=2, c=3

B 、a=7, b=24, c=25

C 、a=6, b=8, c=10

D 、a=3, b=4, c=5 3、若线段a ,b ,c 组成Rt △,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7

4、如果Rt △ABC 两直角边的比为5∶12,则斜边上的高与斜边的比为( )

A 、60∶13

B 、5∶12

C 、12∶13

D 、60∶169

5、如果Rt △的两直角边长分别为n 2

-1、2n (n>1),那么它的斜边长是( )

A 、2n

B 、n+1

C 、n 2-1

D 、n 2

+1

6、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )

A 、24cm 2

B 、36cm 2

C 、48cm 2

D 、60cm 2

7、 在三角形ABC 中 AB=15 AC=13 高AD=12 则三角形ABC 的周长为( ) A 42 B 32 C 42或 32 D 37 或 33 8、 若直角三角形中 有两边长是12和5 则第三边的平方为( ) A 169 B 169或119 C 13或15 D 15

9、 直角三角形有一直角边长为11 另外两条边长是两个连续的自然数 则周长是( ) A 132 B 121 C 120 D 123[来源:https://www.wendangku.net/doc/484395228.html,] 10、 三角形ABC 的三边分别为a=1.2cm b=1.6cm c=2cm 则∠C 是( ) A 锐角 B 直角 C 钝角 D 以上三种都有可能 三 解答题

1、 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4阴影部分的面积是______.

2、 某菜农修建一个塑料大棚(如图),若棚宽a =4m ,高b =3m ,长d =35m ,求覆盖在顶上的塑料薄膜的面积.

3、 如图,正方形ACDE 的面积为25cm ,测量出

AB =12cm,BC =13cm,问E 、A 、B 三点在一条直线上吗?为什么?

4、 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。

5、 如图,要从电线杆离地面5m 处向地面拉一条长7m 的电缆,求地面电缆固定点A 到电线杆底部B 的距离.

A D E

B C

A B C D

a

b c d

B

A B

C

6、 如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km

七、勾股定理的逆定理达标练习

(一)、基础·巩固

1.满足下列条件的三角形中,不是直角三角形的是( )

A.三内角之比为1∶2∶3

B.三边长的平方之比为1∶2∶3

C.三边长之比为3∶4∶5

D.三内角之比为3∶4∶5

2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).

图18-2-4 图18-2-5 图18-2-6

3.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.

4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=

4

1

AD ,试判断△EFC 的形状. 5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?

图18-2-7 图18-2-8

6.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形. (二)、综合·应用

7.已知a 、b 、c 是Rt △ABC 的三边长,△A 1B 1C 1的三边长分别是2a 、2b 、2c ,那么△A 1B 1C 1

是直角三角形吗?为什么?

8.已知:如图18-2-8,在△ABC 中,CD 是AB 边上的高,且CD 2=AD·BD.

求证:△ABC是直角三角

9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,

4),△OAB是直角三角形吗?借助于网格,证明你的结论.

图18-2-9 10.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC 的形状.

解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC 是直角三角形.

问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______;

②错误的原因是______________;③本题的正确结论是__________.

11.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.

12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.

求:四边形ABCD的面积.

图18-2-10 八、培优辅导

(一)、例题解析

【例1】等腰△ABC中AB=AC,D为BC上任一点,求证:AB2-AD2=BD·DC【思考与分析】本题要证明的等式中含有线段的平方,故可以考虑运用勾股定理,但我们知道运用勾股定理的先决条件是具有直角三角形,那么就需要我们首先构造直角三角形.根据等腰三角形的性质,我们作AP⊥BC,则BP=PC,那么BD·DC=(BP+PD)(PC-PD)=BP2-PD2,又因为Rt△APB和Rt△APD有公共边AP,由勾股定理得AB2-BP2=AD2-PD2,所以AB2-AD2=BP2-PD2=BD·DC.

证明:(1)若D不是BC的中点时,作AP⊥BC于点P,如图1.

∵等腰△ABC中AB=AC,

∴BP=PC.

在Rt△APB和Rt△APD中,由勾股定理得:

两式相减得:

AB2-AD2=BP2-PD2=(BP+PD)(BP-PD)=(BP+PD)(PC-PD)=BD·DC,

即AB2-AD2=BD·DC.

