文档库 最新最全的文档下载
当前位置:文档库 › 随机过程课件第8讲

随机过程课件第8讲

随机过程的微分和积分

9在高等数学中,数列的收敛与极限是微积
分的基础。
9在随机过程中,随机序列的收敛与极限的
则是随机过程微积分的 随机过程微积分 基础。 基础

“数列收敛”的概念
?若有数列S1,S2,…,Sn,…对任意小的正实数ε>0,总
能找到一个正整数N,使得当n>N时,存在∣Sn-a∣< ε,对任意n>N ,则称数列S1,S2,…,Sn,…收敛于常数a
?用
lim Sn = a 表示;或用S1,S2,…,Sn → a n ? >∞
n ?>∞
?数列{Sn}的极限为a

举例:设一个电压控制电路对外来的噪声电压信号进行控制, 使其稳定在某一水平。我们考察这一渐进过程。
设该试验共有三个结果Ω=( ξ1,ξ2, ξ3),在t=1,2, …,n,…上采样, 随 时间变化得一串随机变量X1,X2,…,Xn… ← 称随机变量序列{X(n)}。

随机序列收敛的几种定义

1、随机变量序列“处处收敛”
(every ? where)
若随机序列样本空间Ω={ξ1, ξ2, ξ3}中的“所有” 的样 本序列(普通数列)均收敛,即:
ζ 1: x1 (1), x 1 (2), L , x1 ( n ) → x1
n→ ∞
ζ 2: x 2 (1), x 2 (2), L , x 2 ( n ) → x 2 , ( x1 , x 2 , x3 )∈ X
n→∞
ζ 3: x3 (1), x3 (2), L , x3 ( n ) → x3
n→ ∞

lim xi (n) = xi, ?ζ i ∈ Ω
n →∞
则称:随机序列{X(n)} “处处收敛”于随机变量X。 记作: lim X (n) = X
n →∞
e 简写: { X (n)} ?? →X

9在 “处处收敛”的定义中,Ω中只要有“一
个”ξi对应的样本序列
{ xi (n)} 不收敛,则
随机序列{X(n)}就不是“处处收敛”的。
9这个条件一般的随机序列都不容易满足。 这个条件一般的随机序列都不容易满足

2、以概率1收敛(“几乎处处收敛”) almost .every.where 若随机序列{X(n)}相对试验E的所有可能结果ξ ∈Ω 满足:
P{lim X (n) = X } = 1
n →∞
则称:随机序列{X(n)} “以概率1收敛”于随机变量 X。
a.e 简记: { X (n)} ??? →X

3、依概率收敛(Probability) 若随机序列{X(n)} 对于任意给定小正数 ε 有:
>0,
lim P{ X (n) ? X ≥ ε } = 0
n→∞
则称:随机序列{X(n)}“依概率收敛”于随机变量X。 记:
P {X (n)} ?? →X

4、依分布收敛(distribution)
lim F n ( x ) = F ( x ) 若存在: n→ ∞
则称:随机变量序列{X(n)}“依分布收敛”于X。 记:
d X ( n ) ? ?→ X
1
设:Fn(x),n=1,2,…是 随机序列{X(n)}的分布函 数,F(x)是随机变量X的分 布函数。
F(x) ) F n(x M ) F i (x M M
0
x

5、均方收敛(平均意义下的收敛)Mean.square 设随机序列{X(n)}对所有的n=1,2,…二阶矩存 在,随机变量X的二阶矩也存在。 若{X(n)}、X满足:
lim E{ X (n) ? X } = 0
n→∞
2
则称:随机序列{X(n)} “均方收敛”于随机变量X。
l ? i ? m X (n) = X ,或: 记作:
n→∞
X (n) ?? ? →X
M ?S

均方收敛的充要条件(柯西准则)
若随机序列{X(n)}和随机变量X的二阶矩均存 在,则{X(n)}均方收敛于X的充要条件是:
n →∞ m →∞
lim E{ X (n) ? X (m) } = 0
2
2
E[ X (n) ? X (m) 9只需要对随机序列{X(n)}的一个方差
]
进行检验,比较 方便。 进行检验 方便
9在随机过程中运用的是均方收敛。

