文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计-随机变量及其分布

概率论与数理统计-随机变量及其分布

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

《概率论与数理统计》习题答案(复旦大学出版社)第三章

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=???? ? ≤ ≤≤ ≤. , 020,20, sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ?? ≤<≤ <36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππsin sin sin sin sin 0sin sin 0sin 4 3 4 6 3 6 1). 4 =--+= 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X ,Y )的分布密度 f (x ,y )=?? ?>>+-. , 0, 0,0, )43(其他y x A y x e 求:(1) 常数A ; (2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34) (,)d d e d d 112 x y A f x y x y A x y +∞+∞+∞+∞+-∞ -∞ == =? ??? 得 A =12 (2) 由定义,有 (,)(,)d d y x F x y f u v u v -∞ -∞ = ?? ( 34 ) 3400 12e d d (1e )(1e ) 0,0, 0,0, y y u v x y u v y x -+--??-->>? ==?? ? ????其他 (3) {01,02}P X Y ≤<≤< 12(34) 38 {01,02} 12e d d (1 e )(1e )0.9499. x y P X Y x y -+--=<≤<≤= =--≈?? 5.设随机变量(X ,Y )的概率密度为 f (x ,y )=?? ?<<<<--. , 0, 42,20),6(其他y x y x k (1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.wendangku.net/doc/464588024.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

随机变量及其分布公式

随机变量及其分布 一,离散型随机变量 1,试验:凡是对现象的观察或为此而进行的实验,都称之为试验。 2,随机试验:一个试验如果满足(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果,那么,这个试验就叫做随机试验。 3,随机变量:随着试验结果变化而变化的变量称为随机变量,随机变量常用字母ηξ,,,Y X 表示。例如抛筛子、掷硬币 4,离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量 二,离散型随机变量的分布列 要掌握一个离散型随机变量X 的取值规律,必须知道: 1,X 所有可能取的值n x x x ,,,21 ; 2,X 取每一个值i x 的概率n p p p ,,,21 分布列 : 我们称这个表为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列。 3,离散型随机变量的分布列性质: (1)*,0N i p i ∈≥;(2)1321=++++n p p p p 三,两点分布与超几何分布 1,两点分布 若随机变量X 的分布列为 则称X 的分布列为两点分布列。 如果随机变量X 的分布列为 两点分布列,就称X 服从两点分布,并称)1(==x P p 为成功概率 2,超几何分布: 一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}k X =发生的概率为 n N k n M N k M C C C k x P --==)((m k ,2,1,0=),其中{}*,,,,,,m in N N M n N M N n n M m ∈≤≤=且,称 为超几何分布列,如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布 四,独立重复试验与二项分布 1,独立重复试验:一般的,在相同条件下重复做的n 次试验称为n 次独立重复试验。 2,独立重复试验事件A 恰有k 次发生的概率: 一般的,如果在1次实验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率 =)(k P n k n k k n p p C --)1(,(n k ,2,1,0=)

《概率论与数理统计》习题三问题详解-设二维随机变量(x,y)

《概率论与数理统计》习题及答案 习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ?? 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题 1、假设随机变量X 的绝对值不大于1,1(1),8P X =-= 1 (1).4 P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X 的分布函数()()F x P X x =≤ 解:当1x <-时,()0F x =。 当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1 (1)8 P X x = +-<≤ 而 5(11)1(1)(1)8 P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<< (11)(111)P X P X x X =-<<-<<-<< 5155 8216 x x ++=?= , 于是,得 5155 ()8216 x x F x ++=?= 当1x ≥-时,()1F x =。 故所求分布函数为 0, 1 55(), 11161, 1 x x F x x x <-??+? =-≤≤??≥?? 评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散 型、连续型和混合型在类。 2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。 解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。依题意,1A ,2A ,3A 相互独立。X 的可能取值是0,1,2,3。于是,得X 的概率分布为 11 (0)(),2 P X P A ===

二维随机变量及其概率分布

1 第三章二维随机变量及其概率分布 一.二维随机变量与联合分布函数 1.定义若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质 (1)F(x,y)分别关于x 和y 单调不减. (2)0≤F(x,y)≤1,F(x,-∞)=0,F(-∞,y)=0,F(-∞,-∞)=0,F(∞,∞)=1.(3)F(x,y)关于每个变量都是右连续的,即F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).(4)对于任意实数x 1

随机变量的概率分布

随机变量的概率分布 一、填空题 1.某射手射击所得环数X 的概率分布为 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 答案 0.79 2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=1 3. 答案 1 3 3.(优质试题·常州期末)设X 是一个离散型随机变量,其概率分布为: 则q 的值为________解析 由概率分布的性质知??? ?? 2-3q ≥0, q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 32-33 6 4.设离散型随机变量X 的概率分布为

