文档库 最新最全的文档下载
当前位置:文档库 › 信号带宽与信道带宽

信号带宽与信道带宽

信号带宽与信道带宽
信号带宽与信道带宽

信号带宽是信号频谱的宽度,也就是信号的最高频率分量与最低频率分量之差,譬如,一个由数个正弦波叠加成的方波信号,其最低频率分量是其基频,假定为f =2kHz,其最高频率分量是其7次谐波频率,即7f =7×2=14kHz,因此该信号带宽为7f - f =14-2=12kHz。

信道带宽则限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个频率通带。比如一个信道允许的通带为1.5kHz至15kHz,其带宽为13.5kHz,上面这个方波信号的所有频率成分当然能从该信道通过,如果不考虑衰减、时延以及噪声等因素,通过此信道的该信号会毫不失真。然而,如果一个基频为1kHz的方波,通过该信道肯定失真会很严重;方波信号若基频为2kHz,但最高谐波频率为18kHz,带宽超出了信道带宽,其高次谐波会被信道滤除,通过该信道接收到的方波没有发送的质量好;那么,如果方波信号基频为500Hz,最高频率分量是11次谐波的频率为5.5kHz,其带宽只需要5kHz,远小于信道带宽,是否就能很好地通过该信道呢?其实,该信号在信道上传输时,基频被滤掉了,仅各次谐波能够通过,信号波形一定是不堪入目的。

通过上面的分析并进一步推论,可以得到这样一些结果:

(1)如果信号与信道带宽相同且频率范围一致,信号能不损失频率成分地通过信道;

(2)如果带宽相同但频率范围不一致时,该信号的频率分量肯定不能完全通过该信道(可以考虑通过频谱搬移也就是调制来实现);

(3)如果带宽不同而且是信号带宽小于信道带宽,但信号的所有频率分量包含在信道的通带范围内,信号能不损失频率成分地通过;

(4)如果带宽不同而且是信号带宽大于信道带宽,但包含信号大部分能量的主要频率分量包含在信道的通带范围内,通过信道的信号会损失部分频率成分,但仍可能被识别,正如数字信号的基带传输和语音信号在电话信道传输那样;

(5)如果带宽不同而且是信号带宽大于信道带宽,且包含信号相当多能量的频率分量不在信道的通带范围内,这些信号频率成分将被滤除,信号失真甚至严重畸变;

(6)不管带宽是否相同,如果信号的所有频率分量都不在信道的通带范围内,信号无法通过;

(7)不管带宽是否相同,如果信号频谱与信道通带交错,且只有部分频率分量通过,信号失真。

另外,我们在分析在信道上传输的信号时,不能总是认为其带宽一定占满整个信道,比如频带传输;即使信号占据整个信道,也不一定总是把它想像成一个方波,它也可能是其它的波形,比如在一个单频的正弦波上寄载其它模拟信号或数字信号而形成的复合波形。我们再举一些实例,进一步明晰信号与信道的带宽问题。

第一个例子仍是数字方波信号的基带传输(信号可能从零频率,也可能不是从零开始,直至某个较高的频率分量占满整个信道带宽,该较高频率分量通常由信道上限频率决定),我们知道,数字方波信号带宽可以无限,但信道带宽总是有限的,因此信道带宽限定了通过信

道的信号带宽。如果信号基频和部分谐波能通过该信道,一般说来,接收到信号是可以被识别出的;如果信道的下限频率高于信号的基频,则基频甚至部分谐波被滤除,由于基频包含了信号的大部分能量(在时域图上反映出是所有叠加的信号波形中振幅最大的波形),因此接收到的信号难以识别。所以传输方波的信道要求其下限频率要低于信号的基频。

第二个例子是电话信道,假定其频率范围从300~3300Hz,带宽为3kHz,而语音信号频谱则一般为100Hz~7kHz的范围。电话信道将语音信号频谱掐头去尾,因为语音信号的主要能量集中在中心的一些频率分量附近,所以通过电话信道传输的语音信号,虽有失真,但仍能分辨。

第三个例子是电话线数字载波,即把数字信号调制到音频载波信号上,该载波是正弦波。电话线数据传输并不占满整个带宽,而是取中间部分频带,即600~3000Hz,带宽2400Hz。假定采用幅度调制(最简单的做法是通过在每个信号单元保留载波或除去载波来表示二进制的两种取值),如果采用全双工通信方式,则需将电话线数据信道一分为二,每个子信道各占1200Hz带宽,一个600~1800Hz,另一个1800~3000Hz;两个子信道的载波频率是各子信道中的中心频率,即分别为1200Hz和2400Hz,换句话说,每个中心频率两边各有一个600Hz的边带。

数字调频术和调相技术更复杂些,在时域上看,它们的每个信号单元周期时间可以与调幅相同;但从频域上看,每个周期内使载波频率和相位随着所表示的数值变化而发生改变,信号相位的变化实际上在幅-频频域图上也表现为频率的变化。尤其是当每个信号单元包含多个比特的情况,会产生多个频率分量。对于每个信号单元包含1个比特的情况,数字调频的每个子信道需要两个不同的频率表示二进制数字,也就是说,在2400Hz带宽的数据信道上有四个中心频率以及它们的边带。也就是说,分为了四段频带,600~1200Hz、1200~1800Hz、1800~2400Hz、2400~3000Hz;中心频率分别为900Hz、1500Hz、2100Hz和2700Hz。

