文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯-量子点复合物的制备以及灵敏电致化学发光免疫传感

石墨烯-量子点复合物的制备以及灵敏电致化学发光免疫传感

石墨烯-量子点复合物的制备以及灵敏电致化学发光免疫传感
石墨烯-量子点复合物的制备以及灵敏电致化学发光免疫传感

石墨烯-量子点复合物的制备以及灵敏电致化学发光免疫传感

李玲玲,刘坤平,杨国海,张剑荣,朱俊杰,*

生命分析化学教育部重点实验室,南京大学化学化工学院,南京,210093

E-mail: jjzhu@https://www.wendangku.net/doc/434456048.html,

自从安德烈·杰姆和克斯特亚·诺沃塞洛夫于2004年发现了石墨烯以来,引起全世界科学家的研究热潮。石墨烯是人类已知强度最高、韧性最好、重量最轻、透光率最高、导电性最佳的材料。在催化、磁性、和光电等方面有很好的应用。关于石墨烯和量子点的复合材料也有报道,但多集中于研究该复合材料的荧光和光电性质,对于其电致化学发光(ECL)性能的研究和应用鲜有报道。

我们利用聚二烯丙基二甲基氯化铵(PDDA)功能化的石墨烯与巯基乙酸修饰的CdSe量子之间的静电吸附作用,制备了石墨烯-量子点复合材料(P-GR-CdSe composites)。通过层层组装方法,利用金纳米颗粒(GNPs)的信号放大效应,构建了基于石墨烯-量子点的ECL生物传感器,用于人免疫球蛋白的灵敏检测。石墨烯-量子点复合材料的制备及ECL传感器的构建过程如下图所示:

Figure 1. (A) Schematic representation of preparation procedure of P-GR-CdSe composites. (B) Schematic illustration of the stepwise immunosensor fabrication process.

从HRTEM图片可以看出,所得石墨烯-量子点复合材料具有较好的分散性,量子点紧密修饰在石墨烯片上。

Figure 2. HRTEM images of (A) P-GR, (B) P-GR-CdSe composites.

我们研究了该复合材料的电化学性质,发现该材料就有良好的导电性及大的活性面积,这些特性使得该合材料具有较强的ECL。电极的ECL强度与电极表面修饰的抗原浓度在一定范围内成线性关系。线性范围为0.02-2000 pg mL-1,检测限是0.005 pg mL-1。

感谢国家自然基金会(20635020,50972058)以及科技部973项目(2011CB933502)

的支持。

主要参考文献:

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.

V. Grigorieva, A. A. Firsov, Scienc2004, 306, 666.

2. A. N. Cao, Z. Liu, S. S. Chu, M. H. Wu, Z. M. Ye, Z. W. Cai, Y. L. Chang, S. F. Wang, Q. H. Gong, Y. F. Liu, Adv. Mater.2010, 22, 10

3.

3. C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Carbon 2009, 47, 205

4.

4. K. P. Liu, J. J. Zhang, G. H. Yang, C. M. Wang, J. J. Zhu, Electrochem. Commun. 2010, 12, 402.

5. L. L. Li, K. P. Liu, G. H. Yang, C. M. Wang, J. J. Zhu,Adv. Funct. Mater.2011, 21, 869-878

Fabrication of Graphene-Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing Ling-Ling Li , Kun-Ping Liu , Guo-Hai Yang, Jian-Rong Zhang , and Jun-Jie Zhu * Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and

Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China

E-mail: jjzhu@https://www.wendangku.net/doc/434456048.html,

A novel strategy is reported for the fabrication of Poly (diallyldimethylammonium chloride) (PDDA) protected graphene-CdSe (P-GR-CdSe) composites. And an advanced electrogenerated chemiluminescence (ECL) immunosensor is proposed for the sensitive detection of human IgG (HIgG) by using the as-prepared P-GR-CdSe composites. The ECL immunosensor has an extremely sensitive response to HIgG in a linear range of 0.02-2000 pg mL-1 with a detection limit of 0.005 pg mL-1.

