文档库 最新最全的文档下载
当前位置:文档库 › 八年级第二学期3月份质量检测数学试卷含答案

八年级第二学期3月份质量检测数学试卷含答案

八年级第二学期3月份质量检测数学试卷含答案
八年级第二学期3月份质量检测数学试卷含答案

一、选择题

1.如图,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为()

A.3 B.6C.10D.9

2.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作

PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=46,则PE+PF的长是()

A.46B.6 C.42D.26

3.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直 .试在直线a上找一点M,在直线b上找一点N,满足

线b的距离为3,AB230

MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()

A.6 B.8 C.10 D.12

4.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为

3,4,5,则△ABC的面积为()

A .25394+

B .25392

+ C .18253+ D .253182+ 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2

,其中正确结论有( )

A .0个

B .1个

C .2个

D .3个 6.在ΔABC 中,

211a b c =+,则∠A( ) A .一定是锐角

B .一定是直角

C .一定是钝角

D .非上述答案 7.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()

A .22

B .32

C .62

D .82 8.已知,等边三角形ΔABC 中,边长为2,则面积为( )

A .1

B .2

C .2

D .3 9.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )

A .甲、乙都可以

B .甲、乙都不可以

C .甲不可以、乙可以

D .甲可以、乙不可以 10.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为( )

A .5

B .4

C 7

D .4或5 二、填空题

11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.

12.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.

13.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)

14.在△ABC 中,若2222

25,75a b a b c -+===,,则最长边上的高为_____.

15.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.

16.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.

17.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形

ACD ,则线段 BD 的长为_____.

18.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△EC G 的周长是___________.

19.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.

20.已知:如图,等腰Rt OAB ?的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ?,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ?,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ?,44OA B ?,…,则66OA B ?的周长是______.

三、解答题

21.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.

(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;

(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;

(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.

22.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,AD平分∠BAC,BD⊥AD于点D,E是AB的中点,连接CE交AD于点F,BD=3,求BF的长.

23.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.

(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点

.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.

(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=23,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.

24.如图,在矩形ABCD中,AB=8,BC=10,E为CD边上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.

(1)求BF的长;

(2)求CE的长.

25.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.

(1)若∠AED =20°,则∠DEC = 度;

(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.

26.已知a ,b ,c 满足88

a a -+-=|c ﹣17|+

b 2﹣30b +225, (1)求a ,b ,

c 的值;

(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.

27.如图所示,已知ABC ?中,90B ∠=?,16AB cm =,20AC cm =,P 、Q 是ABC ?的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .

(1)则BC =____________cm ;

(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?

(3)当点Q 在边CA 上运动时,直接写出使BCQ ?成为等腰三角形的运动时间.

28.阅读下列一段文字,然后回答下列问题.

已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离

()()22121212PP x x y y =-+-直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .

(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.

已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;

(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.

(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最

的最短长度.

短,求出点P的坐标及PD PF

29.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…

(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;

(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.

30.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.

(1)求∠EDF= (填度数);

(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;

(3)①若AB=6,G是AB的中点,求△BFG的面积;

②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.C

解析:C

【分析】

做点F 做FH AD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在

Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .

【详解】

过点F 做FH AD ⊥交AD 于点H .

∵四边形EFC B '是四边形EFCD 沿EF 折叠所得,

∴ED=BE ,CF=C F ',3BC CD '==

∵ED=BE ,DE=AD-AE=9-AE

∴BE=9-AE

∵Rt ABE △,AB=3,BE=9-AE

∴()22293AE AE -=+

∴AE=4

∴DE=5

∴9C F BC BF BF '=-=-

∴Rt BC F ',3BC '=,9C F BF '=-

∴()22293BF BF -+=

∴BF=5,EH=1

∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =

+=+故选:C .

【点睛】

本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题. 2.C

解析:C

【解析】

【分析】

根据三角形的面积判断出PE+PF 的长等于AC 的长,这样就变成了求AC 的长;在Rt △ACD

和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的长,再利用勾股定理就可以求出AC的长,也就是PE+PF的长.

【详解】

∵△DCB为等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,

∴S△BCD=1

2

BD?PE+

1

2

CD?PF=

1

2

BD?AC,

∴PE+PF=AC,

设AD=x,BD=CD=3x,AB=4x,

∵AC2=CD2-AD2=(3x)2-x2=8x2,

∵AC2=BC2-AB2=()2-(4x)2,

∴x=2,

∴,

故选C

【点睛】

本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.

3.B

解析:B

【解析】

【分析】

MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可.过A作直线a的垂线,并在此垂线上取点A′,使得AA′=MN,连接A'B,则A'B与直线b的交点即为N,过N作MN⊥a于点M.则A'B为所求,利用勾股定理可求得其值.

【详解】

过A作直线a的垂线,并在此垂线上取点A′,使得AA′=4,连接A′B,与直线b交于点N,过N作直线a的垂线,交直线a于点M,连接AM,过点B作BE⊥AA′,交射线AA′于点E,如图,∵AA′⊥a,MN⊥a,∴AA′∥MN.