第四个例子是无线调幅广播的模拟载波,即把语音、音乐等音频数据生成的原始电信号调制到具有某个广播频率的载波上(实际是频谱搬移,将相对较低的20Hz~20kHz频谱搬迁到较高300kHz~3MHz的频谱上)。无线信道利用的是自由空间,带宽似乎可以达到整个频谱,但实际上并非如此,首先,不同波段的频率需要不同的传播方式(地表导波、对流层散射、电离层反射、视线定向、空间转发)才能发挥最佳效率,不可能只采用一种传播方式使用如此广阔的频带;其次,频带跨度太大,不同频率分量传播的时延相差较远,不利于信号的正确识别和还原,数据率也因高低难以兼顾而受限;再则,无线信道是一种共享的公用广播信道,为了避免不同信源的相互干扰,在全球或者局部范围,必须进行信道分割与分配,分割出的每个信道根据不同的用途,其带宽相距很大,但不管多宽,都是很有限的;无论何种信号(即使理论上带宽无限的信号)在实际的传输中也不必一定要非常宽,也是允许损失一定频率成分的。无线调幅广播以载波频率为中心频率,将原始信号作为两个相同带宽的边带(上下边带)寄载到该载波上,调制后的该调幅信号总带宽为原始信号的2倍。

信道容量和带宽

信道带宽和信道容量 信道是通信双方之间以传输介质为基础传递信号的通路,由传输介质及其两端的信道设备共同构成。 信号带宽是信号频谱的宽度。信道带宽则限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个通频带。 信道容量表示一个信道的最大数据传输速率。信道容量与数据传输速率的区别是,前者表示信道的最大数据传输速率,是信道传输数据能力的极限,而后者是实际的数据传输速率。 它们的关系可以比喻为高速公路上的最大限速与汽车实际速度的关系。 带宽: 一般用来描述两种对象,一个是信道(Channel),另一个是信号(signal)。对于信道来说,又可分为两种,模拟信道和数字信道。 对信号来说,也可分为两种,数字信号和模拟信号。 信道的带宽: 对信道来说,带宽是衡量其通信能力的大小的指标。对模拟信道,使用信道的频带宽度来衡量。如果一个信道,其最低可传输频率为f1的信号,最高可传输频率为f2的信号,则该模拟信道的带宽是: 模拟信道的带宽=f2-f1(f2 > f1)描述模拟信道带宽时,带宽的单位是Hz。对于数字信道的通信能力,使用信道的最大传输速率来衡量。如果一个数字信道,其最大传输速率是100Mbps,我们称其带宽为100Mbps。 描述数字信道带宽时,带宽的单位是bps(bit per second)信号的带宽: 模拟信号的带宽是指信号的波长或频率的范围,用于衡量一个信号的频率范围,单位是Hz(每秒种电波的重复震动次数)。

一般的电信号(模拟信号),都是由各种不同频率的电磁波所组成,对于这个电信号来说,其包含的电磁波的频率范围,称为这个电信号的带宽。比如人的声波信号,其绝大部分的能量,集中在300Hz ~3400Hz这个范围,因此我们称语音信号的带宽是 3.1Khz(3400-300)。 模拟信号的带宽单位与模拟信道带宽相同。数字信号的带宽使用数字信号的传输速度来表示。数字信号一般传输速率是可变的。在传输数字信号时,可以用最大信号速率(峰值速率)、平均信号速率或最小信号速率来描述数字信号。 数字信号的带宽单位是bps(bit per second)。其各种单位与数字信道带宽单位相同。 模拟信号经过数字编码后,可以变为数字信号。那么模拟信号的带宽与数字化以后的带宽是什么关系呢? 模拟信号的编码方式决定了其数字化后的带宽。比如一个带宽 3.1Khz的语音信号,采用标准PCM编码(不进行压缩),其数字信号的带宽是64Kbps。如果使用压缩编码技术,一路语音信号其数字化以后的带宽可以是16Kbps或者8Kbps。 速率: 衡量信息传输速度的指标,以每秒传输的bit数为单位,即 bps――bitpersecond。1Kbps代表每秒中传输1千个比特;1Mbps代表每秒中传输100万个比特;1Gbps代表每秒中传输10亿个比特;1Tbps代表每秒中传输1万亿个比特。半波整流与全波整流的区别 全波整流,就是对交流电的正、负半周电流都加以利用,输出的脉动电流,是将交流电的负半周也变成正半周,即将50Hz的交流电流,变成100Hz的脉动电流。

传输速率和带宽的区别,信道和通道的区别

传输速率和带宽的区别,信道和通道的 区别 传输速率和带宽的区别,信道和通道的区别2011-10-12 12:01带宽是指每秒传输的最大字节数,也就是一个信道的最大数据传输速率,单位为"位/秒"(bit/s)。带宽和数据传输速率是有区别的,前者表示信道的最大数据传输速率,是信道传输数据能力的极限,而后者是实际的数据传输速率。 带宽本来是指某个信号具有的频带宽度,其单位是赫兹,过去的通信主干线路都是用来传送模拟信号(即连续变化的信号),带宽表示线路允许通过的信号频带范围。但是,当通信线路用来传送数字信号时,传送数字信号的速率即数据率就应当成为数字信道的最重要指标,不过习惯上仍延续使用"带宽"来作为"数据率"的同义词。 传输速率--一般指的是系统的最大数据传输速率。但也可能不是,如果仅仅就这四个字而言,应该指的是当前的数据传输速率。不过,默认的说法认为是指最大数据传输速率,如果你写论文,就应该写明是"最大数据传输速率"。这个指标指的是数据在信道内每秒钟可以传输多少比特,单位是bit/s,或者bps。二者只是写法不同,意思是一样的。 带宽--指的是信道的宽度,单位是Hz。但是,在非正式场合,也经常有人把"最大数据传输速率"说成"带宽"。这也可能是楼主产生迷惑的主要原因。 其实信道的最大数据传输速率和带宽完全不是一回事,二者单位不同。但是非正式场合经常用带宽来表示数字系统的最大数据传输速率,这也是事实,就是专家也经常这样讲。所以,非正式场合时可以这样说的,也没人会说你说错了,但是正式场合,比如起草文件,写论文时,就不能这样说了。 还有,虽然有Nyquist定理和Shannon定理给出了最大数据传输速率和带宽之间的关系,但是那只是理论值。所谓理论值,也就是说,最多达到这个数值,一般都要打点折扣的,具体打多少折,要看系统的设计和制造的性能。