(2)若D是BC的中点,如图2.

∵等腰△ABC中AB=AC,

∴AD⊥BC,BD=DC.

在Rt△ADB中AB2=AD2+BD2,

∴AB2-AD2=BD2=BD·BD=BD·DC,

即AB2-AD2=BD·DC.

【例2】如图3,在△ABC中,若AB>AC,AE为BC边上的中线,AF为BC边上的高.

求证:AB2-AC2=2BC·EF.

【思考与分析】等式左边=AB2-AC2,根据题中给出的条件AF为BC边上的高,而Rt△ABF和Rt△ACF中包含这三边,我们可以得到AB2-BF2=AF2,AC2-CF2=AF2这两个等式,这时我们就可以发现两式相减得到AB2-AC2=BF2-CF2=(BF+CF)(BF-CF),再根据AE为BC边上的中线,继续化简可证得结论.

证明:∵AF为BC边上的高,

∴根据勾股定理有AB2-BF2=AF2=AC2-CF2,

∴AB2-AC2=BF2-CF2=(BF+CF)(BF-CF)

=BC·(BF-CF)

又∵AE为BC边上的中线,

∴BE=EC

∴BF-CF=(BE+EF)-(EC-EF)

=2EF

∴AB2-AC2=2BC·EF.

【例3】如图所示,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数.

八年级数学勾股定理拓展提高(勾股定理)拔高练习

八年级数学勾股定理拓展提高(勾股定理)拔高练习 一、填空题(共5道,每道4分) 1.教材1题:△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是_______. 2.教材3题:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______. 3题图5题图 3.教材4题:△ABC周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是_____. 4.教材5题:将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____. 5.教材10题:矩形ABCD中,BC=4,DC=3,将该矩形沿对角线BD折叠,使点C落在点F处,求EF的长_____. 二、解答题(共5道,每道10分) 1.教材9题:如图,有一个直角三角形纸片,两直角边AC=8cm,BC=6cm,现将直角边BC沿直线BD折叠,使它落在斜边AB上的点C′处,求CD的长以及折痕BD的平方 1题图2题图 2.教材8题:如图,已知DE=m,BC=n,∠EBC与∠DCB互余,求+的值. 3.教材12题:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,求CN和AM的长. 3题图4题图5题图 4.教材14题:如图,某隧道的截面是一个半径为3.6米的半圆形,一辆高2.4米,宽3米的卡车能通过该隧道吗? 5.教材16题:如图,某沿海城市A接到台风警报,在该市正南方向150km的B处有一台风中心正以20km/h的速度向BC方向移动,已知城市A到BC的距离AD=90km(1)台风中心经过多长时间从B点移到D点?(2)如果在距台风中心30km的圆形区域内都有受到台风破坏的危险,为让D点的游人脱离危险,游人必顺在接到台风警报后的几小时内撤离(撤离速度为6km/h)? 三、证明题(共3道,每道10分) 1.教材2题:如图,在正方形ABCD中,E是DC的中点,F为BC上的一点且BC=4CF,试说明△AEF是直角三角形.

初二数学勾股定理测试题及答案

勾股定理测试题 体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。 一、选择题 | 1.下列各数组中,不能作为直角三角形三边长的是( ) A. 9,12,15 B. 7,24,25 C. 6,8,10 D. 3,5,7 2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A. 可能是锐角三角形 B. 不可能是直角三角形 C. 仍然是直角三角形 D. 可能是钝角三角形 ! 3.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m) ( ) 4.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( ) A. 12cm B. C. D. ~ 二、填空题 5.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_________ . 6.直角三角形两条直角边的长分别为5、12,则斜边上的高为. < 7.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距. 8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为. 9.以直角三角形的三边为边向形外作正方形P、Q、K,若SP=4,SQ=9,则Sk= . 三、解答题 @ 10.假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米

为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE 为边长的正方形的面积. / 12.已知:如图13,△ABC中,AB=10,BC=9,AC=17. 求BC边上的高. 13.拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,· 如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形 《 的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用 关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方>