石墨烯-量子点复合物的制备以及灵敏电致化学发光免疫传感

作者:李玲玲, 刘坤平, 杨国海, 张剑荣, 朱俊杰

作者单位:生命分析化学教育部重点实验室,南京大学化学化工学院,南京,210093本文链接:https://www.wendangku.net/doc/434456048.html,/Conference_7489163.aspx

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯量子点调研报告

石墨烯调研报告(石墨烯量子点) 零维的石墨烯量子点(grapheme quantum dots, GQDs),由于其尺寸在10nm以下,同二维的石墨烯纳米片和一维的石墨烯纳米带相比,表现出更强的量子限域效应和边界效应,因此,在许多领域如太阳能光电器件,生物医药,发光二极管和传感器等有着更加诱人的应用前景。 GQDs的制备 GQDs具有特殊的结构和独特的光学性质,即有量子点的光学性质又有氧化石墨烯特殊的结构特征。GQDs的粒径大多在10 nm左右,厚度只有0.5到1.0 nm,表面含有羟基、羰基、羧基基团,使得其具有良好的水溶性。 GQDs的制备方法有自上而下法(top-down)与自下而上法(bottom-up)两种。top-down 法指将大片的石墨烯母体氧化切割成尺寸较小的石墨烯纳米片,经进一步剪切成GODs,主要有水热法、电化学法和化学剥离碳纤维法。 水热法是制备GQDs最为常见的一种方法,先将氧化石墨烯在氮气保护下热还原为GNSs,接着将GNSs置于混酸(混酸体积比VH2SO4/VHNO3 =1:3)中超声氧化,再将氧化的GNSs置于高压反应釜中200℃热切割。反应机理如图3所示,Pan等采用该方法化学切割石墨烯制备GQDs,其径主要分布在5-14 nm,并发现量子点在紫外区有较强光学吸收,吸收峰尾部扩展到可见区。光致发光光谱一般是宽峰并且与激发波长有关,当激发波长从300到407 nm变化,发射峰向长波方向移动,激发波长为60nm时,量子点发出明亮的蓝色光,此时发射峰最强。 图3. 水热法制备GQDs反应机理 Fig. 3 mechanism for the preparation of GQDs by hydrothermal method Jin等采用两步法,先用水热法制备出GQDs,再将聚乙二醇二胺修饰到GQDs 上。该法制备的胺功能化的石墨烯量子点可通过功能化物的迁移效应有效地调节石墨烯量子点的光致发光性能。

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

石墨烯的十大用途

石墨烯是世界上已经发现的最薄、最坚硬的物质。美国一位工程师杰弗雷用形象地比喻了石墨烯的强度: 将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,如想用一支铅笔戳穿它,需要一头大象站在铅笔上。 这么薄而又坚硬的石墨烯有什么用途呢? 1、制造下一代超级计算机。石墨烯是目前已知导电性能最好的材料,这种特性尤其适合于高频电路,石墨烯将是硅的替代品,可用来生产未来的超级计算机,使电脑运行速度更快、能耗降低。 2、制造“太空电梯”的缆线。科学家幻想将来太空卫星要用缆线与地面联接起来,那时卫星就成了有线的风筝,科学家现在终于找到了可以制造这种太空缆线的特殊材料,这就是石墨烯。 3、可作为液晶显示材料。石墨烯是一种“透明”的导体,可以用来替代现在的液晶显示材料,用于生产下一代电脑、电视、手机的显示屏。 4、制造新一代太阳能电池。石墨烯透明导电膜对于包括中远红外线在内的所有红外线的高透明性,是转换效率非常高的新一代太阳能电池最理想材料。 5、制造光子传感器。去年10月,IBM的一个研究小组首次展示了他们研制的石墨烯光电探测器。 6、制造医用消毒品和食品包装。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用石墨烯的这一特性可以制作绷带,食品包装,也可生产抗菌服装、床上用品等。 7、创制“新型超强材料”。石墨烯与塑料复合,可以凭借韧性,兼具超薄、超柔和超轻特性,是下一代新型塑料。 8、石墨烯适合制作透明触摸屏、透光板。

9、制造晶体管集成电路。石墨烯可取代硅成为下一代超高频率晶体管的基础材料,而广泛应用于高性能集成电路和新型纳米电子器件中。 10、制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,具有军事用途。