四种收敛模式之间的关系
a?e
e
M ?S
P
d
a?e
e P
d
M ?S

随机过程的均方连续

1、定义 若二阶矩过程在t∈T上满足
Δt →0
lim E{[ X (t + Δt ) ? X (t )] } = 0
2
则称X(t) 在t∈T上,“在均方意义下”连续。或 称该二阶矩过程X(t)具有“均方连续性”。常表 示为
l ? i ? m X (t + Δt ) = X (t )
Δt →0
t ∈T
或者简称过程m.s连续。

2、均方连续的准则 (过程X(t) 在t∈T上均方连续的“充要条件”) (1)若X(t) 的自相关函数 R X (t1 , t 2 ) 在t∈T (t1=t2=t)上连续,则X(t)便在t∈T上均方连续。 上均方连续
t2 T 0 T
t1 = t 2 = t ∈ T
t1

(2)若X(t) 在t∈T上均方连续,则 R X (t1 , t 2 ) 在t1=t2=t上一般连续。 上一般连续

证明:
R X (t + Δt1 , t + Δt 2 ) ? R X (t , t ) = E[ X (t + Δt1 ) X (t + Δt 2 )] ? E[ X (t ) X (t )] = E{[ X (t + Δt1 ) ? X (t )] X (t + Δt 2 )} + E{ X (t )[ X (t + Δt 2 ) ? X (t )]}
⑴ 利用许瓦兹不等式 ⑴

1/ 2 E{[X (t + Δt1 ) ? X (t)]? X (t + Δt2 )} ≤ {E{[X (t + Δt1 ) ? X (t)]2 }? E[ X 2 (t + Δt2 )]}
E{ X (t ) ? [ X (t + Δt 2 ) ? X (t )]} ≤ {E[ X 2 (t )] ? E{[ X (t + Δt 2 ) ? X (t )]2 }}1 / 2
⑵ 1 对不等式两端取 lim (1) ≤ lim {?} 1 2 及 lim (2) ≤ lim {?} 2 Δt1→ 0 Δt1→0 Δt 2→0 Δt 2→0 极限:

随机过程的微分 随机过程
一. 随机过程的微分(导数) 1. 均方导数的定义 设均方连续过程[ X(t), t∈T ]和随机过程[X (t) ′,t∈T],若 在整个T内当 Δt → 0 时,满足
2 ? ? ?? X (t + Δt ) ? X (t ) ? ? ′ ? X (t ) ? ? = 0 lim E ?? Δt → 0 Δt ? ? ? ?? ?

X (t + Δt ) ? X (t ) l ?i ?m = X (t )′ Δt →0 Δt
则称过程X(t)在t∈T上均方( m.s )可导(可微)。 而
X (t )′ =
dX (t ) dt
便称为过程X(t)在t∈T上的均方导数。

2. 均方可微的条件
9 在检验过程X(t)是否均方可微时,我们遇到了一个
问题,在上式中, X (t) ′是待求的。
9 在X (t) ′尚未求出时,检验X(t)是否均方可微,我 是否均方可微
们可以运用一个能避开X (t) ′的准则-Cauchy准 则。即,如果X(t)满足:
2 ? ? ? ? + Δ ? + Δ ? X t t X t X t t X t ( ) ( ) ( ) ( ) ? ? 1 2 ? lim E?? =0 ? ? Δt1 ,Δt2 →0 Δt1 Δt 2 ? ? ? ? ? ?
则称X(t) 在均方意义下可微。