码片成型前后信号带宽速率关系

码片成型前后信号带宽、码片速率、滤波器截止频率的关系 设码片速率为P cps ,发送端采样速率为S1 Hz ,信号带宽为B Hz ,升余弦 滚降滤波器的滚降系数为α,归一化截止频率为w ,接受端采样速率为S2 Hz 。信号调制为BPSK 调制。 1. 信号带宽与码片速率的关系 升余弦成型滤波器频率传输特性如下:其中N f 为奈奎斯特带宽,N f =P/2, 奈奎斯特带宽就是码片速率的一半。 由上图可知,经过成型滤波器剩下信号带宽为; BW1=N f (1+α)=P/2*(1+α); 又由于信号经过BPSK 调制(频谱搬移将负的部分搬到正轴),因此信号的带宽: BW=2*BW1=P*(1+α); (1-1) 2. 码片速率和滤波器归一化截止频率关系 由上图可以看出,当f=N f 时,幅度为满幅的一半,可认为是截止频率。(从FDAtool 上可以看出来N f 就是截止频率),又因为归一化是对s f /2归一化)即: N f =(s f /2) *w=P/2 即可推导出: s f *w=P (1-2) N f 2N f (H f

通过方案中的信号格式可以验证以上公式: (1)协商信号 调制方式:BPSK; 码片成形:α=1升余弦成型; 表6.2.1 便携式小站与中心站业务信道协商信号扩频参数 协商信号 调制方式:BPSK; 码片成形:α=0.2升余弦成型; 表6.2.3 车载式小站与中心站业务信道协商信号扩频参数 以上两个表可验证公式: BW =P*(1+α); (2)小站接收信号带宽及滤波器设计归一化截止频率见下表:

Matlab仿真波形图: 仿真中,滚降系数为α=0.5,每个码片采4个点,令 f=4KHz,那么码片速率 s P为1KHz; 滤波成型后的波形 方波信号频谱图 成型波形频谱图 载波波形 BPSK调制信号频谱 f(1+α)=(1+α)*P/2=750Hz。 由第三、四张图可得,成型滤波后信号频谱为 N

数字通信系统中带宽的概念

引言 在通信系统中我们经常会遇到“带宽”(Bandwidth)这个词,但我们也会遇到“带宽”的单位有时用赫兹(Hz)表示,而有时却用比特/秒(bit/S)表示,那么我们平时所说的“带宽”到底指的是什么呢? 1、数字通信系统中带宽的概念 早期的电子通信系统都是模拟系统。当系统的变换域研究开始后,人们为了能够在频域定义系统的传递性能,便引进了“带宽”的概念。当输入的信号频率高或低到一定程度,使得系统的输出功率成为输入功率的一半时(即 3dB),最高频率和最低频率间的差值就代表了系统的通频带宽,其单位为赫兹(Hz)。比如在传统的固定电话系统中,从固定话机终端到交换中心的双绞线路系统(Twist pair),所能提供的通信带宽可以到2MHz以上,其中我们的语音通信只使用了从300Hz~3400Hz的频段,使用的通信带宽约为3KHz。现在,基于双绞线传输的xDSL接入网技术,能够充分使用语音带宽以外的频率,高速传送数据业务,实现宽带网接入。 图1 模拟电话线的频带 (300Hz~3400Hz为语音通信频带,25KHz~1.1MHz为ADSL频带) 数字通信系统中“带宽”的含义完全不同于模拟系统,它通常是指数字系统中数据的传输速率,其表示单位为比特/秒(bit/S)或波特/秒(Baud/S)。带宽越大,表示单位时间内的数字信息流量也越大;反之,则越小。衡量二进制码流的基本单位称为“比特”,若传输速率达到64kb/s,就表示二进制信息的流量是每秒64,000比特。衡量多进制码流的的基本单位为“波特”,若多进制码流的传输速率达80KB/S,就表示多进制符号的信息流量是每秒80,000波特,如果将多进制码,比如四进制码(22),换算成的二进制来衡量,则信息比特流量为80X2=160Kb/S。 不同的数字业务其提供或需求的带宽也不一样。如前面所说在固定电话网中的局与局

带宽与信道容量与数据传输速率的关系

带宽与信道容量与数据传输速率的关系 2008-04-22 10:16:58| 分类:默认分类|举报|字号订阅 数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为: S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=10^3 bps 1Mbps=10^6 bps 1Gbps=10^9 bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则

与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为: Rmax=(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax 与信道带宽B、信噪比S/N的关系为: Rmax=(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。