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

石墨烯量子点的制备方法

石墨烯量子点的制备、表征与应用研究 氧化石墨(GO)的制备 本文采用改进的Hummers法对天然鳞片石墨进行氧化处理制备氧化石墨(GO),[20, 21] 具体如下:在干燥的三颈烧瓶中加入46 mL 98%浓硫酸,低温冷却至0-4℃。强力搅拌下加入2 g天然鳞片石墨和1 g硝酸钠,且控制水浴温度至4℃以下1小时。随后分几次缓慢加入6 g高锰酸钾,继续搅拌反应1 h,溶液呈墨绿色,然后将锥形瓶置于35℃的恒温水浴中,继续搅拌反应2 h,反应结束后搅拌下加入100 mL二次蒸馏水,控制温度在90℃继续搅拌1 h,用150 mL二次蒸馏水稀释反应液,再加入10 mL 30%双氧水,搅拌至溶液呈金黄色。趁热抽滤,用5%盐酸和去离子水充分洗涤棕黄色沉淀物至pH值≈7。将棕黄色沉淀物放置在60℃的烘箱中干燥12 h,得氧化石墨烯固体,保存备用。 还原石墨烯的制备 化学还原石墨烯是用水合肼还原氧化石墨烯制得。称取4.2.2得到的氧化石墨烯50 mg置于100 mL圆底烧瓶中,加入二次蒸馏水至100 mL,超声约0.5 h 使其完全溶解。取50 mL氧化石墨烯分散液于250 mL烧杯中,然后加入50 μL 35%水合肼溶液和350 μL浓氨水,混合均匀,剧烈搅拌几分钟。置于95℃水浴中反应1 h,溶液慢慢由棕褐色变为黑色。待溶液冷却至室温时,用0.22 μm的滤膜进行抽滤,将滤得的沉淀物于60℃干燥12 h,即得到所需的还原石墨烯薄膜。 石墨烯量子点(GQDs)的制备 石墨烯量子点(GQDs)的电化学制备是在0.01 mol L-1磷酸盐缓冲溶液(PBS)中进行的。用滴管向缓冲溶液中滴加两滴4 mg/mL巯基丙氨酸溶液作为分散剂,在±0.3v电压内以0.5 v s-1的扫描速率进行循环伏安(CV)扫描。由以上制得的石墨烯薄膜(5 mm×10 mm)作工作电极,Pt丝作辅助电极,甘汞电极作参比电极。过程中有石墨烯粒子从薄膜上剥落进入溶液中,溶液由无色变为黄色。将黄色溶液进一步用透析袋透析(透析袋截留分子量:3000道尔顿,袋外初始水体积为500 mL),每天换两次水,透析三天,得到石墨烯量子点水溶液。

电化学法制备石墨烯及其导电特性

Vol.33高等学校化学学报No.82012年8月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 1804~1808电化学法制备石墨烯及其导电特性 朱龙秀,李英芝,赵 昕,张清华 (东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海200051) 摘要 采用电化学方法将石墨层电解剥离,得到分散于电解质溶液的结构较为完整的石墨烯.用透射电子显微镜和拉曼光谱分析了石墨烯的形貌和结构,利用四探针法测定了石墨烯导电特性.实验数据和理论拟合结果表明,当100K

材料界一哥—— 石墨烯(五大应用领域)

材料界“网红一哥”——石墨烯 5大应用领域,产业浪潮开启看点:应用领域不断拓展,石墨烯大规模产业化即将开始。 石墨烯属于二维碳纳米材料,具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。石墨烯的大规模商业应用方向主要分为粉体和薄膜,其中石墨烯粉体目前主要用于新能源、防腐涂料等领域,石墨烯薄膜主要应用于柔性显示和传感器等领域,其中来自新能源的需求超过 70%。 全球石墨烯行业市场规模呈稳步增长态势。预计到 2020 年末,全球和国内石墨烯行业市场规模分别为 95 亿美元和 200 亿元,中国石墨烯市场规模约占全球石墨烯总市场规模的 30%,并有逐年提高的趋势。 本期的智能内参,我们推荐国信证券的研究报告,揭秘石墨烯的性能特点、产业链概况、下游需求和国内外行业现状。 本期内参来源:国信证券

1性能强大的新材料之王 石墨烯是 2004 年用微机械剥离法从石墨中分离出的一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,英文名为 Graphene,为一层碳原子构成的二维晶体。石墨烯与其他有机高分子材料相比,有比较独特的原子结构和力学特性。石墨烯的理论杨氏模量达 1.0TPa,固有的拉伸强度为 130Gpa,是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,被誉为“新材料之王”、“黑金”。 ▲典型的石墨烯结构图

