文档库 最新最全的文档下载
当前位置:文档库 › 并联机器人的理论研究现状

并联机器人的理论研究现状

并联机器人的理论研究现状
并联机器人的理论研究现状

文献标识码:B 文章编号:1003-0492(2002)05-0042-04 中图分类号:TP24

并联机器人的理论研究现状

王洪斌,魏立新,王洪瑞

2 引言

人类千百年来对器械自动化的追求,促使了机器人的产生和发展。自从1961年美国推出第一台工业机器人以来,机器人得到了迅速的发展。广泛应用于工业各部门以及服务、医疗、卫生、娱乐等许多方面,对人类的生活产生了深远的影响。现代所说的机器人多指工业机器人,大都是由基座、腰部(肩部)、大臂、小臂、腕部和手部构成,大臂小臂以串联形式连接,因而也称为串联机器人,目前关于机器人的研究大部分集中于这一领域。就在串联机器人蓬勃发展的时候,又出现了一类全新的机器人——并联机器人。它作为串联式机器人强有力的补充,扩大了整个机器人的应用范围,引起机器人学理论界和工程界的广泛关注,成为机器人研究的主要研究热点之一。

2 并联机构的提出及特点

对并联机构的研究最早可追溯到19世纪,1949年Gough 采用并联机构制作了轮胎检测装置,1965年英国高级工程师Stewart 发表了名为“A Platform with Six Degress of Freedom”的论文[2],引起了广泛的注意,从而奠定了他在空间并联机构中的鼻祖地位,相应的平台称为Stewart 平台(如图1所示)。Stewart 平台机构由上下平台及6根支杆构成,这6根支杆可以独立地上下伸缩,它分别由球铰和虎克

图1 Stewart 平台结构简图

收稿日期:2002-06-05 修改日期:2002-09-09

作者简介:王洪斌,男,副教授,博士研究生,主要研究方向为机器人控制、控制理论与应用及冶金自动化;魏立新,男,助教,硕士,主要研究方向为机器人控制、智能控制理论与应用;王洪瑞,男,教授,博士,主要研究方向为控制理论与应用、机器人控制与板形板厚控制。 铰与上下平台联接。将下平台固定,则上平台就可进行6个自由度的独立运动,在三维空间可以做任意方向的移动和绕任何方向、位置的轴线转动。

1978年澳大利亚机构学教授Hunt 提出可以将并联机构作为机器人机构;随后,Maccallion 和Pham.D.T 首次将该机构按操作器设计,成功的将Stewart 机构用于装配生产线,标志着真正意义上的并联机器人的诞生,从此推动了并联机器人发展的历史。此后有众多的研究工作者展开了对并联机器人的研究,取得了大量的研究成果。相对于串联机器人来说并联机器人具有[1]以下优点:①与串联机构相比,刚度大,结构稳定;②承载能力强;③精度高;④运动惯性小;⑤在位置求解上,串联机构正解容易,反解困难,而并联机器人正解困难反解容易。由于并联机器人的在线实时计算是要求计算反解的,这对串联机构十分不利,而并联机构却容易实现。串、并联机构的优缺点恰好相反,称为串并联的“对偶关系”,由于对偶关系的存在,并联机器人弥补了串联机器人的不足,因而扩大了整个机器人的应用领域。

并联机器人从20世纪80年代以来,成为机器人领域中的几个研究热点之一,美国、英国、日本、法国、德国、俄罗斯、韩国等国家的研究机构和企业先后开展了对并联机器人的研究。我国的燕山大学、哈尔滨工业大学、清华大学、天津大学、中科院沈阳自动化所等单位先后开展了研究,并研制出多台样机,目前关于并联机器人的研究开发和应用正日益广泛。

2 并联机器人的研究现状

目前,国内外关于并联机器人的研究主要集中于机构学、运动学、动力学和控制策略研究等几个领域。其中并联机器人的机构学与运动分析主要研究并联机器人的运动学问题、奇异位形、工作空间和灵巧度分析等方面。这项研究是实现并联机器人控制和应用研究的基础,因而在并联机器人的研究中占有重要的基础性地位。动力学分析及控制策略的研究主要是对并联机器人进行动力学分析和建模,并且研究利用各

种可能的控制算法,对并联机器人实施控制,从而达到期望的控制效果。

?并联机器人的机构学理论

–运动学问题

关于并联机器人的运动学问题可分成两个子问题:正向运动学问题和逆向运动学问题。当给定并联机器人上平台的位姿参数,求解各输入关节的位置参数是并联机器人运动学位置反解问题;当给定并联机器人各输入关节的位置参数求解上平台的位姿参数是并联机器人的运动学正解问题。对于并联机器人来说,其逆运动学问题非常简单而正向运动学问题却相当复杂,因此正向运动学问题一直是并联机器人运动学研究的难点之一。从目前的研究成果来看,关于正向运动学的解法主要分为两大类:数值法和解析法。

由于并联机构结构复杂,位置正解的难度较大,其中一种比较有效的方法是采用数值方法求解一组非线性方程,从而求得与输入对应的动平台的位置和姿态。数值法的优点是它可以应用于任何结构的并联机构,计算方法简单,但此方法计算速度较慢,不能保证获得全部解,并且最终的结果与初值的选取有关。曲义远利用三维搜索法将6-SPS机构的非线性方程组的未知数降为三个[4],黄真早在1985年就提出对于含三角平台的并联机构可以简化为只含一个变量的非线性方程一维搜索法,明显地提高了求解的速度[1],Innocenti提出了一种未定维的搜索方法寻找所有可能的正向运动学解[1],另外有的学者从纯几何的角度出发利用3维搜索法获得可能的实际解,以上方法只能找到可能解,但不能找到所有的可能解。利用数值连续的方法可以推导出一般形式的并联机构最多具有40个可能解。