信道习题讲解

1信号分别通过图所示的两个电路,试讨论输出信号有没有群迟延畸变? 2设某恒参信道的传递函数d t j e k H ωω?=0)(,0K 和d t 都是常数。试确定信号s(t)通过该信 道后的输出信号的时域表达式,并讨论信号有无失真? 3某恒参信道的传输函数为d t j e T H ωωω?+=)cos 1()(0,其中,和为常数,试确定信号通过后的输出信号表示式,并讨论有无失真。 4假设某随参信道的二径时延差τ为1ms ,试问在该信道哪些频率上传输衰耗最大?选用哪 些频率传输信号最有利(即增益最大,衰耗最小)? 5已知高斯信道的带宽为4kHz ,信号与噪声的功率比为63,试确定这种理想通信系统的极 限传输速率。 6已知有线电话信道的传输带宽为3.4KHz : (1)试求信道输出信噪比为30dB 时的信道容量; (2)若要求在该信道中传输33.6kb/s 的数据,试求接收端要求的最小信噪比为多少? 7具有6.5MHz 带宽的某高斯信道,若信道中信号功率与噪声功率谱密度之比为45.5MHz , 试求其信道容量。 8某待传输图片有6 1025.2×个像素,每个像素有12个亮度电平,各电平独立地以等概率 出现;试计算用3分钟传送该图片所需的信道带宽(设要求接收图像信噪比达到30dB )。 9计算机终端通过电话信道传输数据,电话信道带宽为3.2kHz ,信道信噪比为30dB,终端采 用N=256进制,且各符号相互独立等概出现,求:信道容量?无误码传输的最高符号速率? 10假设在一个信道中,采用二进制传输数据,码元传输速率为2000B ,信道带宽为4000Hz , 设信道输出信噪比为S/N≥31,试分析该系统能否实现数据传输(估计系统潜力)? 11已知某信道无差错传输的最大信息速率为max b R ,信道的带宽为2/max b R B =,设信道中 的噪声为高斯噪声,单边功率谱密度为0n ,试求此时系统中信号的平均功率。 12已知电话信道的带宽为3.4kHz ,试求: (1)接收端信噪比为30db 时的信道容量; (2)若要求信道能传输4800b/s 的数据,则接收端要求的最小信噪比为多少? 13黑白电视图像每幅含有5103×个像素,每个像素有16个等概率出现的亮度等级。要求每 秒钟传送30帧图像。若信号输出S/N=30db ,计算传输该黑白电视图像所要求的信道的最小 带宽。 14设某恒参信道为如图示意的线性二端网络。试求它的传输函数)(ωH ,并说明信号通过该信道时会产生哪些失真。

信道带宽和信道容量

信道带宽 模拟信道: 模拟信道的带宽W=f2-f1 其中f1是信道能够通过的最低频率,f2是信道能够通过的最高频率,两者都是由信道的物理特性决定的。当组成信道的电路制成了,信道的带宽就决定了。为了是信号的传输的失真小些,信道要有足够的带宽。数字信道: 数字信道是一种离散信道,它只能传送离散值的数字信号,信道的带宽决定了信道中能不失真的传输脉序列的最高速率。 一个数字脉冲称为一个码元,我们用码元速率表示单位时间内信号波形的变换次数,即单位时间内通过信道传输的码元个数。若信号码元宽度为T秒,则码元速率B=1/T。码元速率的单位叫波特(Baud),所以码元速率也叫波特率。早在1924年,贝尔实验室的研究员亨利·尼奎斯特就推导出了有限带宽无噪声信道的极限波特率,称为尼奎斯特定理。若信道带宽为W,则尼奎斯特定理指出最大码元速率为B=2W(Baud)尼奎斯特定理指定的信道容量也叫尼奎斯特极限,这是由信道的物理特性决定的。超过尼奎斯特极限传送脉冲信号是不可能的,所以要进一步提高波特率必须改善信道带宽。 码元携带的信息量由码元取的离散值个数决定。若码元取两个离散值,则一个码元携带1比特(bit)信息。若码元可取四种离散值,则一个码元携带2比特信息。总之一个码元携带的信息量n(bit)与码元的种类数N有如下关系:n=log2N 单位时间内在信道上传送的信息量(比特数)称为数据速率。在一定的波特率下提高速率的途径是用一个码元表示更多的比特数。如果把两比特编码为一个码元,则数据速率可成倍提高。我们有公式: R=B log2N=2W log2N(b/s) 其中R表示数据速率,单位是每秒比特,简写为bps或b/s 数据速率和波特率是两个不同的概念。仅当码元取两个离散值时两者才相等。对于普通电话线路,带宽为3000HZ,最高波特率为6000Baud。而最高数据速率可随编码方式的不同而取不同的值。这些都是在无噪声的理想情况下的极限值。实际信道会受到各种噪声的干扰,因而远远达不到按尼奎斯特定理计算出的数据传送速率。香农(shannon)的研究表明,有噪声的极限数据速率可由下面的公式计算: C =W log2(1+s/n) 这个公式叫做香农定理,其中W为信道带宽,S为信号的平均功率,N为噪声的平均功率,s/n叫做信噪比。由于在实际使用中S与N的比值太大,故常取其分贝数(db)。分贝与信噪比的关系为: db=10log10s/n 例如当s/n为1000,信噪比为30db。这个公式与信号取的离散值无关,也就是说无论用什么方式调制,只要给定了信噪比,则单位时间内最大的信息传输量就确定了。例如信道带宽为3000HZ,信噪比为30db,则最大数据速率为 C=3000log(1+1000)≈3000×9.97≈30000b/s 这是极限值,只有理论上的意义。实际上在3000HZ带宽的电话线上数据速率能达到9600b/s就很不错了。 综上所述,我们有两种带宽的概念,在模拟信道,带宽按照公式W=f2-f1 计算,例如CATV电缆的带宽为600HZ或1000HZ;数字信道的带宽为信道能够达到的最大数据速率,例如以太网的带宽为10MB/S或100MB/S,两者可通过香农定理互相转换。