▲ 单层石墨烯是其他碳材料的基本元素 石墨烯按照层数可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。按照外在形态、又可分为片、膜、量子点、纳米带或三维状等。 ▲石墨烯分类 石墨烯具有超强导电性、良好的热传导性、良好的透光性、溶解性、渗透率、高柔性和高强度等出色的材料特性。它的的应用领域非常广泛,主要集中在基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。

石墨烯的制备及电化学性能研究

目录 摘要............................................................................................................................ I Abstract ......................................................................................................................... I I 1 引言 (1) 1.1 石墨烯的制备 (2) 1.1.1 机械剥离法 (2) 1.1.2 电化学剥离法 (2) 1.1.3 化学气相沉积法 (3) 1.2 石墨烯电极材料的制备 (5) 1.3 石墨烯电极材料电化学性能测试 (5) 2 实验部分 (6) 2.1 实验试剂 (6) 2.2 实验仪器 (6) 2.3 RHAC和GQDs的制备 (6) 2.4 RHAC-GQDs的制备 (6) 2.5 电极制备和电池组装 (7) 3 结果和讨论 (8) 3.1 分析了RHAC的比表面积和孔隙结构 (8) 3.2 GQDs的拉曼光谱和荧光光谱分析 (8) 3.3 红外光谱分析 (8) 3.4 XRD分析 (8) 3.5 扫描电镜分析 (9) 3.6 循环伏安法测试分析 (9) 3.7 恒流充放电试验分析 (9) 3.8 电化学阻抗分析 (10) 4 结论与展望 (12) 4.1 结论 (12) 4.2 主要创新点 (12) 4.3 展望 (12) 参考文献 (13) 致谢............................................................................................ 错误!未定义书签。

石墨烯的应用领域有哪些 了解石墨烯应用范畴

石墨烯应用领域有哪些? 纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。其中石墨烯都可以应用在哪些领域呢?纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。本文主要介绍一下石墨烯的应用领域。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有量子尺寸效应、表面效应、小尺寸效应和宏观量子隧道效应。那么下面我们来看一下,石墨烯应用领域有哪些? 微电子:微电子技术是高科技和信息产业的核心技术。微电子产业是基础性产业,之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。随着集成电路技术的 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

发展,使整机、电路与元件、器件之间的明确界限被突跛,器件问题、电路问题和整机系统问题已经结合在一起,体现在一小块硅片上,这就形成了固体物理、器件工艺与电子学三者交叉的新技术学科一微电子学。但是随着微电子学的发展,新的极限也显现出来,石墨烯新材料为解决这个极限提供了可能性,并且石墨烯芯片已经制造了出来,唯一需要突破的就是工业化,只要这个问题得到解决就会迎来计算机新的技术革命。 电子导线:美国一联合研究小组称,他们在利用石墨烯制造纳米电路领域获得了突破:设计出了简便、快速的纳米电线制造方法,能够调谐石墨烯的化学特征,使氧化石墨烯从绝缘物质变成导电物质。这被认定为石墨烯电子学领域的一项重要发现,相关研究报告发表在6月11日出版的《科学》杂志上。纳米电路的员之所以对于石墨烯的研究颇具热忱,是因为与硅相比,电子在石墨烯内移动时会受到更小的阻力,而硅晶体管的尺寸也已经接近了相关物理定律研究人的极限。虽然石墨烯纳米电子学可比硅基电子学速度更快且消耗更少的能量,但此前无人知晓如何制造可扩展或可重复的石墨烯纳米结构。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

石墨烯量子点的制备方法

SooPAT 石墨烯量子点的制备方法 申请号:201410499779.6 申请日:2014-09-25 申请(专利权)人深圳粤网节能技术服务有限公司 地址518107 广东省深圳市光明新区观光路3009号招商局光明科技 园A3栋C单元501 发明(设计)人张麟德张明东 主分类号C01B31/04(2006.01)I 分类号C01B31/04(2006.01)I C01G9/02(2006.01)I 公开(公告)号104229790A 公开(公告)日2014-12-24 专利代理机构广州华进联合专利商标代理有限公司 44224 代理人生启