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程

马尔可夫过程 ?1马尔可夫过程概论 6 1.1马尔可夫过程处于某个状态的概率 6 1.2马尔可夫过程的状态转移概率 6 1.3参数连续状态离散马尔可夫过程的状态转移的切普曼-柯尔莫哥洛夫方程 切普曼-柯尔莫哥洛夫方程 齐次切普曼-柯尔莫哥洛夫方程 转移概率分布函数、转移概率密度函数 6 1.4马尔可夫过程状态瞬时转移的跳跃率函数和跳跃条件分布函数 瞬时转移概率分布函数 6 1.5确定马尔可夫过程Q矩阵 跳跃强度、转移概率Q矩阵 ?2参数连续状态离散马尔可夫过程的前进方程和后退方程 柯尔莫哥洛夫-费勒前进方程(利用Q矩阵可以导出、转移概率的微分方程)福克-普朗克方程(状态概率的微分方程) 柯尔莫哥洛夫-费勒后退方程(利用Q矩阵可以导出、转移概率的微分方程)?3典型例题 排队问题、机器维修问题、随机游动问题的分析方法 ?4马尔可夫过程的渐进特性 稳态分布存在的条件和性质 稳态分布求解 ?5马尔可夫过程的研究 1概论 1.1 定义及性质 1.2 状态转移概率 1.3 齐次马尔可夫过程的状态转移概率 1.5跳跃强度、转移概率Q矩阵 2 前进方程和后退方程 2.1 切普曼-柯尔莫哥洛夫方程 2.2柯尔莫哥洛夫-费勒前进方程 2.2福克-普朗克方程 2.3柯尔莫哥洛夫-费勒后退方程 3典型的马尔可夫过程举例 例1 例2 例3 例4,随机游动 4马尔可夫过程的渐进特性 4.1 引理1 4.2 定理2 4.3 定理

5马尔可夫过程的研究 6关于负指数分布的补充说明:

1概论 1.1定义:马尔可夫过程 ()t ξ: 参数域为T ,连续参数域。以下分析中假定[0,)T =∞; 状态空间为I ,离散状态。以下分析中取{0,1,2,}I ="; 对于T t t t t m m ∈<<<<+121",若在12m t t t T <<<∈"这些时刻观察到随机过程的值是12,,m i i i ",则 1m m t t T +>∈时刻的条件概率满足: {}{}1111()/(),,()()/(), m m m m m m P t j t i t i P t j t i j I ξξξξξ++======∈" 则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。 1.2 定义:齐次马尔可夫过程 对于马尔可夫过程()t ξ,如果转移概率{}21()/()P t j t i ξξ==只是时间差12t t ?=τ的函数,这类马尔可夫过程称为齐次马尔可夫过程。 1.3 性质 马尔可夫过程具有过程的无后效性; 参数连续状态离散的马尔可夫过程的条件转移概率为: {}{}212112()/()0()/(),,P t j t t t P t j t i t t i j I ξξξξ′′=≤≤===≤∈ 马尔可夫过程的有限维联合分布律可以用转移概率来表示 {} {}{}{}32132211123(),(),()()/()()/()(),,,P t k t j t i P t k t j P t j t i P t i t t t i j k I ξξξξξξξξ=========≤≤∈ 马尔可夫过程的有限维条件分布律可以用转移概率来表示

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

第2章 随机过程习题及答案上课讲义

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

应用随机过程-综述

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:综述 院系:电子与信息工程学院 班级: 09硕通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009-11至2009-12 哈尔滨工业大学

哈尔滨工业大学课程设计任务书

特征函数在随机过程研究中的作用与意义 1.特征函数的定义 在介绍特征函数在随机过程研究中的作用和意义之前,首先介绍一下特征函数的定义。 特征函数是一个统计平均值,它是由随机变量X 组成的新的随机变量j X e ω的数学期望,记为: ()()j X E e ωωΦ= (1) 当X 为连续随机变量时,则X 的特征函数可表示成 ()()i X i x Ee f x e dx ωωω∞ -∞ Φ== ? (2) 其中()f x 为X 的概率密度函数。 对于随机过程的特征函数的定义与随机变量的特征函数的定义一致。 对任意时刻t ,随机过程的一维特征函数为: () (,)[](,)i X t i x X t E e f x t e dx ωωω∞ -∞ Φ== ? (3) 2.特征函数的性质 以下本文不加证明的给出特征函数的几个性质: (1) |()|(0)1ωΦ≤Φ=; (2) 共轭对称性()()ωωΦ-=Φ; (3) 特征函数()ωΦ在区间(,)-∞∞上一致连续; (4) 设随机变量Y aX b =+,其中,a b 是常数,则()()ib Y X e a ω ωωΦ=Φ; 其中(),()X Y ωωΦΦ分别表示随机变量,X Y 的特征函数。上式对于随机过程同样适用。 (5) 设随机变量,X Y 相互独立,又Z X Y =+,则()()()Z X Y ωωωΦ=ΦΦ; 此式表示两个相互独立随机变量之和的特征函数等于各自特征函数的乘积。 3.特征函数在随机过程研究中的作用与意义 由于特征函数在随机过程中和随机变量中的定义是一致的,仅是将X 变为X (t ),将概率密度函数也做相应的变化即可。故本文为方便起见,将随机过程和随机变量的特征函数的作用与意义做统一的讨论。 利用特征函数求随机过程的概率密度