信号带宽与信道带宽

信号带宽与信道带宽 某同学来问问题,发现他对信号带宽与信道带宽的概念比较含混,而且对时域上的图象往频域上去分析。因此有必要澄清。 信号带宽是信号频谱的宽度,也就是信号的最高频率分量与最低频率分量之差,譬如,一个由数个正弦波叠加成的方波信号,其最低频率分量是其基频,假定为f =2kHz,其最高频率分量是其7次谐波频率,即7f =7×2=14kHz,因此该信号带宽为7f - f =14-2=12kHz。 信道带宽则限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个频率通带。比如一个信道允许的通带为1.5kHz至15kHz,其带宽为13.5kHz,上面这个方波信号的所有频率成分当然能从该信道通过,如果不考虑衰减、时延以及噪声等因素,通过此信道的该信号会毫不失真。同样,只要最低频率分量和最高频率分量都在该频率范围内的任意复合信号都能通过该信道。此外,频率为1.5kHz、4kHz、6kHz、9kHz、12kHz,15kHz以及任意在该频带范围内的各种单频波也可以通过该信道。然而,如果一个基频为1kHz的方波,通过该信道肯定失真会很严重;方波信号若基频为2kHz,但最高谐波频率为18kHz,带宽超出了信道带宽,其9次谐波会被信道滤除,通过该信道接收到的方波没有发送的质量好;那么,如果方波信号基频为500Hz,最高频率分量是11次谐波的频率为5.5kHz,其带宽只需要5kHz,远小于信道带宽,是否就能很好地通过该信道呢?其实,该信号在信道上传输时,基频被滤掉了,仅各次谐波能够通过,信号波形一定是不堪入目的,就像我们实验中所验证的那样。 通过上面的分析并进一步推论,可以得到这样一些结果: (1)如果信号与信道带宽相同且频率范围一致,信号能不损失频率成分地通过信道;(2)如果带宽相同但频率范围不一致时,该信号的频率分量肯定不能完全通过该信道(可以考虑通过频谱搬移也就是调制来实现); (3)如果带宽不同而且是信号带宽小于信道带宽,但信号的所有频率分量包含在信道的通带范围内,信号能不损失频率成分地通过; (4)如果带宽不同而且是信号带宽大于信道带宽,但包含信号大部分能量的主要频率分量包含在信道的通带范围内,通过信道的信号会损失部分频率成分,但仍可能被识别,正如数字信号的基带传输和语音信号在电话信道传输那样; (5)如果带宽不同而且是信号带宽大于信道带宽,且包含信号相当多能量的频率分量不在信道的通带范围内,这些信号频率成分将被滤除,信号失真甚至严重畸变; (6)不管带宽是否相同,如果信号的所有频率分量都不在信道的通带范围内,信号无法通过; (7)不管带宽是否相同,如果信号频谱与信道通带交错,且只有部分频率分量通过,信号失真。 另外,我们在分析在信道上传输的信号时,不能总是认为其带宽一定占满整个信道,比如频带传输;即使信号占据整个信道,也不一定总是把它想像成一个方波,它也可能是其它的波形,比如在一个单频的正弦波上寄载其它模拟信号或数字信号而形成的复合波形。 我们再举一些实例,进一步明晰信号与信道的带宽问题。第一个例子仍是数字方波信号的基带传输(信号可能从零频率(也可能不是从零开始)直至某个较高的频率分量占满整个信道带宽,该较高频率分量通常由信道上限频率决定),我们知道,数字方波信号带宽可以无限,但信道带宽总是有限的,因此信道带宽限定了通过信道的信号带宽。如果信号基频和部分谐波能通过该信道,一般说来,接收到信号是可以被识别出的;如果信道的下限频率高于信号的基频,则基频甚至部分谐波被滤除,由于基频包含了信号的大部分能量(在时域图上反映出是所有叠加的信号波形中振幅最大的波形),因此接收到的信号难以识别。所以 传输方波的信道要求其下限频率要低于信号的基频。

带宽、数据通信速率等关系.

数据传输速率、带宽、信道容量、信号传输速率关系 一、数据传输速率Rb 数据传输速率是描述数据传输系统的重要技术指标之一。 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为:S=1/T(bps)其中,T为发送每一比特所需要的时间。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 二、信号传输速率 也称码元率、调制速率或波特率,表示单位时间内通过信道传输的码元个数,单位记做BAND。 三、带宽W: 1、在模拟信号系统领域: 信道可以不失真地传输信号的频率范围,每秒传输的信号周期数。带宽用来标识传输信号所占有的频率宽度,这个宽度由传输信号的最高频率和最低频率决定,两者之差就是带宽值,因此又被称为信号带宽或者载频带宽,单位为Hz。在信号传输系统中,系统输出信号从最大值衰减3dB的信号频率为截止频率,上下截止频率之间的频带称为通频带,用BW表示。 2、在数字系统领域: 四、信道容量: 信道在单位时间内可以传输的最大信号量,表示信道的传输能力。信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的

数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。 五、数据传输率: 信道在单位时间内可以传输的最大比特数。信道容量和信道带宽具有正比的关系:带宽越大,容量越大。 六、波特率RB 电子通信领域,波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。调制速率,指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数。它是对符号传输速率的一种度量,1波特即指每秒传输1个符号。波特率(Baud rate)一般小于等于调制速率。 若数字传输系统,波特率又称码元速率。指每秒信号的变化次数。若数字传输系统所传输的数字序列恰为二进制序列,则等于每秒钟传送码元的数目,而在多电平中则不等同。单位为"波特",常用符号"Baud"表示,简写为"B"。 七、码元速率和数据传输速率的关系 码元速率和数据传输速率的关系式为: Rb=RB*。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 八、奈奎斯特定律 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。