(10)申请公布号 (43)申请公布日 2014.12.24 C N 104229790 A (21)申请号 201410499779.6 (22)申请日 2014.09.25 C01B 31/04(2006.01) C01G 9/02(2006.01) (71)申请人深圳粤网节能技术服务有限公司 地址518107 广东省深圳市光明新区观光路 3009号招商局光明科技园A3栋C 单元 501 (72)发明人张麟德 张明东 (74)专利代理机构广州华进联合专利商标代理 有限公司 44224 代理人 生启 (54)发明名称 石墨烯量子点的制备方法 (57)摘要 本发明涉及一种石墨烯量子点的制备方法, 包括提供具有六方晶体结构、粒径为5nm ~30nm 的氧化锌作为种子晶核;将单层氧化石墨烯加入 溶剂中,配制氧化石墨烯的分散液,加入具有六方 晶体结构的氧化锌,然后加入稳定剂,分散均匀得 到胶体溶液;将胶体溶液于160℃~300℃下进行 水热反应0.5h ~2h ,得到含有石墨烯量子点的悬 浊液;向含有石墨烯量子点的悬浊液中加入酸使 含有石墨烯量子点的悬浊液变澄清,过滤,将滤液 的pH 值调节为7~8并搅拌,然后过滤,得到含有 石墨烯量子点的溶液;及将含有石墨烯量子点的 溶液进行萃取,然后蒸发除去萃取剂,得到石墨烯 量子点的步骤。该方法工艺较为简单,能够制备尺 寸分布较窄的石墨烯量子点。 (51)Int.Cl. 权利要求书1页 说明书8页 附图1页 (19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书8页 附图1页(10)申请公布号CN 104229790 A

石墨烯修饰电极电化学性能

石墨烯修饰电极的电化学性能 石墨烯(Graphene>是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建零维富勒烯、一维碳纳M管、三维石墨等其他碳质材料的基本单元,具有许多优异而独特的物理、化学和机械性能,在微纳电子器件、光电子器件、新型复合材料以及传感材料等方面有着广泛的应用前景,基于石墨烯的相关研究也成为目前电化学领域的热点研究领域之一。 本论文围绕石墨烯的不同修饰电极条件,结合电化学基础研究,开展了石墨烯及其相关的电化学性能研究。具体内容归纳如下: (1>将石墨烯与具有良好导电性能的聚苯胺(PANI>复合,研究了石墨烯/聚苯胺复合物修饰电极的电化学性能。利用石墨烯与聚苯胺之间电子给体与电子受体的相互作用,实现了聚苯胺在中性甚至强碱性溶液中的电化学活性,并利用红外光谱、拉曼光谱和紫外光谱进行了可能的机理探讨。石墨烯/聚苯胺复合物材料在中性溶液里的电化学活性,在生物传感领域具有可能的应用空间。同时,在不同pH溶液里的电化学活性也为石墨烯/聚苯胺复合物材料在pH传感中提供了可能的应用空间。 (2>将石墨烯与具有电绝缘性能的凡士林混合,研究了石墨烯/凡士林膜电极的电化学性能。循环伏安测试表明:采用10.0 mg/mL、5.0 mg/mL和1.0 mg/mL的石墨烯/凡士林修饰电极可以依次得到常规尺寸电极、亚微尺寸电极和微尺寸的纳M电极阵列,并且通过简单混合所制备的石墨烯/凡士林膜电极具有良好的电化学活性和稳定性。作为新型碳材料的膜电极,石墨烯/凡士林膜电极在基础电化学研究和应用中具有一定的潜在价值。 (3>将石墨烯组装在具有完全电绝缘性能的硫醇自组装膜电极上,研究了石墨烯/硫醇自组装膜电极的电化学性能。交流阻抗数据表明,随着组装时间的增加,石墨烯/硫醇自组装膜电极的电化学阻抗逐渐降低,表明石墨烯在硫醇自组装膜上是一个可控的组装过程。循环伏安测试还表明,石墨烯的组装时间是120 min和5 min时,可以分别得到常规尺寸和微尺寸纳M电极阵列的石墨烯/硫醇自组装膜电极,而且对抗坏血酸、多巴胺、尿酸具有较好的电催化活性。同时,为了探讨可能的实验机理,我们讨论了电子传递的可能原因以及影响自组装膜电极双电层结构的两个因素。结果表明随着硫醇中碳链长度的增加,电子传递速率逐渐降低,氧化还原峰电位的差值逐渐增大。不同碳材料的电子转移速率呈现为:石墨烯>多孔碳>石墨。这种采用简单而有效的方法制备的石墨烯/硫醇自组装膜电极,在电化学理论研究和实际应用中具有较好的前景。 超级电容器是一种绿色、新型的储能元件,因为其高效、无污染的优良特性,符合“低碳”经济的发展要求,受到了人们的高度重视。超级电容器的核心是电极材料。 新兴的石墨烯二维单层原子碳材料因具有大的比表面积、优异的导电性、高的机械强度,被认为是理想的超级电容器电极材料。化学方法制备的氧化石墨烯具有良好的成膜性,可用于制备“石墨烯纸”并进而应用于无支撑电极。 此外,氧化石墨烯上丰富的含氧官能团可用于锚定金属纳M粒子,形成石墨烯复合材料。本论文围绕石墨烯薄膜制备、修饰和电化学电容性质开展研究工作,发展了石墨烯/碳纳M管复合薄膜的溶液铸造制备方法,提出了水热还原制备石墨烯基复合薄膜的途径,并研究了所制备材料的电容性能,取得了以下的研究成果:1.利用氧化石墨烯良好的成膜性,通过溶液铸造方法,制备了氧化石墨烯薄膜和氧化石墨烯/碳纳M管复合薄膜。 然后通过200℃退火,得到了相应的石墨烯薄膜、石墨烯/碳纳M管薄膜。这种薄膜通过石墨烯层间相互作用结合,例如π-π堆积,以及范德华力等,因而能够在各种极性电解液中稳定存在。复合薄膜的比电容在70~110 F/g,并且因为其表面仍然存在着部分含氧官能团的作用,显示了一定的赝电容的特性,表明其作为超级电容器电极的潜质。2.通过抽虑法制备了氧化石墨烯/碳纳M管复合薄膜。在水热条件下,氧化石墨烯被水还原并实现自组装,重新构建成具有π-π堆积的网络状三维结