解析法是通过消元法消去机构约束方程中的未知数,从而获得输入输出方程中仅含一个未知数的多项式。这种方法的优点是可以求解机构中所有可能解,并能区分不同连续工作空间中的解,但推导过程复杂。对于一般形式的6-SPS并联机构的解析位置正解还没有解决,但通过改变上下平台上铰链点的分布或采用复合铰的方法,6-SPS并联机构可以演化出许多结构形式,其中有一些结构有解析解。梁崇高教授[4]提出了三角平台型并联机构的位置封闭解。

为了克服非线性方程组数值解法的复杂性,有一些学者应用遗传算法以及神经网络这些非数值并行算法来求解6-SPS并联机构的位置正解问题。

Stewart机构位置正解的常规解法都是根据6个主动分支的位置数据来求解,方程的耦合度高,解法复杂,求解困难。为此一些学者提出了通过附加的结构位置数据来降低求解位置正解问题的复杂程度,即用附加的位置传感器来测量某些关键结构数据以避免数值。这种方法大大加快了位置正解问题的求解速度。

–奇异位形

奇异位形是并联机器人机构学研究的又一项重要内容,同串联机器人一样,并联机器人也存在奇异位形,当机构处于奇异位形时其Jacobian矩阵为奇异阵,行列式值为零,此时机构速度反解不存在,存在某些不可控的自由度。另外当机构处于奇异位形附近时,关节驱动力将趋于无穷大从而造成并联机器人的损坏,因此在设计和应用并联机器人时应避开奇异位形。

Fichter和曲义远等人发现了Stewart平台机构的奇异位形是上平台相对于下平台转过°

90位置。一般情况下并联机构的奇异位形分为边界奇异、局部奇异和结构奇异三种形式。关于奇异位形的研究主要是寻找并联机器人在工作空间中何时处于奇异位形,如何避开奇异位形;关于并联机器人奇异位形研究的一个相关问题是如何避开工作空间中的奇异位形。

虽然平面形并联机器人的工作空间和奇异位形可以同时确定,但如何确定工作空间中的奇异位形仍是一个有待进一步研究的问题。

–工作空间分析

工作空间分析是设计并联机器人操作器的首要环节,机器人的工作空间是机器人操作器的工作区域,它是衡量机器人性能的重要指标。并联机器人的一个最大的弱点就是空间小,应该说这是一个相对的概念,同样的机构尺寸,串联机器人比并联机器人工作空间大;具备同样的工作空间,串联机构比并联机构小。看来研究并联机构的工作空间是非常重要的。

根据操作器工作时的位姿特点,工作空间又可分为可达工作空间和灵活工作空间。可达工作空间是指操作器上某一参考点可以达到的所有点的集合,这种工作空间不考虑操作器的姿势。灵活工作空间是指操作器上某一参考点可以从任何方向到达的点的集合。

并联机器人工作空间的解析求解是非常复杂的问题,它在很大程度上依赖于机构位置解的研究结果。至今,仍没有完善的方法,这一方面的文献也比较有限。对于比较简单的机构,如平面并联机器人工作空间的边界可以解析表达,而对空间并联机器人目

前只有数值解,Fichter采用固定6个位姿参数中的3个姿态参数和一个位置参数而让其它两个变化研究了6自由度并联机器人的工作空间,Gosselin利用圆弧相交的方法来确定6自由度并联机器人在固定姿态时的工作空间,并给出了工作空间的三维表示,因为这种方法是以求工作空间的边界为目的的,所以比Fichter的扫描方法效率要高得多,并且可以直接计算工作空间的体积大小。

并联机器人工作空间的求解方法有解析法和数值法,在解析法研究方面,具有代表性的工作是几何法,该方法基于给定动平台姿态和受杆长极限约束时,假想单开链末杆参考点运动轨迹为一球面的几何性质,将工作空间边界构造归结为对12张球面片求交问题。Merlet在此基础上通过引入铰链约束做了类似工作。此外,Merlet还研究了固定动平台参考点,求解相应极限姿态空间的解析方法。在数值法研究方面,主要有网格法、Jocobi法、Monte Carlo法和优化法,这些算法一般需依赖于位置逆解,且需固定末端执行器姿态,故在不同程度上存在着适用性差、计算效率和求解精度低等缺点。天津大学的黄田教授提出以微分几何和集合论为工具,研究并联机器人工作空间的解析建模方法,应用单参数曲面族包络理论,将受杆长和连架球铰约束的工作空间边界问题归结为对若干变心球面族的包络面求交问题。