随机过程习题答案

随机过程习题解答(一)第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a )分别写出随机变量和的分布密度 (b )试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a )试求和的相关系数; (b )与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。解:(a )利用的独立性,由计算有: (b )当的时候,和线性相关,即 3、 设是一个实的均值为零,二阶矩存在的随机过程,其相关函数 为 ,且是一个周期为T 的函数,即, 试求方差函数 。 解:由定义,有: 4、考察两个谐波随机信号和,其中: 式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a )求的均值、方差和相关函数; (b )若与独立,求与Y的互相关函数。 解:(a ) (b ) 第二讲作业: P33/2.解:

其中为整数, 为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数 ,因此有一维分布: P35/4. 解: (1) 其中 由题意可知, 的联合概率密度为: 利用变换: ,及雅克比行列式: 我们有 的联合分布密度为: 因此有: 且 V 和 相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于 独立、服从正态分布,因此 也服从正态分布,且 所以 。 (4) 由于: 所以 因此 当时, 当 时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有: P37/10. 解:(1) 当i =j 时 ;否则 令 ,则有 (2)

应用随机过程学习汇总

应用随机过程学习汇总

————————————————————————————————作者:————————————————————————————————日期:

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

应用随机过程 期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ·,记为{X n ,n=1,2, ·},则X n 是随机变量,而{X n ,n=1,2, ·}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ·}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{ -- 例4:E 都为), 0[∞+

注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 : T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 随机过程的n 维分布: T t t t x t X x t X x t X P x x x F n n n n t t t n ∈≤≤≤= ,,},)(,)(,)({),,(21221121,,21 1、有限维分布族:随机过程的所有一维分布,二维分布,…n 维分布等的全体 }1,,,),,,({2121,,21≥∈n T t t t x x x F n n t t t n 称为{X(t), t ∈T}的有限维分布族。 2、有限维分布族的性质: (1)对称性:对(1,2,…n )的任一排列),,(21n j j j ,有 ),,(),,(21,,,,21212 1 n t t t j j j t t t x x x F x x x F n n n j j j = (2)相容性:对于m

随机过程第15讲 习题课2

随机过程习题解答(二) P228/1. 证明:由于,有 t s <{}{}{} {}{} n t N P k n s t N P k s N P n t N P n t N k s N P n t N k s N P =?=??== = ==== ==)(})({)()()(,)()()( 其中 {}) ()!())((! )(})({)(s t k n s k e k n s t e k s k n s t N P k s N P ???????= ?=??=λλλλ {}t n e n t n t N P λλ?==! )()( 所以 {}k n k k n k n k k t n s t k n s k k s k s k n k n k n t s t t s e n t e k n s t e k s n t N k s N P ???????? ? =??=???= ==1)!(!! )(!)()! ())((!)()(/)() (λλλλλλ 证毕。 P229/3. 解:(1)因为{是一Poission 过程,由母函数的定义,有: }0),(≥t t N ()( ) ()(( )() ) ()(})({})({})({})({})({})({})({})({})({})({})({)()()(0 0000000 )(s s s j t N P s l t N P s l k t N P s l t N P s l k t N P s l t N P s l k t N P s l t N P s l k t N P l t N P s k t t N P s t N t N j j l l l k l k l l l l k l k l k k l l k l k k k l k k t t N ?∞ =∞=∞ =?∞ =∞ =∞=?∞ ==?∞ ==∞ =?+Ψ?Ψ=?=??==??=??== ??=???== ??=???==? ?=??==?=?+=Ψ∑∑∑∑∑∑∑∑∑∑∑) (2)由上面(1)的结果,可得:

第二讲 无线多径信道特性

第二讲 无线多径信道特性 §2-1瑞利(Rayleigh )和莱斯(Ricean )衰落 图2.1 L 个路径的典型无线多径衰落信道 发送信号 ()t f j c e t s t x π2)(Re )(= )(t s 是基带信号,c f 为载波频率。 通过多径信道,接收信号为: ))(()()(1t t x t t y l L l l τα-=∑= ?? ? ??-=∑L l t f j l t f j l c l c e t t s e t πτπτα2)(2))(()(Re