数字通信中信息速率、符号率和带宽的换算

数字通信中信息速率、符号率和带宽的换算 【摘要】本文对数字电视中常用的技术指标,如信息速率、符号率和带宽的概念以及它们之间的关系做了简要说明,给出了相应的计算公式。通过这些公式和DVB-C、DVB-S的系统框图,列举了在这些系统中信息速率、符号率和带宽数据之间的换算。 【关键词】信息速率 符号率 滚降系数 带宽 数字通信原理是数字电视技术的基础。在全台数字化、有线电视数字化、数字电视等等这些数字概念的应用中,需要了解、掌握数字通信技术与电视技术。下面,就数字电视技术应用中常用的基本知识点做一归纳和小结。 一、基带数字信号的基本概念 1、基带数字信号的主要指标和基本波形 在数字通信中衡量系统传输能力的重要指标,常用比特率和波特率表示。对于任何形式的数字传输,接收机必须知道发射机发送的信息速率。在基带传输系统中用比特率表示传输的信息速率。 信息速率Rb 是指单位时间内传输的二进制比特数。单位是比特率,用bit/s表示。例如计算机串口的传输码率最高到 115200bit/s。基带数字信号的基本波形如(图一)所示。 (图一)基带数字信号的基本波形 在图(一)中,二进制信号波形有;(a)单极性波形,(b)双极性波形,(c)单极性 归零波形,(e)差分波形。(d)双极性归零波形为三元码。 符号率Rs 是指单位时间内传输的调制符号数,即指三元及三元以上的多元数字码流的

信息传输速率,单位是波特率,用baud/s表示。 码元的概念:数字信号一个取值的波形称为一个码元。在数字基带信号中,二进制和多进制信号码元波形示意如图(二)所示。 图(二)二进制和多进制码元波形 在图(二)中;(a) 二进制单极性信号,(b)基带多电平单极性不归零信号,(c)基带多 电平双极性不归零信号。 在数字信号的载波调制中,码元速率就是符号率,单位也是baud/s。在调制器映射之后到解调器反映射之前,信息以多元符号形式存在,这时采用波特率更为方便。 信息速率和符号率的单位不同,但在二进制中它们的数值相同。在M进制调制中,信 息速率Rb和符号率Rs之间关系为: Rb = Rs log M (1) 2 码元或符号周期用Ts表示,符号率用Rs表示,则有Rs=1/Ts 。 2、基带数字信号的传输码形 对模拟信号抽样、量化、编码可以得到具有上述波形的基带数字信号。为了适合信道传输,这些基带数字信号还要进行码形变换,其作用是;减少信号中的直流和低频分量,使码元含有定时信息,提高传输效率,具有一定的检错能力等。常用的传输码形有:AMI码,HDB3码,双相码,密勒码,CMI码,nBmB码等。 3、基带数字信号的码间干扰和滚降系数 基带数字信号传输系统模型见图(三)所示。发送滤波器的频率传输函数为G T(f),接

信号带宽

信号带宽说明 复合视频: 复合视频信号(Composite Video Signal)是一种将视频信号中的亮度信号(Y)、绿色色差信号(U)、红色色差信号(V)(U和V统称色度信号C,与亮度信号相对)和同步信号复合传输和存储的方式。由于设备制造相对容易、成本低廉、使用简单,被广泛应用于标准清晰度电视、VCD等影音设备、家用电视游戏机等领域和产品中。最为我们所知的复合视频设备就是黄色的复合视频RCA端子,链接简便,只需要一根电缆就能实现视频信号的传输。 CVBS信号带宽均低于6.5MHz。 S VIDEO: S端子也是非常常见的端子,其全称是Separate Video,也称为SUPER VIDEO。S-Video连接规格是由日本人开发的一种规格,S指的是“SEPARATE(分离)”,它将亮度和色度分离传输,避免了混合视频信号传输时亮度和色度的相互干扰。S端子实际上是一种五芯接口,由两路视频亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成。SV信号带宽提高至10MHz左右 YUV信号: YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL)。 YUV主要用于优化彩色视频信号的传输,使其向后兼容老式黑白电视。与R GB视频信号传输相比,它最大的优点在于只需占用极少的带宽(RGB要求三个独立的视频信号同时传输)。 为节省带宽,大多数YUV格式平均使用的每像素位数都少于24位元。 YPbPr表示逐行扫描色差输出。 YCbCr表示隔行扫描色差输出。 主要的采样(subsample)格式有YCbCr 4:2:0、YCbCr 4:2:2、YCbCr 4:1:1和YCbCr 4:4:4。YUV的表示法称为A:B:C 表示法: 4:4:4 表示完全取样。(最高,无压缩) 4:2:2 表示2:1 的水平取样,没有垂直下采样。(高,压缩) 4:2:0 表示2:1 的水平取样,2:1 的垂直下采样。(中,压缩) 4:1:1 表示4:1 的水平取样,没有垂直下采样。(低,压缩) VGA信号: VGA(Video Graphics Array)即显示绘图阵列,是IBM于1987年提出的一个使用模拟信号的电脑显示标准。VGA支持在640X480的较高分辨率下同时显示16种色彩或256种灰度,同时在320X240分辨率下可以同时显示256种颜色。VGA由于良好的性能迅速开始流行,厂商们纷纷在VGA基础上加以扩充,如将显存提高至1M并使其支持更高分辨率如800X600或1024X768,这些扩充的模式就称之为VESA(Video Electronics Standards Association,视频电子标准协会)的Super VGA模式,简称SVGA,现在的显卡和显示器都支持SVGA模式。 VGA信号的组成分为五种:RGBHV,分别是红绿蓝三原色和行场同步信号。VGA传输距离非常短,实际工程中为了传输更远的距离,人们把VGA线拆开,将RGBHV五种信号分离出来,分别用五根同轴电缆传输,这种传输方式叫RGB传输,习惯上这种信号也叫RGB信号,其实本质上RGB和VGA是没有什么区别的。