?并联机器人的动力学及控制策略研究

并联机器人的动力学及动力学建模是并联机器人研究的一个重要分支,其中动力学模型是并联机器人实现控制的基础,因而在研究中占有重要的地位。动力学是研究物体的运动和作用力之间的关系。并联机器人是一个复杂的动力学系统,存在着严重的非线性,有多个关节和多个连杆组成,具有多个输入和输出,它们之间存在着错综复杂的耦合关系。因此,要分析机器人的动力学特性,必须采用非常系统的方法。现有的分析方法很多,有拉格朗日(Lagrange)方法,牛顿–欧拉(Newton–Euler)方法,高斯(Gauss)方法,凯恩(Kane)方法,旋量(对偶数)方法和罗伯逊–魏登堡(Roberson–Wittenburg)方法等。有关动力学建模的研究,在串联机器人领域已经取得了很大的进展。然而由于并联机构的复杂性,目前关于并联机器人的研究内容大都涉及机构及运动学的各方面,对于动力学研究相对较少。Fichter和Merlet较早的开展了这方面的研究。他们在忽略腿部惯量影响的情况下建立了Stewart平台的动力学方程,Sugimoto以Stewart平台为例分析了并联机器人的动力学问题,然而在他的分析中没有给出详细的动力学推导。Geng 等[3]对并联机器人的几何形状和惯性扰动作了简化假设,然后利用拉格朗日方法建立了并联机器人的动力学方程,Ji在文献[4]中考虑了腿部惯量对Stewart平台的影响,建立了Stewart平台的动力学方程。黄真和王洪波[1]利用影响系数法对并联机器人进行了受力分析并建立了并联机器人的动力学模型。

因为Stewart平台具有完整的一般性结构和惯性扰动,可以利用牛顿–欧拉法计算完整的逆动力学方程,所得结果显示出其适合于并联计算。Gosselin[5]也利用牛顿–欧拉法建立了逆动力学方程,并指出由于并联机器人内在的并联结构非常适合于应用并联计算。利用拉格朗日方程也可以建立完整的并联机器人动力学方程。另外,还有一些学者使用虚功方法对Stewart平台的逆动力学进行了研究。

在并联机器人控制领域,相对于并联机器人的机构学理论研究,其控制策略的研究相对较少,有些方面还没有开展起来。除了常规的PID控制之外,还有自适应控制以及变结构滑模控制。常规的PID控制对于大多数点位控制应用是相当有效的,而对于轨迹跟踪控制问题则不适用。由于并联机器人的绝大多数应用是要求轨迹控制的,因此很少使用常规的PID控制。自适应控制以及滑模控制都属于基于模型的控制方法,主要应用于高精度控制。这类基于模型的控制方法都要求在线计算逆动力学模型,而并联机器人包含多个运动链,逆动力学模型比较复杂,计算量很大。为了解决这个问题,一些学者针对Stewart平台提出了一种非补偿的模型参考自适应控制方法,该方法不需要进行惯性补偿,因此不必计算逆动力学模型。但是该方法的前提假设平台的运动变化很慢,动力学方程中的惯性阵、哥氏力和向心力项以及重力项近似为常量,然而当平台的运动变化较快时这个假设便不成立了。因此,这种方法不适用于高的工作带宽情况。

Kim提出使用滑模控制的方法来实现Stewart平台机器人的高速轨迹跟踪控制,他们借助高速的数字信号处理器(DSP)来解决逆动力学的在线计算问题。

从目前的研究报告可以看出,Stewart平台机构是一个包含多闭链的复杂多体系统,对于并联机器人这种复杂多体系统,建模过程非常繁琐,计算工作量十分庞大,虽然有许多专家学者提出了一些先进的控制方法可以达到较好的控制性能,但也为此付出了较大的代价。有的牺牲了高带宽的优点,有的提高了控制成本。这些方法存在的中心问题是计算量过大、实时性差、对硬件设备要求高,实现在线控制有相当的难度。因此,目前的任务应该是将控制方法研究与动力学研究结合起来,从商业应用的角度出发,一方面改进控制方法,减少对逆动力学模型在线计算的依赖。另一方面,在满足控制性能要求的前提下,找到一个合适、简单的逆动力学模型。

对于六自由度的并联机器人关节驱动系统采用液压伺服驱动方式,其频带响应较宽,通常可达10Hz 左右,相应的机械系统的动力学系统的带宽要窄得多,所以合理的控制方案应以动力学模型为主体来设计常用方法。一个易于工程实现的处理方法是将机器人由机械系统的动力学方程反解,所确定的各关节力或力矩视为作用于液压伺服系统液压缸柱塞上的可变负载力(相当于外扰),以柱塞位移量作为液压伺服系统输出的检测量,以此构成位置闭环实现轨迹跟踪控制。这相当于把液压伺服系统的数学模型看成是机器人的被控对象的一个自由度的数学模型[6]。

2并联机器人研究展望

从大量的关于并联机器人的研究文献,我们可以看出,近十余年来,关于并联机器人各方面的研究工作取得了很大的进展,目前国内外有许多学者正在继续研究这些方面的研究,取得了很大的成就;但是,还有大量的工作需要进一步研究和开展[7]。

研究更加合理的机构形式使并联机构的运动学和动力学模型变得简单,同时考虑多种约束条件的并联机构优化设计方法方面应进行深入的研究。

机器人优化设计方法和机构性能评价,以求机器人达到最佳的作业性能是并联机器人机构学继续研究的重要内容之一。

P对并联机器人的正向运动学问题进一步研究,寻求更简便、容易、适用于一般形式的计算方法。目前关于并联机构的位置正解问题仍十分困难,随着现代计算技术的发展,可望能为并联机构的位置正解开辟新途径;多传感器信息融合技术也将更多的在并联机器人中得到应用。