)(t l α为复数信道损耗;)(t l τ为实数的信道时间延迟;均为随机过程。 等效的基带接收信号 ∑-=L l l t f j l t t s e t t r l c ))(()()()(2τατπ );()(t h s ττ*= (2-1) );(t h τ为多径信道在t 时刻等效的基带脉冲响应。 );(t h τ∑-=L l l t f j l t e t l c ))(()()(2ττδατπ ∑-=L l l l t t t ))(()(τδβ )(t l β是一个复值随机过程。 显然接收信号模化为一种复值高斯随机过程,均值,方差为: ))((t r E av r =,))()((212 t r t r E r *=σ 其分布密度(p.d.f )为 22)()(2 21 )(r r r av r av r r e r p σπσ---*= 接收信号的包络和相位: )()(t r t =ξ,))(arg()(t r t =θ

其联合分布密度为 22222)sin cos (222),(r Q I r a a A r e e p σθθξσξπσξθξ++-= 其中: )Re(r I av a =,)Im(r Q av a = r av A = 可以求得: ?=π θθξξ20),()(d p p 22 22202)(r A r r e A I σξσξσξ+-= (2-2) )(0x I 零阶第一类修正贝塞尔函数, ?=πθθ20 cos 021)(d e x I x (2)式的幅度分布为莱斯分布(Ricean ),222r A K σ=称为“莱斯因子”。当r av A = =0 时,(2)式的幅度分布 变为:

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中 红球,每隔单位时间从 袋中有一个白球,两个任取一球后放回,对每对应随机变量 一个确定的t ?? ? ? ? = 时取得白球 如果对 时取得红球 如果对 t e t t t X t 3 )( . 维分布函数族 试求这个随机过程的一 2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少?

3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的 poisson 过程。以小时为单位。 则((1))30E N =。 40 300 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= -- 1 2 121 2 1 2 2 1 112,12|1221 1122212(,)(|)()exp() exp() (1)! (1)! N N N N N N N N N T T T T T f t t f t t f t t t t t N N λλλλ--== ----

华工应用随机过程试卷及参考答案

华南理工大学2011—2012 学年第一学期 《应用随机过程》考试试卷(A 卷) (闭卷时间 120 分钟) 院/系年级 __专业姓名学号 1、设X 是概率空间(Ω,F ,P )且 EX 存在, C 是 F 的子σ-域,定义E (XC )如下:(1)_______________ ; (2)_____________________________________________ ; 2、设{N (t ),t ≥ 0}是强度为 λ 的 Poisson 过程,则 N (t )具有_____、 _____增量,且?t >0,h >0充分小,有:P ({N (t + h )? N (t ) = 0})= ________,P ({N (t + h )? N (t ) =1})=_____________; 3、设{W (t ),t ≥ 0}为一维标准 Brown 运动,则?t >0,W (t ) ~____,且与 Brown 运动有关的三个随机过程____________、________ ______________、______________都是鞅(过程); 4、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 ______________________________________________________。 二、证明分析题(共 12 分,选做一题) 1、设X 是定义于概率空间(Ω,F ,P )上的非负随机变量,并且具有

指数分布,即:P({X ≤ a}) =1?e?λa ,a >0,其中λ是正常数。设λ是 另一个正常数,定义:Z = λλe?(λ?λ)X ,由下式定义:P(A)=∫A ZdP,?A∈F ;(1)证明:P(Ω) =1;(2)在概率测度P 下计算的分布函 数:P({X ≤ a}),a>0; 2、设X0~U (0,1),X n+1~U (1?X n,1),n≥1,域流{F n,n≥ 0}满足: F n =σ(X k,0 ≤k≤n),n≥ 0 ;又设Y0 = X0 ,Y n = 2n ?∏ k n=1 1 X?k X ?1 k ,n ≥1, 试证:{Y n ,n ≥ 0}关于域流{F n,n ≥ 0}是鞅! 三、计算证明题(共60 分) 1、(12 分)假设X~E(λ),给定c >0,试分别由指数分布的无记