解析由概率分布的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5. 答案0.5 5.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则“放回5个红球”事件可以表示为________. 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案ξ=6 6.(优质试题·南通调研)从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是________. 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布 问题,故所求概率为P=C23C14 C37= 12 35. 答案12 35 7.已知随机变量X只能取三个值x1,x2,x3,其概率依次成等差数列,则公差d 的取值范围是________. 解析设X取x1,x2,x3时的概率分辊为a-b,a,a+d,则(a-d)+a+(a

自考概率论与数理统计多维随机变量及其概率分布

第三章多维随机变量及其概率分布 内容介绍 本章讨论多维随机变量的问题,重点讨论二维随机变量及其概率分布。 考点分析 内容讲解 §3.1多维随机变量的概念 1. 维随机变量的概念: 个随机变量,,…,构成的整体=(,,…,)称为一个维随机变量, 称为的第个分量(). 2.二维随机变量分布函数的概念: 设(,)为一个二维随机变量,记 ,,, 称二元函数为二维随机变量(,)的联合分布函数,或称为(,)的分布函数. 记函数= =, 则称函数和为二维随机变量(,)的两个分量和的边缘分布函数. 3. 二维随机变量分布函数的性质: (1)是变量(或)的不减函数;

(2)01,对任意给定的,;对任意给定的,; ,; (3)关于和关于均右连续,即. (4)对任意给定的,有 . 例题1. P62 【例3-1】判断二元函数是不是某二维随机变量的分布函数。【答疑编号12030101】

解:我们取, = 1-1-1+0=-1<0,不满足第4条性质,所以不是。 4.二维离散型随机变量 (1)定义:若二维随机变量(X,Y)只取有限多对或可列无穷多对(),(=1,2,…),则称(X,Y)为二维离散型随机变量. (2)分布律: ① 设二维随机变量(X,Y)的所有可能取值为(),(=1,2,…),(X,Y)的各个可能取值的概率为 ,(=1,2,…), 称,(=1,2,…)为(X,Y)的分布律. (X,Y)的分布律还可以写成如下列表形式

②(X,Y)分布律的性质 [1] ,(=1,2,…); [2] 例题2. P62 【例3-2】设(X,Y)的分布律为 求a的值。 【答疑编号12030102】 解:

随机变量及其概率分布、超几何分布

随机变量及其概率分布、超几何分布 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.设X 则q的值为________ 2.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X,则X的所有可能取值个数为________. 3.已知随机变量ξ的分布列为P(ξ=k)=a 2k ,k=1,2,3,4.则P(2<ξ≤4) =________. 5.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,若P(X=k)=C4 7 C6 8 C10 15 ,则k=________. 6

7.某电子管正品率为34,次品率为1 4 ,现对该批电子管有放回地进行测试, 设第ξ次首次测到正品,则P (ξ=3)=______. 8.如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P (ξ≥8)=_______. 二、解答题(共42分) 9.(12分)袋中有同样的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,求随机变量ξ的概率分布. 10.(14分)设离散型随机变量ξ的分布列P ? ? ???ξ=k 5=ak ,k =1,2,3,4,5. (1)求常数a 的值;(2)求P ? ? ???ξ≥35; (3)求P ? ????1 10 <ξ<710. 11.(16分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验,设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. (1)用ξ表示抽检的6件产品中二等品的件数,求ξ的概率分布; (2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.

《2.1 随机变量及其概率分布》教案

《2.1 随机变量及其概率分布》教案 教学目标: 1?理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列; 2?掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 3. 理解三个分布的意义. 教学重点: 离散型随机变量的分布列的意义及基本性质. 教学难点: 分布列的求法和性质的应用. 教学过程; 一.复习引入: 1.随机变量 2.随机变量常见的类型 二?离散型随机变量及其分布: 1. 如果离散型随机变量X的所有可能取得值为x1,x2,…,x n;X取每一个值x i(i=1,2,…,n)的概率为p1,p2,…,p n,则称表 2. 离散型随机变量的分布列的两个性质: ⑴; ⑵. 例:某人射击4发子弹,击中目标则停止射击或直至射击完毕,该人每次击中目标的概率为0.8,求(1)该人射击子弹的分布列;(2)P{X<3},P{1

2.二项分布 定义若随机变量X的可能取值为0,1,…,n,而X的分布律为 其中0

相关文档
相关文档 最新文档