基于石墨烯量子点的传感器在分析检测中的应用分析

基于石墨烯量子点的传感器在分析检测中的应用 姓名李丽娟学号 S131110042 摘要:石墨烯量子点优良的物理化学性质及石墨烯量子点边缘的羧基或者氨基基团使其易与多种有机的,聚合的,无机的或者生物种类相互作用。本文主要介绍了石墨烯量子点的制备方法以及基于(类)石墨烯量子点、(类)石墨烯材料的荧光传感器在分析检测中的应用,并详细介绍了分析检测的原理,以期为石墨烯量子点在分析检测中的应用提供相关参考与依据。 关键词:石墨烯量子点荧光检测 1 引言 最近,石墨烯获得了广泛的关注由于其独特的电子光学机械以及热学性质。大量基于石墨烯的生物传感器被开发来检测核酸,蛋白质,毒素和生物分子。石墨烯片层的形态包括它们的大小,形状以及厚度都可以有效的决定它们的性质。例如,石墨烯片层侧面尺寸小于100nm时被称为石墨烯量子点(GQDs),其许多新的化学和物理性质都是由于量子尺寸效应和边缘效应而引起的。GQDs毒性小,稳定性高,溶解性好,光致发旋光性质稳定,生物兼容性较好,使得它们在光电伏打器械,生物传感及成像上有很大的应用前景。本文着重介绍了石墨烯量子点的制备方法以及近年来基于石墨烯量子点与分析物发生作用的不同原理,如荧光共振能量转移,化学共振能量转移及石墨烯量子点表面性质的变化等来检测分析物质,并做出了展望。 2 石墨烯量子点的制备 Fei Liu等[1]成功地用化学剥离石墨纳米颗粒的方法合成了高度均匀的GQDs和GOQDs(氧化石墨烯量子点),如图1所示。该方法获得了高产率的直径在4nm 之内的单层和圆形的GQDs和GOQDs。GOQDs的表面富含各种含氧官能团,GQDs有纯粹的sp2碳晶体结构没有含氧的缺陷,因此提供了一种理想的平台来深入研究纳米尺寸的石墨烯的光致发光的起源。通过描述GQDs和GOQDs的发旋光性质,说明了GOQDs的绿色光致发光来自于含氧官能团的缺陷状态,而GQDs的蓝色发光是由高结晶结构中的内禀态所主导的。此外,GQDs中的蓝色发射显示了一个快速的复合寿命相比于GOQDs中的绿色发射的复合寿命。相比