P研究充分利用并联机器人内在的并联性的控制策略。充分利用并联机器人的并联特性的并联算法,降低运算时间,便于实时、在线控制。

P并联机器人的动力学及弹性动力学的理论和试验研究至今还有许多值得研究的问题,而这些问题的解决将很好的应用于并联机器人,加强并联机器人的动力学性能研究,推导其可控性和可观性的理论结果。

P并联机器人工作空间和灵巧度分析及奇异位形的研究,仍是并联机器人研究的薄弱环节。加强对工作空间和灵巧度分析及奇异位形的研究,对并联机器人无奇异路径规划和实现运动的可控性等方面具有十分重要的作用,是并联机器人投入实际应用的一个重要条件。

另外,还要加强对少自由度并联机器人的研究。

综上所述,可以看出并联机器人有着极其广泛的应用范围,它正是现代高度发达的科学技术与经济社会的产物。对并联机器人进行全面而系统的研究,把它推向实际应用,具有重要的理论意义和实用价值。

参考文献:

[1] 黄真. 并联机器人机构学理论及控制[M]. 北京:机械工业出版社, 1997.

[2] Stewart D A. Platform with 6-DOF. Proc. On Institution of Mechanical Engineering. 1965, 18(1):371-386.

[3] Z. Geng, L.S. Haynes, J.D. Lee, R.L. Carroll, Robotics and Autonomous Systems 9 (1992) 237-254.

[4] Z. Ji, Trans. ASME, J. Mech. Des. 1994,116 : 67-69.

[5] C.M. Gosselin, Trans. ASME, J. Dyn. Sys. Meas. Control 1996,118:22-28.

[6] 王洪瑞. 液压6-DOF并联机器人操作手运动和力控制研究[M]. 保定: 河北大学出版社, 2001.

[7] B. Dasgupta, T. S. Mruthyunjaya. The Stewart Platform Manipulator: a review. Mechanism and Machine Theory, 2000,35:15-40.

多机器人协调与合作系统的研究现状和发展

文章编号 10042924X (2001)022******* 多机器人协调与合作系统的研究现状和发展 高志军,颜国正,丁国清,颜德田,陈忠泽 (上海交通大学电子信息学院820所,上海 200030) 摘要:随着机器人的应用方式正在由部件式单元应用向系统式应用方向发展,提出了由多机器人构成的群体或社会的组织与控制问题。说明了多机器人协调与合作系统中,协调与合作的区别与联系,对多机器人协调与合作系统的研究现状进行了综述,并就基于M A S (M u lti 2A gen t 2System )的多机器人协调与合作系统的发展提出了一些看法,指出基于M A S 的多机器人协调与合作系统是多机器人学发展的一个重要方向。 关 键 词:多机器人;协调系统;合作系统;多智能体系统中图分类号:T P 242.6 文献标识码:A 1 引 言 机器人技术的发展使机器人的能力不断提 高,机器人应用的领域和范围正不断扩展。从自动化工厂的装配工作到深海作业乃至核工业的故障处理、太空中操作任务等都迫切需要机器人进入角色。一方面,由于任务的复杂性,在单机器人难以完成任务时,人们希望通过多机器人之间的协调与合作来完成。另一方面,人们也希望通过多机器人间的协调与合作,来提高机器人系统在作业过程中的效率,进而当机器人工作环境发生变化或系统局部发生故障时,多机器人之间仍可通过本身具有的协调与合作关系完成预定的任务。多机器人协调与合作作为一种新的机器人应用形式日益引起国内外学术界的兴趣与关注。 本文首先说明了多机器人协调与多机器人合作系统的发展、主要研究的问题以及它们之间的区别与联系,接着说明了以M A S (M u lti 2A gen t 2System )为基础的多机器人系统,并就它的发展提出了一些看法。 2 多机器人协调和合作系统 2.1 多机器人协调系统的主要研究问题 80年代以来,多机器人协调作为一种新的机 器人应用形式日益引起国内外学术界的兴趣与关注,1987年在美国圣地亚哥召开的多机器人协调研讨会上,着重提出了多机器人协调研究的主要问题。1989年,国际杂志《Robo tics and A u 2 tonom ou s System 》 专门推出了多机器人协调研究专辑,此外,IEEE 的机器人与自动化国际会议 从1986年起已将多机器人协调研究列为一个专题组,足见对该问题的重视。在过去的10多年里,人们对多机器人协调控制中的协调和集中、负载分配、运动分解、避碰轨迹规划、操作柔性体等问题进行了大量的研究[1-3]。由于多机器人(主要是多机器人臂)操作物体时形成的闭链系统,存在受限运动以及冗余度控制问题,因此多机器人协调控制问题十分复杂,但它基本上不涉及系统组织与合作机制等高层的控制问题。在多机器人协调控制中,机器人之间的组织与合作关系已经人为的事先确定了。 从研究的角度看,多机器人协调研究比单机器人来说出现了许多本质上全新的问题,主要有[4-5]: (1)复杂协调任务的描述 (2)同一工作空间中多机器人协调和集中(3)多机器人协调系统的自适应控制 (4)多机器人协调系统的负载分配 (5)以多传感器为基础的数据检测和障碍描 述 收稿日期:2000211213;修订日期:2000212205 第9卷 第2期  光学 精密工程 Vol .9,No .22001年4月 O PT I CS AND PR EC IS I ON EN G I N EER I N G A p r.,2001

智能机器人的现状和发展趋势

智能移动机器人的现状和发展 姓名 学号 班级:

智能移动机器人的现状及其发展 摘要:本文扼要地介绍了智能移动机器人技术的发展现状,以及世界各国智能移动机器人的发展水平,然后介绍了智能移动机器人的分类,从几个典型的方面介绍了智能移动机器人在各行各业的广泛应用,讨论了智能移动机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能移动机器人方面发展并提出期望。 关键词:智能移动机器人;发展现状;应用;趋势 1引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能移动机器人则是一个在感知 - 思维 - 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能移动机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能 力。智能移动机器人与工业机器人的根本区别在于,智能移动机器人具有感知功 能与识别、判断及规划功能[1] 。 随着智能移动机器人的应用领域的扩大,人们期望智能移动机器人在更多领 域为人类服务,代替人类完成更复杂的工作。然而,智能移动机器人所处的环境 往往是未知的、很难预测。智能移动机器人所要完成的工作任务也越来越复杂; 对智能移动机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对 智能移动机器人的研究不断深入。 本文对智能移动机器人的现状和发展趋势进行了综述,分析了国内外的智能 移动机器人的发展,讨论了智能移动机器人在发展中存在的问题,最后提出了对 智能移动机器人发展的一些设想。 1

(整理)Delta并联机器人的机构设计1.

零件的设计与选型 1 定平台的设计 定平台又称基座,在结构中属于固定的,具体的参数见图一,厚度20cm。定 平台的等效圆半径为210mm。材料选用铸铁,铸造加工,开口处磨削加工保证精度。最后进行打孔的工艺。 图一定平台设计图

具体参数为长* 厚* 宽:880mm*10mm*20mm。孔的参数为φ10*10mm。材料用铝合金,设计为杆式,质量小,经济,同时也满足载荷条件。 图二驱动杆的设计图 3 从动杆的设计 具体参数为长* 宽* 高:620*20*10mm。孔参数为φ10*10mm。材料选用铝合金。 图三从动杆的设计图

参数如下图,考虑到重量因素,采用铝合金,切削加工。动平台的等效圆半径为50mm,分布角为21.5°。 图四动平台的设计图 5 链接销的设计 45号钢,为主动杆和定平台的连接销:φ9*66mm。

6 球铰链的选型 目前,大多数的Delta机构的主动杆与从动杆的链接方式为球铰链的链接。球型连接铰链是用于自动控制中的执行器与调节机构的连接附件。它采用了球型轴承结构具有控制灵活、准确、扭转角度大的优点,由于该铰链安装、调整方便、安全可靠。所以,它广泛地应用在电力、石油化工、冶金、矿山、轻纺等工业的自动控制系统中。球铰链由于选用了球型轴承结构,能灵活的承受来自各异面的压力。本文选用球铰链设计,是主要因为球铰链的可控性,以及结构简单,易于装配。且有很好的可维护性。 本文选用了伯纳德的SD 系列球铰链,相对运动角为60°。 7 垫圈的选型 此处我们选用标准件。GB/T 97.1 10‐140HV ,10.5*1.6mm。 8 电机的选型 本设计的Delta 机器人,主要面向工业中轻载的场合,比如封装饼干等。因此,以下做电动机的选型处理。 由于需要对角度的精确控制,因此决定选用伺服电机。交流伺服电机有以下特点:启动转矩大,运行范围广,无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立

并联机器人机构运动与动力分析研究现状及展望

并联机器人机构运动与动力分析研究现状及展望 冯志友1,2 李永刚1 张 策1 杨廷力1,3 1.天津大学,天津,300072 2.佳木斯大学,佳木斯,154007 3.中国石化集团金陵石化公司,南京,210096 摘要:对并联机器人机构运动、动力分析理论的国内外研究现状进行了综述,对现代数学在并联机器人机构理论研究中的应用这一发展新趋势予以展望,指出了并联机器人机构运动、动力分析研究领域有待深入开展的研究方向。 关键词:并联机器人;机构;运动分析;动力分析 中图分类号:TH 112 文章编号:1004)132X(2006)09)0979)06 Present State and Per spectives of R ese arch on Kinem atics and D ynamics of Parallel Manipulators Feng Zhiyou 1,2 Li Yonggang 1 Zhang Ce 1 Yang Tingli 1,3 1.Tianjin University,Tianjin,300072 2.Jiamusi University,Jiamusi,Heilongjiang,154007 3.Jinling Petrochemical Corporation,Nanjing,210096 A bstract:With the development of parallel manipulators,the study of parallel mechanisms has become the hot-point in mechanical fields.The researches of kinematic and dynamic analysis for parallel manipula -tors at home and abroad w ere summarized.The development trends about applications of modern mathematics and the direction of research in this field were pointed out. Key w ords:parallel manipulator;mechanism;kinematic analysis;dynamic analysis 收稿日期:2005)03)29 基金项目:国家自然科学基金资助项目(50275070) 0 引言 并联机器人机构的研究可追溯到20世纪,1965年Stew art [1] 提出的Stewart 平台由上下平台 及6根驱动杆构成,驱动杆可以独立地伸缩,且分别由球铰与上下平台连接,这样,上平台就具有6个自由度[2]。随着对这种并联机构研究的不断深入,人们将凡是上下平台由两个或两个以上分支相连,机构具有两个或两个以上自由度,且以并联方式驱动的机构统称为并联机构。并联机构与串联机构相比,具有刚度大、结构稳定、承载能力强、精度高、运动惯性小、运动学反解易求和便于实时控制等优点,具有广阔的应用前景。因此,并联机构学理论已成为机构学研究领域的研究热点之一。 1 国内外研究现状综述 1.1 并联机构运动分析1.1.1 位置分析 并联机构位置分析中有两个基本问题,即机构位置的正解、反解问题。已知并联机构各输入关节的位置参数,求解输出件上平台的位置参数称之为机构位置的正解;已知输出件上平台的位置参数,求解各输入关节的位置参数称之为机构位置的反解。反解问题比较简单,而正解问题是并联机构运 动学的难点之一,且在实际应用中具有重要意义[3]。例如,如何用最小的机构尺寸获得必要的工作空间,如何避开机构运动的奇异位置,以及分析机构末端输出误差及实际运动轨迹等问题都需要机构位置正解。位置正解的核心是求解一组非线性约束方程。目前,位置正解方法主要有数值法[4~12]和解析法[13~19]。 数值法的优点是建立数学模型简单,没有繁琐的数学推导,可求解任何并联机构,缺点是计算速度较慢,当机构接近奇异位形时不易收敛,很难求得全部位置解,结果与初值选取有直接关系。对数值法的研究主要集中在两个方面:一是如何对方程组降维,以提高求解速度;二是如何得到所有可能解。黄真[12] 早在1985年就巧妙地以三棱锥法将三角平台的并联机构六维问题一次降为一维,有很高的求解效率。文献[5]利用三维搜索法将6-SPS 机构的非线性方程组的未知数降为3个。Innocenti 等[6]提出用一维搜索的方法求解6-SPS 机构全部实数解,具有独创性,但计算量非常大。沈辉等[8] 提出一种基于区间对分搜索法的数值迭代方法,该方法的收敛性不依赖于初始条件的选取,并且能够一次得到问题的所有近似解,但增加了运算量,影响了求解速度。文献[9]提出了一种求解并联机器人位置正解的逐次逼近法,该方法以瞬时速度方向为每一次逼近的运动方向,因此能够快速地以任意精度逼近所求的位姿。杨廷力[4]提 979