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理练习题及答案

一、 选择题 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是 ( ) A 、2abc 2 D 、2ab ≤c 2 2、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 3、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个 4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、2 5、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定 6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或360 7、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、 4.5 8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。 10.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。 二.解答题 1.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险? A B D C 第7题图 A C D B E 第8题图 A B C D 第1题图 A D B C B ′ A ′ C ′ D ′ 第9题图

勾股定理拓展与拔高

勾股定理拓展与拔尖 二. 知识点回顾 1、 勾股定理的应用: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之 一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、 如何判定一个三角形是直角三角形 (1) 先确定最大边(如c) (2) 验证2c 与22b a +是否具有相等关系 (3) 若2c =22b a +,则△ABC 是以∠C为直角的直角三角形;若2c ≠22b a + 则△AB C不是直角三角形。 3. 勾股数: 满足22b a +=2c 的三个正整数,称为勾股数 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41

三.典型题剖析:针对训练、延伸训练 考点一 证明三角形是直角三角形 1、 在正方形AB CD 中,F 为DC 的中点,E 为BC 上一点,且EC=41 BC,求证:DEFA=90°。 针对训练:1、已知:在△ABC 中,∠A 、∠B 、∠C的对边分别是a 、b、c,满足a 2+b 2+c 2+338=10a +24b+26c.试判断△A BC 的形状. 考点二 运用勾股定理的逆定理进行计算 例、如图,等腰△A BC中,底边BC =20,D 为AB 上一点,CD =16,BD =12, 求△AB C的周长. 针对训练:1、.已知:如图,四边形ABCD ,AD ∥BC ,AB =4,BC=6,CD=5,AD=3. 求:四边形A BCD 的面积. 考点三 勾股定理的折叠问题 例、如图,在矩形AB CD 中,AB=3,BC=5,在CD 上任取一点E ,连接B E,将△BC E沿BE 折叠,使点E 恰好落在AD 边上的点F处,则CE 的长为 . A B D C F E

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理测试题(含答案)

18.2 勾股定理的逆定理 达标训练 一、基础·巩固 1.满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值). 图18-2-4 图18-2-5 图18-2-6 3.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________. 4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF= 4 1AD ,试判断△EFC 的形状. 5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗? 图18-2-7 6.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.

二、综合·应用 7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么? 8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD. 求证:△ABC是直角三角形. 图18-2-8 9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论. 图18-2-9 10.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC 的形状. 解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC 是直角三角形. 问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______; ②错误的原因是______________ ; ③本题的正确结论是_________ _.

勾股定理拓展与拔高知识讲解

勾股定理拓展与拔尖 二. 知识点回顾 1、 勾股定理的应用: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2c 与22b a +是否具有相等关系 (3) 若2c =22b a +,则△ABC 是以∠C 为直角的直角三角形;若2c ≠22b a + 则△ABC 不是直角三角形。 3. 勾股数: 满足22b a +=2c 的三个正整数,称为勾股数 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41 三.典型题剖析:针对训练、延伸训练 考点一 证明三角形是直角三角形 1、 在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC ,求证:∠EFA=90?. 针对训练:1、已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状. A B D C F E

考点二运用勾股定理的逆定理进行计算 例、如图,等腰△ABC中,底边BC=20,D为AB上一点,CD=16,BD=12, 求△ABC的周长。 针对训练:1、.已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3. 求:四边形ABCD的面积. 考点三勾股定理的折叠问题 例、如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点E恰好落在AD 边上的点F处,则CE的长为. 针对训练:1、如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1 处,BC1交AD于点E,则线段DE的长为() A.3 B.C.5 D.

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

————————————————————————————————作者:————————————————————————————————日期: ?

勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

勾股定理

尊敬的各位评委、老师,您们好。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。 一、教材分析: (一)教材的地位与作用 从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。 从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁; 勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。 根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。 (二)重点与难点 为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法发现勾股定理确定为本节课的难点,我将引导学生动手实验突

出重点,合作交流突破难点。 二、教法与学法分析 教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。 学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。 三、教学过程 我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。 首先,情境导入 给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。 第二步追溯历史解密真相 勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。 从上面低起点的问题入手,有利于学生参与探索。学生很容

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

勾股定理练习题(含答案)