比较三种化学方法制备石墨烯

一、利用液氨作为还原剂,还原氧化石墨。 工艺: 1、将60 g的颗粒状天然石墨,硝酸钠30 g加入l0L的双层玻璃反应釜中冷却至0℃;再将2500 mL浓硫酸缓慢加入反应釜中充分搅拌3 0 min,保持反应体系的温度不高于4℃;然后,将180 g高锰酸钾加入反应釜中并充分搅拌60 min,同时保持反应体系温度不高于8℃,此阶段为低温反应。 2、撤走冷浴,用高温恒温循环泵将反应体系加热至35℃,并充分搅拌3h,得到褐色悬浮液,再缓慢加入90 g高锰酸钾反应12h,保持反应体系的温度不高于

40℃,此阶段为中温反应。 3、撤走高温恒温循环泵,用低温冷却循环泵将反应系统温度控制在5℃以下,将7L去离子水缓慢滴加入褐色悬浮液中,体系温度骤然升高,并伴有大量气体生成,稀释的悬浮液在此温度下搅拌60 min。 4、向悬浮液中加入50 mL的H202(30%),室温下搅拌60 min,得到亮黄色氧化石墨 分散液。 5、将上述分散液静置2 h,分层,去除上清液后,加入一定量的去离子水,过滤,得到黄褐色滤饼。用5000 mL稀盐酸(10%)将滤饼洗涤2次后,再分散于5000 mL 去离子水中,过滤,用大量去离子水洗涤至溶液中无氯离子(可用AgN03溶液检测),且接近中性。然后将剩余固体产物在60 ℃的真空干燥箱中干燥24 h,研磨过筛后得到的氧化石墨。 石墨烯的制备 用低温冷却循环泵在一定温度下将高纯氨在密封容器中液化,加入一定量干燥的氧化石墨用超声细胞粉碎机超声剥离1h,将一定量的金属铿放入液氨中,溶液变成蓝色,继续保持超声30 min溶液变黑,停止冷却自然升温使液氨挥发,向得到的黑色固体中加入乙醇超声分散,过滤用去离子水洗涤至中性,真空60℃干燥12h,得到黑色的石墨烯。在其他实验条件相同的条件下,将铿用金属钠和金属钾代替,得到对应的碱金属还原的石墨烯。 小结:采用液氨作为溶剂超声剥离氧化石墨,利用液氨一碱金属强还原性,碱金属进一步插层剥离氧化石墨同时将其还原。实验结果表明,低温的还原体系有效避免了热还原过程中重新团聚的产生,从透射电镜观察得到的石墨烯片层厚度在2-5 nm,红外和XPS证实大部分含氧基团被去除。 还原剂锂不易存放,石墨烯制备时所使用的试剂腐蚀性强。 二、用抗坏血酸(L-AA)(维生素)作还原剂,还原氧化石墨,所得到的是化学还原氧化石墨(CRG) 工艺: 1.在室温下,将30 μm的颗粒状天然石墨2 g,硝酸钠1g加入250 mL三口瓶中冷却至0 ℃;再将_50 mL浓硫酸缓慢加入三口瓶中充分搅拌30 min,并保持反应体系的温度不高于5 ℃;然后,将0.3 g高锰酸钾加入三口瓶中并充分搅拌30 min,同时保持反应体系温度不高于10 ℃;在1h内,再将7g高锰酸钾分3批加入三口瓶中,保持反应体系温度不高于20 ℃,此阶段为低温反应。 2.撤走冷浴,用水浴将反应体系加热至3 5士3 ℃,并充分搅拌2h,得到褐色悬浮液,此阶段为中温反应。 3.将90 mL水缓慢滴加入褐色悬浮液中,体系温度骤然升高至90 ℃,并伴有大量气体生成,稀释的悬浮液在此温度下反应15 min,此阶段对高温反应。 4.向悬浮液中加入H2O2 (30%, 7 mL)与超纯水(55 mL, 45 ℃)的混合溶液, 并得到亮黄色氧化石墨分散液。