国内外机器人发展现状及发展动向

国外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间(15%-25%),表明这

精密并联机器人控制算法及控制系统研究概要

第40卷第4期2004年4月 机械工程学报 V01.40No.4CHINESEJOURNAL0F MECHANICAL ENGINEERING Apr. 2004 精密并联机器人控制算法及控制系统研究木 张秀峰孙立宁 (哈尔滨工业大学机器人研究所哈尔滨 150001) 摘要:首次把数字PID算法应用到面向光纤作业的精密并联机器人控制中,介绍了这种高速、高精度小型并联机构控制系统的新控制算法及系统研究情况。另外控制系统采用了DSP新技术,解决了并联机构运动学逆解的实时在线计算问题,使系统运行更加稳定。试验结果表明这种新算法在小型精密并联机构控制系统中,完全可以满足光纤对接等作业的高技术要求,同时也为同类高精度、大行程小型定位系统的控制与设计提供了一种新的实用方 法。 关键词:并联机构运动学逆解PID控制算法中图分类号:TP24 0前言

在高速、高精度、大行程小型并联机器人控制领域,所知文献介绍的实用控制算法还未见到。在实际工程控制中PID控制算法不需要系统确切的数学模型,参数易调整,且具有很强的灵活性、适应性,其中数字PID控制算法在计算机上易修正,比模拟PID控制器性能更加完善。首次将数字PID控制算法引进到高精度并联机构的控制中,并借助高速数字信号处理器DSP解决了逆解的在线计算问 题,试验结果表明可以满足高速、高精度等技术要 求。另外还介绍了系统的组成、性能、技术指标及一些关键参数的调整方法和经验公式,为小型精密定位系统的设计与控制提供了有价值的借鉴。1 PID控制算法 1.1模拟PID控制器 所谓PID控制器是指把偏差按比例、积分和微分进行的控制器,其中模拟PID控制器是用硬件来 实现的。设l,为系统给定,Y为系统输出,萨砷 为系统偏差,u为系统控制规律…¨,则 “=K,[P+寺J::酣r+%詈]+“。 式中 K,——比例系数正——积分常数毛——微分常数 =三——偏差微分 df 在控制过程中系统有偏差产生,调节器产生控制作用使偏差不断减小,这种控制作用的强弱取决

智能机器人的现状及其发展趋势

智能机器人的现状及其发展趋势 摘要:本文扼要地介绍了智能机器人技术的发展现状,以及世界各国智能机器人的发展水平,然后介绍了智能机器人的分类,从几个典型的方面介绍了智能机器人在各行各业的广泛应用,讨论了智能机器人的发展趋势以及对未来技术的展望,最后提出了自己的建议和设想,分析我国在智能机器人方面发展并提出期望。 关键词:智能机器人;发展现状;应用;趋势 The status and trends of intellectual robot Abstract: This paper briefly discusses the development, status of intellectual robot, development of intellectual robot in many countries. And then it presents the categories of intellectual robot, talks about the extensive applications in all works of life from several typical aspects and trends of intellectual robot. After that, it puts forward prospects for future technology, suggestion and a tentative idea of myself, and analyses the development of intellectual robot in China. Finally, it raises expectations of intellectual robot in China. Key words: intellectual robot; development status; application; trend 1 引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能机器人则是一个在感知- 思维- 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能力。智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能[1]。 随着智能机器人的应用领域的扩大,人们期望智能机器人在更多领域为人类服务,代替