又∵AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM=A′N.

由于AM+MN+NB要最小,且MN固定为4,所以AM+NB最小.

由两点之间线段最短,可知AM+NB的最小值为A′B.

∵AE=2+3+4=9,AB=BE

=

∵A′E=AE﹣AA′=9﹣4=5,∴A′B

==8.

所以AM+NB的最小值为8.

故选B.

【点睛】

本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.

4.A

解析:A

【解析】

分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得

BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.

详解:∵△ABC为等边三角形,

∴BA=BC,

可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,

∴BE=BP=4,AE=PC=5,∠PBE=60°,

∴△BPE为等边三角形,

∴PE=PB=4,∠BPE=60°,

在△AEP中,AE=5,AP=3,PE=4,

∴AE2=PE2+PA2,

∴△APE为直角三角形,且∠APE=90°,

∴∠APB=90°+60°=150°.

∴∠APF=30°,

∴在直角△APF中,AF=1

2AP=

3

2

,333

2

∴在直角△ABF中,AB2=BF2+AF2=(4+33

2)2+(3

2

)2=25+123.

则△ABC的面积是

3

4

?AB2=

3

4

?(25+12)=9+

253.

故选A.

点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.

5.D

解析:D

【解析】

分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.

详解:①∵四边形ABCD和EFGC都为正方形,

∴CB=CD,CE=CG,∠BCD=∠ECG=90°,

∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.

在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,

∴△BCE≌△DCG,

∴BE=DG,

故结论①正确.

②如图所示,设BE交DC于点M,交DG于点O.

由①可知,△BCE≌△DCG,

∴∠CBE=∠CDG,即∠CBM=∠MDO.

又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,

∴∠DOM=∠MCB=90°,

∴BE⊥DG.

故②结论正确.

③如图所示,连接BD、EG,

由②知,BE⊥DG,

则在Rt△ODE中,DE2=OD2+OE2,

在Rt△BOG中,BG2=OG2+OB2,

在Rt△OBD中,BD2=OD2+OB2,

在Rt△OEG中,EG2=OE2+OG2,

∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.

在Rt△BCD中,BD2=BC2+CD2=2a2,

在Rt△CEG中,EG2=CG2+CE2=2b2,

∴BG2+DE2=2a2+2b2.

故③结论正确.

故选:D.

点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.

6.A

解析:A

【解析】

【分析】根据211

a b c

=+以及三角形三边关系可得2bc>a 2,再根据(b-c)2≥0,可推导得出b 2 +c 2>a 2,据此进行判断即可得.

【详解】∵211

a b c =+,

∴2b c

a bc

+ =,

∴2bc=a(b+c),

∵a、b、c是三角形的三条边,

∴b+c>a,

∴2bc>a·a,

即2bc>a 2,

∵(b-c)2≥0,

∴b 2 +c 2 -2bc≥0,

b 2 +

c 2≥2bc,

∴b 2 +c 2>a 2,

∴一定为锐角,

故选A.

【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2>a 2是解题的关键.

7.B

解析:B

【解析】

由题可知(a-b)2+a2=(a+b)2,解得a=4b,所以直角三角形三边分别为3b,4b,5b,当b=8时,4b=32,故选B.

8.D

解析:D

【解析】

根据题意可画图为:过点A作AD⊥BC,垂足为D,

∵∠B=60°,

∴∠BAD=30°,

∵AB=2,

∴AD=3,

∴S△ABC= 1

2BC·AD=

1

2

×2×3=3.

故选D.

9.A

解析:A

【解析】

试题分析:剪拼如下图:

故选A

考点:剪拼,面积不变性,二次方根

10.D

解析:D

【分析】

根据题意,可分为已知的两条边的长度为两直角边,或一直角边一斜边两种情况,根据勾

股定理求斜边即可.

【详解】

当3和4为两直角边时,由勾股定理,得:

22

+=;

345

当3和4为一直角边和一斜边时,可知4为斜边.

∴斜边长为4或5.

故选:D.

【点睛】

本题考查了勾股定理,关键是根据题目条件进行分类讨论,利用勾股定理求解.

二、填空题

11.5

【解析】

试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.

考点:勾股定理的逆定理,

127

【分析】

连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.

【详解】

连接AC,交BD于点O,

∵AB=AD,BC=DC,∠A=60°,

∴AC垂直平分BD,△ABD是等边三角形,

∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,

∵CE∥AB,

∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,

∴∠DAO=∠ACE=30°,

∴AE=CE=3,

∴DE=AD?AE=1,

∵∠CED=∠ADB=60°,

∴△EDF是等边三角形,

∴DE=EF=DF=1,

∴CF=CE?EF=2,OF=OD?DF=1,

22

∴=-=,

OC CF OF3

22

BC=OB+OC=7

∴,

故答案为:7.