关于信号带宽与信道带宽

信号带宽与信道带宽 信号带宽是信号频谱的宽度,也就是信号的最高频率分量与最低频率分量之差,譬如,一个由数 个正弦波叠加成的方波信号,其最低频率分量是其基频,假定为f =2kHz,其最高频率分量是其7次谐波频率,即7f =7×2=14kHz,因此该信号带宽为7f - f =14-2=12kHz。 信道带宽则限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个频率通带。比如一个信道允许的通带为1.5kHz至15kHz,其带宽为13.5kHz,上面这个方波信号的所有频率成分当然能从该信道通过,如果不考虑衰减、时延以及噪声等因素,通过此信道的该信号会毫不失真。然而,如果一个基频为1kHz的方波,通过该信道肯定失真会很严重;方波信号若基频为2kHz,但最高谐波频率为18kHz,带宽超出了信道带宽,其高次谐波会被信道滤除,通过该信道接收到的方波没有发送的质量好;那么,如果方波信号基频为500Hz,最高频率分量是11次谐波的频率为5.5kHz,其带宽只需要5kHz,远小于信道带宽,是否就能很好地通过该信道呢?其实,该信号在信道上传输时,基频被滤掉了,仅各次谐波能够通过,信号波形一定是不堪入目的。 通过上面的分析并进一步推论,可以得到这样一些结果: (1)如果信号与信道带宽相同且频率范围一致,信号能不损失频率成分地通过信道; (2)如果带宽相同但频率范围不一致时,该信号的频率分量肯定不能完全通过该信道(可以考虑通过频谱搬移也就是调制来实现); (3)如果带宽不同而且是信号带宽小于信道带宽,但信号的所有频率分量包含在信道的通带范围内,信号能不损失频率成分地通过; (4)如果带宽不同而且是信号带宽大于信道带宽,但包含信号大部分能量的主要频率分量包含 在信道的通带范围内,通过信道的信号会损失部分频率成分,但仍可能被识别,正如数字信号的基带传输和语音信号在电话信道传输那样; (5)如果带宽不同而且是信号带宽大于信道带宽,且包含信号相当多能量的频率分量不在信道的通带范围内,这些信号频率成分将被滤除,信号失真甚至严重畸变; (6)不管带宽是否相同,如果信号的所有频率分量都不在信道的通带范围内,信号无法通过; (7)不管带宽是否相同,如果信号频谱与信道通带交错,且只有部分频率分量通过,信号失真。

信号频道带宽、符号率、速率对应关系

信号频道带宽、符号率、速率对应关系 信号频道带宽、符号率、速率对应关系 一、信号频道带宽、符号率、速率对应关系(以DCOSIS2.0为例) 1、频道利用率:在DCOSIS 定义载波的升余弦滚降系数分别为: 下行信道α=0.15,则:下行信道利用率为1/(1+α)=0.869。 上行信道α=0.25,则:上行频带利用率为1/(1+α)=0.8。 2、符号率:符号率=频道利用率×信道带宽 下行信道的物理带宽为;8M。 每1个下行信道的符号率为8M×0.869=6.952M 上行信道的物理带宽为:200kHz×2n-1,n=1、2、3、4、5、6。最大为6.4M。每1个上行信道(6.4M)的符号率为:6.4M×0.8=5.12M

3、数据调制比特率;由QAM调制等级M决定,为log2M(bit),其中M为QAM调制等级。 QAM4=2,QAM8=3,QAM16=4,QAM32=5,QAM64=6,QAM128=7,QAM256=8. 4、信道的数据速率:数据速率=符号率×数据调制比特率: 下行信道(8M),256QAM调制,符号率为6.952M ,则: 下行数据速率为6.952M×log2M=6.952M×8(256QAM) = 55.616Mb/s 上行信道(6.4M),64QAM调制,符号率为5.12M,则: 上行数据速率为5.12M×log2M=5.12M×6 (64QAM)=30.72 (Mb/s) 通过以上计算可见,如果网络传输性能质量好,而且设备也支持高级的调制方式并且工作在比较宽的频道,每一台设备(CMTS)的数据处理容量就可以大大提高 附:频带符号率比特率比特率比特率比特率比特率kHz ksymbols/sec kb/s kb/s kb/s kb/s kb/s QPSK-4QAM 8QAM 16QAM 32QAM 64QAM