勾股定理练习题 一、基础达标: 1. 下列说法正确的是( ) A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2; B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2; C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2; D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( ) A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( ) A 、2k B 、k+1 C 、k 2-1 D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( ) (A 2d (B d (C )2d (D )d 8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :7 9.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( ) A .17 B.3 C.17或3 D.以上都不对 10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( ) A :底与边不相等的等腰三角形 B :等边三角形 C :钝角三角形 D :直角三角形 11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

勾股定理拓展提高题

3、如图2,直线I 上有三个正方形 a, b, c ,若a, c 的面积分别为5和11,则b 的面积 4、如图3,数轴上的点 A 所表示的数为x ,则X 2 —10的立方根为 ___________ 5、如图4, 一只蚂蚁沿棱长为 a 的正方体表面从顶点 A 爬到顶点B,则它走过的最短路程为 6、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方 图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图 5所 示).如果大正方形的面积是 13,小正方形的面积是1,直角三角形的较短直角边为 a,较 长直角边为b ,那么(a + b f 的值为( ) 7、已知△ ABC 的三边长满足 a ? b = 10,ab = 18 , c = 8,则为 ______ 三角形 勾股定理拓展提高题 1、如图,长方体的底面边长分别为 1cm 和3cm,咼为6cm ①如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点 B, 那么所用细线最短需要 ___________ cm ②如果从点A 开始经过4个侧面缠绕3圈到达点B, 那么所用细线最短需要 ___________ cm 2、如图1,每个小正方形的边长为 1, A B C 是小正方形的顶点,则/ ABQ 的度数 图1 图 2 (A ) 13 (B ) 19 (C ) 25 (D ) 169

8、如图,铁路上A, B 两点相距25km, C,D 为两村庄,DAIAB 于A, CB 丄AB 于B,已知DA=15km CB=10km 现在要在铁路 AB 上建一个土特产品收购站 E ,使得C, D 两村到E 站的距离相 等,则E 站应建在离 A 站多少km 处? 9、已知:正方形 ABCD 的边长为1,正方形 ABCD 的边长为1,正方形 EFGH 内接于 ABCD 2 AE =a ,AF=b,且 S 正方形 EFGH 「。求: AB=AC 点D 是斜边BC 的中点,点E 、F 分别为AB AC 边上的点, 且 DEI DF 。 (1)说明:BE 2 ? CF 2 二 EF 2 ⑵若BE=12,CF=5,试求 DEF 的面积。 勾股定律逆定理应用 考点一 证明三角形是直角三角形 例1、已知:如图,在△ ABC 中,CD 是 AB 边上的高,且 CD=AD ?BD. 求证:△ ABC 是直角三角形. b - a 的值。 10、在等腰直角三角形中 ,

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.wendangku.net/doc/484395228.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.wendangku.net/doc/484395228.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

人教版八年级下册数学勾股定理的整理、拓展、归纳辅导

第十七章、勾股定理 一、知识精读 (一)、 勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 (二). 勾股定理的应用. 勾股定理是直角三角形的一个重要的性质,它是把三角形由一个直角的“形”的特征转化为三边“数”的关系,因此它是数形结合的一个典范. 勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证 明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. (三). 勾股定理的证法. 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2ab b a c ?+-=,化简可证.

c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为22 1422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,,化简得证 (四).勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b ,a = ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 (五).勾股数 ①能够构成直角三角形的三边长的三正整数称为勾股数,即222a b c +=中,a , b , c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示组勾股数:

勾股定理全章练习题含答案

勾股定理 课堂学习检测 一、填空题 1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______. 2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边. (1)若a=5,b=12,则c=______; (2)若c=41,a=40,则b=______; (3)若∠A=30°,a=1,则c=______,b=______; (4)若∠A=45°,a=1,则b=______,c=______. 3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______. 4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______. 二、选择题 6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ). (A)8 (B)4 (C)6 (D)无法计算 7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ). 2 (A)4 (B)6 (C)8 (D)10 8.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ). (A)150cm2 (B)200cm2

(C)225cm2(D)无法计算 三、解答题 9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c. (1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积; (3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c; (5)若a、b、c为连续整数,求a+b+c. 综合、运用、诊断 一、选择题 10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ). (A)1个(B)2个 (C)3个(D)4个 二、填空题 11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______. 12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______. 三、解答题 13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC 的长.

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

相关文档
相关文档 最新文档