并联机器人的研究现状与展望

并联机器人的研究现状与展望 刘阳,冯宝富,蔡光起 (东北大学机械工程与自动化学院,辽宁沈阳110004) 摘要:本文对并联机器人进行系统地分类,介绍了并联机器人运动学分析、动力学、奇异结构分析的方法及研究现状,最后,提出了为适应机械工业的发展,根据敏捷制造提出的策略,展望了其发展趋势)))模块化设计。 关键词:并联机器人;奇异结构;模块化设计 中图分类号:TP24212文献标识码:A文章编号:1001-3881(2004)3-007-3 State and Future Trend of Parallel Manipulator LI U Yang,FENG Bao-fu,CAI Guang-qi (School of Mechanical Engineering&Automation,Northeastern University,Shenyang110004,China) Abstract:Parallel manipulators were categorized systematically.The analysis method of positi on kinetics,dynamics and singular con-fi guration in parallel manipulators were described.Finally,in order to adap t to machine industry development and agility manufacture,the develop ment trend of parallel manip ulators,modular design,was presented. Keywords:Parallel manipulators;Singular configuration;Modular desi gn 在1965年,由Ste wart提出并联机构,原是作为飞行模拟器用于训练飞行员的[1]。后来由澳大利亚著名机构学教授Hunt在1978年提出,可将Ste wart平台机构应用到并联机器人机构中[2]。从此,并联机器人的研制与开发工作开始了。经过数十年的探索,并联机器人的研究已从基础理论工作逐渐地过渡到实践应用中。并联机器人在机械工业、航空业以及矿山开采的应用十分广泛。 并联机器人凭借其结构刚性好、承载能力强、累积误差小、部件简单等优势,逐渐在国内外机床行业占领市场,并将成为21世纪高速轻型数控加工的主力装备。 1并联机器人分类 自1993年,第一台并联机器人在美国德州自动化与机器人研究所诞生以来,并联机器人无论在结构和外型都得到了充分的发展,但就其类别可分为以下几类: (1)按自由度的数目分类,并联机器人可做F自由度(DOF)操作,则称其为F自由度并联机器人。例如:一并联机器人有6个自由度,称其为6-D OF 并联机器人。冗余并联机器人,即其自由度大于6的并联机构。欠秩并联机器人,即机构的自由度小于其阶的并联机构。 (2)按并联机构的输入形式分类,可将并联机器人分为:线性驱动输入并联机器人和旋转驱动输入并联机器人。研究较多的是线性驱动输入的并联机器人,这种类型的机器人位置逆解非常简单,且具有唯一性。旋转驱动输入型并联机器人与线性驱动输入并联机器人相比,具有结构更紧凑、惯量更小、承载能力相对更强等优点;但它的旋转输入运动形式决定了位置逆解的多解性和复杂性。 (3)按支柱的长度变化分类,可将并联机器人分为:一种为采用可变化的支柱进行支撑上下平台的并联机器人。例如:这种六杆的并联机器人称为Hexa-pod,运动平台和基座由6个长度可变化的支柱连接的,每个支柱的两端分别由铰链连接在运动平台上和基座上,通过调节支柱的长度来改变运动平台的位姿。另一种为采用固定长度的支柱进行支撑上、下平台的并联机器人。例如:这种六杆的并联机器人称为Hexaglide,运动平台和基座是由6个长度固定的支柱连接的,每个支柱一端由铰链连接在运动平台上,另一端通过铰链连接在基座上,该端铰链可沿着基座上固定的滑道上进行移动,由此,来改变运动平台的位姿。 2并联机器人的运动学分析 在并联机器人的运动学分析包括两方面:已知活动平台位姿、速度,求解各驱动副的长度或转角、速度,称为逆解;已知各驱动副的长度或转角、速度,求解各驱动副的长度或转角、速度。最为普遍的研究方法有两种:数值解法、封闭解法。 数值解法是指求解一组非线性方程,非线性方程是矢量环方程经过一些具体结构的代数处理后,直接导出的,从而求得与输入位移对应的动平台的位置和姿态,数值解法的优点是其数学模型比较简单,并且省去了烦琐的数学推导。但这种方法的计算速度比较慢,不能求得机构的所有位置解,并且最终的结果与初值的选取有直接的关系。但这种方法可求解任何并联机构,建立数学模型相对容易,可以立即进行位置 1基金项目:国家863项目资助(863-512-30-07)

协作机器人与传统机器人区别【深度解析】

协作机器人与传统机器人有何区别? 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 协作机器人只是整个工业机器人产业链中一个非常重要的细分类别,有它独特的优势, 但缺点也很明显:为了控制力和碰撞能力,协作机器人的运行速度比较慢,通常只有传统机 器人的三分之一到二分之一。本文将尝试解答以下问题:为什么需要协作机器人?协作机器 人的起源?协作机器人与传统机器人有什么区别? 为什么需要协作机器人? 协作机器人的兴起意味着传统机器人必然有某种程度的不足,或者无法适应新的市场需 求。 总结一下,主要有三点: 1.传统机器人部署成本高 其实相对来讲,工业机器人本身的价格并不高。主流场合使用的机器人,根据负载能力 不同,售价区间在¥10w~¥40w。一般情况下一台机器人的使用使用寿命在5~8年,作 为比较高端的工业设备来讲并不算贵。 传统机器人贵在其部署(将机器人安装到工厂并正常运行)成本上,原因有两个:目前 的工业机器人主要负责工厂中重复性的工作,这依赖于其非常高的重复定位精度(重复到达 空间某些固定位置的能力,一般机器人可以做到0.02mm以下),以及依赖固定的外界环境。 为了保证这一点,除了机器人本身的设计要求之外,还需要待加工的产品放在固定的位置, 以便机器人每次都可以到同一个地方准确的拿取或者执行某项操作。对于现代复杂的流水线