氮掺杂石墨烯作为锂离子电池负极材料的电化学性能

第7卷第6期 413 中国科技论文CHINA SCIENCEPAPER 2012年6月 氮掺杂石墨烯作为锂离子电池负极材料 的电化学性能 高云雷,赵东林,白利忠,张霁明,孔 莹 (北京化工大学碳纤维及功能高分子教育部重点实验室,北京 100029) 摘 要:以天然石墨为原料,通过氧化、快速热膨胀和超声分散制备石墨烯。将氧化石墨与三聚氰胺在氮气下950 ℃反应合成氮掺杂石墨烯。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)以及红外光谱(FTIR)、X射线能谱(XPS)等测试方法对氮掺杂石墨烯的形貌、结构进行分析。结果表明,该方法合成了薄层状氮掺杂石墨烯。 采用恒流充放电和循环伏安法等手段测试氮掺杂石墨烯、石墨烯和天然石墨作为锂离子电池负极材料的电化学性能,比较研究了三者用作锂离子电池负极材料的电化学性能,结果表明氮掺杂石墨烯负极材料具有优异的电化学能和独特的储锂机制。 关键词:氮掺杂石墨烯;石墨烯;锂离子电池;负极材料;电化学性能 中图分类号:O613.71;O646文献标志码:A 文章编号:2095-2783(2012)06-0413-5 Electrochemical performance of nitrogen-doped graphene as anode material for lithium ion batteries Gao Yunlei,Zhao Donglin,Bai Lizhong,Zhang Jiming,Kong Ying (Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China) Abstract: Graphene sheets (GSs) have been prepared from natural flake graphite by oxidation, rapid expansion and ultrasonic treatment. Graphene oxide (GO) was further annealed at the presence of melamine at 950 ℃ and transferred into nitrogen-doped grapheme (N-GSs). The samples were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Electrochemical performances of nitrogen-doped graphene, graphene and graphite as anode materials for lithium ion batteries were investigated using galvanostatic charge-discharge and cyclic voltammetry methods. It was found that the prepared N-GSs exhibited a relatively higher cycling stability and larger specific capacity compared with the pristine nature graphite and GSs. Cyclic voltammograms results indicate that the higher cycling stability may be associated with more structural defects during cycling. Key words: nitrogen-doped graphene;graphene;lithium ion batteries;anode material;electrochemical properties 收稿日期:2012-02-28 基金项目:国家自然科学基金资助项目(50672004);国家高技术研究发展计划(863计划)资助项目(2008AA03Z513) 作者简介:高云雷(1986-),男,硕士研究生,主要研究方向:锂离子电池负极材料 通信联系人:赵东林,教授,主要研究方向:新型炭材料及其应用,dlzhao@https://www.wendangku.net/doc/434456048.html,

石墨烯的十大用途

For personal use only in study and research; not for commercial use 石墨烯的十大用途 石墨烯是世界上已经发现的最薄、最坚硬的物质。美国一位工程师杰弗雷用形象地比喻了石墨烯的强度:将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,如想用一支铅笔戳穿它,需要一头大象站在铅笔上。 这么薄而又坚硬的石墨烯有什么用途呢? 1、制造下一代超级计算机。石墨烯是目前已知导电性能最好的材料,这种特性尤其适合于高频电路,石墨烯将是硅的替代品,可用来生产未来的超级计算机,使电脑运行速度更快、能耗降低。 2、制造“太空电梯”的缆线。科学家幻想将来太空卫星要用缆线与地面联接起来,那时卫星就成了有线的风筝,科学家现在终于找到了可以制造这种太空缆线的特殊材料,这就是石墨烯。 3、可作为液晶显示材料。石墨烯是一种“透明”的导体,可以用来替代现在的液晶显示材料,用于生产下一代电脑、电视、手机的显示屏。 4、制造新一代太阳能电池。石墨烯透明导电膜对于包括中远红外线在内的所有红外线的高透明性,是转换效率非常高的新一代太阳能电池最理想材料。 5、制造光子传感器。去年10月,IBM的一个研究小组首次展示了他们研制的石墨烯光电探测器。 6、制造医用消毒品和食品包装。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用石墨烯的这一特性可以制作绷带,食品包装,也可生产抗菌服装、床上用品等。 7、创制“新型超强材料”。石墨烯与塑料复合,可以凭借韧性,兼具超薄、超柔和超轻特性,是下一代新型塑料。 8、石墨烯适合制作透明触摸屏、透光板。 9、制造晶体管集成电路。石墨烯可取代硅成为下一代超高频率晶体管的基础材料,而广泛应用于高性能集成电路和新型纳米电子器件中。 10、制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,具有军事用途。

石墨烯量子点制备与应用

石墨烯量子点的概述 1.1.1 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显著,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs 表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显著变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 1.2.2 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强

相关文档
相关文档 最新文档