随机过程习题及答案

第二章随机过程分析 1.1学习指导 1.1.1要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1.随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2.随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ξ(t 1)≤x 1],随机过程ξ(t )的一维分布函数为 F 1(x 1,t 1)=P [ξ(t 1)≤x 1](2-1) 如果F 1(x 1,t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 对于任意时刻t 1和t 2,把ξ(t 1)≤x 1和ξ(t 2)≤x 2同时成立的概率 称为随机过程?(t )的二维分布函数。如果 存在,则称f 2(x 1,x 2;t 1,t 2)为随机过程?(t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程?(t )的n 维分布函数。如果 存在,则称f n (x 1,x 2,…,x n ;t 1,t 2,…,t n )为随机过程?(t )的n 维概率密度函数。 3.随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程?(t )在任意给定时刻t 的取值?(t )是一个随机变量,其均值为 其中,f 1(x ,t )为?(t )的概率密度函数。随机过程?(t )的均值是时间的确定函数,记作a (t ),它表示随机过程?(t )的n 个样本函数曲线的摆动中心。 随机过程?(t )的方差的定义如下: 随机过程?(t )的方差常记作σ2(t )。随机过程?(t )的方差的另一个常用的公式为 也就是说,方差等于均方值与均值平方之差,它表示随机过程在时刻t ,对于均值a (t )的偏离程度。 随机过程?(t )的相关函数的定义如下: 式中,?(t 1)和?(t 2)分别是在t 1和t 2时刻观测得到的随机变量。R (t 1,t 2)是两个变量t 1和t 2的确定函数。随机过程?(t )的相关函数表示在任意两个时刻上获得的随机变量之间的关联程度。 随机过程?(t )的协方差函数的定义如下: 式中,a (t 1)、a (t 2)分别是在t 1和t 2时刻得到的?(t )的均值;f 2(x 1,x 2;t 1,t 2)是?(t )的二维概率密度函数。 B (t 1,t 2)与R (t 1,t 2)之间有如下关系式: 若a (t 1)=a (t 2)=0,则B(t 1,t 2)=R(t 1,t 2)。 随机过程?(t )和η(t )的互相关函数的定义如下: 4.平稳过程及其性质 平稳过程包括严平稳过程(强平稳过程或狭义平稳过程)和广义平稳过程。如果随机过程?(t )的任意有限维分布函数与时间起点无关,也就是说,对于任意的正整数n 和所有实数?,有 则称该随机过程是严格意义下的平稳随机过程,简称严平稳随机过程。

随机过程试题及答案

一.填空题(每空2分,共20分) 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1) e λ。 2.设随机过程X(t)=Acos( t+),-

应用随机过程 第四次作业答案

第四次作业 1,设{(),0}N t t ≥是参数为λ的泊松过程,求(|())()k E S N t n k n =≤ 答案:设~[0,]i U U t ,1,2,...,i n =,则其顺序统计量与12,,...,n S S S 在()N t n =的条件下的分布相同。故()(|())()()1k k kt E S N t n E U k n n ===≤+ 2,设{(),0}N t t ≥为时齐泊松过程,12,,...,,...n S S S 为事件相继发生的时刻。 (1) 给定()N t n =,试问1211,,...,n n S S S S S ---是否条件独立?是否同分 布?试证明你的猜想。 (2) 求1[|()]E S N t 的分布律; (3) 利用(1)及(2),求(|())k E S N t 的分布律; (4) 求在()N t n =下i S 与(1)k S i k n ≤<≤的条件联合概率密度。 答案: (1)1211,,...,n n S S S S S ---同分布但不是条件独立。 (2)当0n =时 1[|()0] (()|()0) (()) 1 E S N t E W t t N t t E W t t λ ==+==+=+ 当1n ≥时 1(1)(|())()1t E S N t n E U n === + (3)当n k ≤时 12(|())(()|())k k k n k n E S N t n E x x x W t t N t n t λ-+-==+++++==+ 当n k ≥时 ()(|())()1k k kt E S N t n E U n === + (4)与()(),i k U U 的联合分布相同,可用微元法或积分得到。 3,设{(),0}N t t ≥是参数为λ的时齐泊松过程,00S =,n S 为第n 个事件发生的时刻。求:

相关文档