【点睛】

本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.

13.【分析】

这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.

【详解】

解:如图,一条直角边(即木棍的高)长20尺,

另一条直角边长7×3=21(尺),

22

+=29(尺).

2021

答:葛藤长29尺.

故答案为:29.

【点睛】

本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.

14.125 【分析】 解方程222225,7a b a b +=-=可求得a=4,b=3,故三角形ABC 是直角三角形,在利用三角形的面积转化得到斜边上的高.

【详解】

解:∵2222

25,7a b a b +=-=,

将两个方程相加得:2232a =,

∵a >0,

∴a=4

代入得:22425b +=,

∵b >0,

∴b=3,

∵a=3,b=4,c=5满足勾股定理逆定理,

∴△ABC 是直角三角形,

如下图,∠ACB=90°,CD ⊥AB ,

1122

ABC S AC BC AB CD =??=?? , 即:

1134522

CD ??=??, 解得:CD=125

, 故答案为:125

. 【点睛】 本题考查求解三角形的高,解题关键是利用三角形的面积进行转化,在同一个三角形中,

一个底乘对应高等于另一个底乘对应高.

15.10

【分析】

先根据勾股定理得出a2+b2=c2,利用完全平方公式得到(a+b)2﹣2ab=c2,再将a+b=

c=5代入即可求出ab的值.

【详解】

解:∵在Rt△ABC中,直角边的长分别为a,b,斜边长c,

∴a2+b2=c2,

∴(a+b)2﹣2ab=c2,

∵a+b=c=5,

∴(2﹣2ab=52,

∴ab=10.

故答案为10.

【点睛】

本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.

16.4

【分析】

根据线段垂直平分线得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可

【详解】

∵AC的垂直平分线FG,

∴AE=EC,∠AEG=∠AEF=90°,

∵∠BAC=120°,

∴∠G=∠BAC-∠AEG=120°-90°=30°,

∵∠BAC=120°,AB=AC,

∴∠B=∠C=1

2

(180°-∠BAC)=30°,

∴∠B=∠G,

∴BF=FG,

∵在Rt△AEG中,∠G=30°,EG=3,

∴AG=2AE,

即(2AE)2=AE2+32,

同理在Rt△CEF中,∠C=30°,CF=2EF,

(2EF)2=EF2+2,

∴EF=1(负值舍去),

∴BF=GF=EF+CE=1+3=4,

故答案为4.

【点睛】

本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.

17.4或

【分析】

分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.

【详解】

①以A为直角顶点,向外作等腰直角三角形DAC,如图1.

∵∠DAC=90°,且AD=AC,

∴BD=BA+AD=2+2=4;

②以C为直角顶点,向外作等腰直角三角形ACD,如图2.

连接BD,过点D作DE⊥BC,交BC的延长线于E.

∵△ABC是等腰直角三角形,∠ACD=90°,

∴∠DCE=45°.

又∵DE⊥CE,

∴∠DEC=90°,

∴∠CDE=45°,

∴CE=DE=2=

在Rt△BAC中,BC==BD===

③以AC为斜边,向外作等腰直角三角形ADC,如图3.

∵∠ADC=90°,AD=DC,且AC=2,

=

∴AD=DC=AC sin45°=2

2

又∵△ABC、△ADC是等腰直角三角形,

∴∠ACB=∠ACD=45°,

∴∠BCD=90°.

又∵在Rt△ABC中,BC==

∴BD==

故BD的长等于4或25或10.

故答案为4或25或10.

【点睛】

本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,18.2

【分析】

连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,

【详解】

解:(1)如图,连接CD、CF.

∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,

∴BD=CD=1.2 ,

∵由翻折可知BD=DF,

∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,

∴∠DCF=∠DFC,

∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,

∴GC=GF,

∴EG+CG=EG+GF=EF=BE,

∴△ECG的周长2,

2.

【点睛】

本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线

段上是解题的关键..

19.6

【解析】

∵AB=AC ,AD 是角平分线,

∴AD ⊥BC ,BD=CD ,

∴B 点,C 点关于AD 对称,

如图,过C 作CQ ⊥AB 于Q ,交AD 于P ,

则CQ=BP+PQ 的最小值,

根据勾股定理得,AD=8,

利用等面积法得:AB ?CQ=BC ?AD ,

∴CQ=

BC AD AB ?=12810

?=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.

2022+【分析】 依次求出在Rt △OAB 中,OA 1=22;在Rt △OA 1B 1中,OA 2=22OA 1=(22

)2;依此类推:在Rt △OA 5B 5中,OA 62)6,由此可求出△OA 6B 6的周长. 【详解】

∵等腰Rt OAB ?的直角边OA 的长为1,

∴在Rt △OA 1B 1中OA 12OA 2, 在22Rt OA B ?中OA 2=

22OA 1=(22)2, …

故在Rt △OA 6B 6中OA 62OA 52)6= OB 6 66A B 2OB 6=28

相关文档