信道与带宽

1. 信道 信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。一般可以分为物理信道、传输信道、逻辑信道三种。 2. 信道带宽 在模拟通信系统或传输介质中,所说的“带宽”是指信号频率的通频范围,单位为“赫兹”。信道带宽是限定允许通过该信道的信号上限频率和下限频率。也就是限定了一个频率通带。比如一个信道允许的通带为1.5kHz至15kHz,其带宽为13.5kHz,上面这个方波信号的所有频率成分当然能从该信道通过,如果不考虑衰减、时延以及噪声等因素,通过此信道的该信号会毫不失真。 信道带宽:W=f2—f1。 f1是信道能通过的最低频率,f2是信道能通过的最高频率。两者都是由信道的物理特性决定的 数字通信系统中“带宽”的含义完全不同于模拟系统,它通常是指数字系统中数据的传输速率,其表示单位为比特/秒(bit/S)或波特/秒(Baud/S)。带宽越大,表示单位时间内的数字信息流量也越大;反之,则越小。衡量二进制码流的基本单位称为“比特”,若传输速率达到64kb/s,就表示二进制信息的流量是每秒64,000比特。衡量多进制码流的的基本单位为“波特”,若多进制码流的传输速率达80KB/S,就表示多进制符号的信息流量是每秒80,000波特,如果将多进制码,比如四进制码(22),换算成的二进制来衡量,则信息比特流量为80X2=160Kb/S。 3. 物理信道 物理信道(physical channel)物理可实现的信道。具体的物理信道与采用的多址接入方式有关。FDMA(频分多址)系统为频道,TDMA(时分多址)系统为一个时隙(时道),CDMA (码分多址)系统为码型(码道)。在无线系统中是用来运载各种逻辑和业务通路的实际无线电信道。比如光纤和电话线等就可以组成物理信道. 既然是物理的,也就是说是实际存在的,比如ZigBee网络中中分配了27个物理信道,这27个物理信道是实际存在的,是有一定的具体的频率的。 4.逻辑信道 逻辑信道(logical channel)在物理信道上传递不同信息种类构成的信道。逻辑信道是人为的进行划分的,表示承载的的内容是什么,可以分为控制信道和业务信道。一个物理信道也可以分成好几个逻辑信道。 5. 时隙 时隙是一种时分复用技术(TDM)。时隙可以理解为通道多人共用一个资源,采用分时的方法处理,1个时隙相当于1个通道,说白了,就是一个很小的时间段。这里有一个网上的例子,可以帮助理解。 一个老师给五个班上课,星期一给一班上课,星期二给二班上课。。。以此类推,星期六陪家人,星期天出去会朋友。每个星期都如此,循环往复。在一班的学生看来,这个老师给自己上课的过程是连续的,每周的星期一就组成了一个时隙,这个时隙被一班学生占用。每周的其他日子也类似,比如每周的星期天都出去会朋友,在朋友们看来,这个老师和朋友们的交往从未中断。 我们知道在无线通信中这些时间概念都会很小,都是在纳秒为单位。对我们的应用者来说

WCDMA的每个信道都是5M带宽吗

1 / 4 WCDMA的每个信道都是5M带宽吗 wcdma频率规划根据工信部规定,中国联通可用的频段是1940MHz-1955MHz(上行)、2130MHz -2145MHz(下行),上下行各15MHz。 WCDMA的频点称为UARFCN(UTRA Absolute Radio Frequency Channel Number,UTRA绝对频点号)。 2.1GHz频段上行频点号为9612~9888,下行频点号为10562~10838,频点除以5就可以得到频点中心对应的频率值(以MHz 为单位)。 每个频点间隔为200kHz,与GSM系统兼容。 当然每个频点的带宽远超过200kHz,这与CDMA的频点编号方式类似。 目前联通WCDMA系统下行第一频点号为10713(中心频率2142.6MHz),第二频点号为10688,第三频点号为10663。 上行频点号分别为9763(中心频率 1952.6MHz)、9738以及9713。 WCDMA码片速率= 3.84MHz扩频因子= 4则符号速率= 960Kbps 码片速率= 1秒钟传送的比特数 3.84M个 3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,

每时隙有2560个码片。 因此1帧包含的比特数=2560*15=38400bit 因为1帧=10ms 所以码速率= 2 / 4 因此 空口速率3。84Mb/S是由wcdma的帧结构所决定的。3gpp规定wcdma的UU 口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。如此算来, 即3840/ms换算成标准速率格式即 3.84Mb/s。 我们知道wcdma是无线频带传输,即数字基带信号要经过调制变频到合适的频点上、在一定的频带范围内来传输的。 在理想情况下传输一定基带带宽信号用和信号带宽相同的频带 带宽就可以了。 实际上,由于形成频带带宽的带通滤波器不可能是理想的矩形,而是常用的钟型,就使得频带带宽要大于基带信号的带宽。 在WCDMA中采用升余弦滚降系数滤波器,滚降系数为 0.22, 那么传速率为 3.84Mb/s信号的所需带宽为B= 3.84(1+ 0.22)= 4.684Mb/s,考虑到频点间要留有一定的保护间隔200K,两头的

带宽与数据传输速率

什么是带宽什么是数据传输速率,有何异同 最佳答案 数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为: S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为: Rmax=2.f(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax与信道带宽B、信噪比S/N的关系为: Rmax=B.log2(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。若S/N=30(dB),那么信噪比根据公式: S/N(dB)=10.lg(S/N)

信道带宽 信道容量 速率

数据传输数率、带宽、信道容量之间的区别和联系 2008-08-24 10:26 数据传输速率的定义: 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为: S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 带宽与数据传输速率: 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为: Rmax=2.f(bps) (RMAX就是信道容量) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系(信道容量和带宽的关系)。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax 与信道带宽B、信噪比S/N的关系为: Rmax=B.log2(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。若S/N=30(dB),那么信噪比根据公式: S/N(dB)=10.lg(S/N) 可得,S/N=1000。若带宽B=3000Hz,则Rmax≈30kbps。香农定律给出了一个有

相关文档
相关文档 最新文档