作业来讲,在整个产线上为每一个使用机器人的工序都设计这些固定的外界环境需要耗费大量的资源,占用大片宝贵的车间面积以及长达数月的实施时间。机器人的使用难度较高,只有经过培训的专业人士才能熟练使用机器人完成配置、编程以及维护的工作,普通用户很少具备这样的能力。 将之前以工人操作为主的流水线,变为由机器人和自动化设备为主的生产线,是一个系统工程,绝大多数终端工厂客户并不具备这样的能力,因此就需要一个第三方的角色来完成这部分工作,这个第三方即系统集成商,来根据客户现场的实际情况,来完成机器人的最终部署。 系统集成商的工作至少包括:生产线的自动化改造方案(流程、设备布局、人员配置等)机器人外围支持设备的设计、制造、安装。符合工艺要求的机器人编程、调试。客户技术团队的培训。以及后续的售后维护工作。 根据很多业内机构和前辈统计的数字,整个机器人部署/集成应用的费用大概是机器人售价的3~4倍。近几年随着国内集成商的迅速扩军,竞争越来越激烈,整体价格有所下滑,但也基本在2~3倍。 以常见的弧焊工作站为例,采购一台进口品牌的弧焊机器人价格约在11~15w之间,但是经过系统集成商这一层之后,整体报价不会低于30w,个别夸张的甚至能报到100w。在工资相对较高的长三角和珠三角地区,一名熟练焊工的工资大概在5k~7k,1台机器人代替1~2名工人,ROI不会少于2年,很多中小企业主对机器人会选择犹豫和观望。 如果使用机器人的机器人比较多,则大部分情况下需要对原有的生产线进行改造,甚至重新建设,不仅需要巨大的投资,可能还涉及到停产改造,这也是很多工厂迟迟不上机器人的原因之一。 除此之外,因为每一条生产线上的大部分设备(末端工具、非标机械、控制流程等)都

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

并联机器人技术方案

并联机器人方案 一、并联机器人用途: 并联机器人作为一种新型的机器人形式得到了越来越多的应用,与串联机器人相比该型机器人具有结构简单、刚度大、承载能力强、误差小等特点,与串联机器人形成了良好的互补关系。可用于六自由度数控加工中心、航天器对接机构、汽车装配线、运动模拟器、岩土挖掘、光学调整、医疗机械等领域。 二、系统特点: 1、机构采用并联式结构,按工业标准要求设计,结构简单、速度快; 2、控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验; 3、提供教材、实验指导书等,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。 三、系统配置: 1、机器人本体、控制柜、电机控制卡、控制软件、理论教材及实验指导书。附属件配置有钻铣刀头、电主轴、绘图笔架、加工平台、手动夹具,另赠送一套加工所需原材料。 2、并联机器人加工装置(用电主轴本体、夹持器及钻铣刀)。 3、绘图装置(绘图笔架及绘图笔)。 4、并联机器人加工平台及工件夹持装置。 5、部分加工演示原材料(石蜡、尼龙等)。

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T01P(全步进电机驱动) 机器人报价:175000.00元机器人型号:RBT-6S01P(全伺服电机驱动) 机器人报价:195000.00元

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T02P(全步进电机驱动) 机器人报价:155000.00元机器人型号:RBT-6S02P(全伺服电机驱动) 机器人报价:175000.00元

六自由度桌面型并联机器人 1.并联机器人系统图片 2.并联机器人技术参数 3.机器人型号:RBT-6T03P(全步进电机驱动) 机器人报价:135000.00元机器人型号:RBT-6S03P(全伺服电机驱动) 机器人报价:155000.00元

工业机器人研究现状及发展趋势_曹文祥

2011/2 机械制造49卷第558期 纵观历史研究文献,国内外对工业机器人的研究热点问题主要分为3个方面:仿生机器人与新型机构、机器人的定位与地图创建、机器人-环境交互。本文将分别就以上3方面对研究现状进行简要分析,并对工业机器人的发展趋势作了预测。 1工业机器人的发展历程 自1954年美国戴沃尔最早提出了工业机器人的 概念以来,工业机器人就得以不断地发展。概括起来,工业机器人的发展历程为3代: 第1代:示教再现型机器人,但不具备反馈能力。如郭勇等人[1]研制的挖掘机手柄自动操作机构,该机构结构简单,能够实现动作示教再现。 第2代:有感觉的机器人,不仅具有内部传感器,而且具有外部传感器,能获得外部环境信息。如P.l Liljeb.ck 等人研制的蛇形机器人就装有内部测转速的 传感器,以及外部测力的传感器,该机器人能够在不规则环境中具有一定的运动能力。 第3代:智能机器人。定义为“可自动控制的装置,能理解指示命令,感知环境,识别对象,规划自身操作程序来完成任务”。如John Vannoy 等人采用实时可适应性的运动规划(RAMP )算法的PUMA560机械臂,它能在复杂动态环境中自动识别来自不同方向的移动或静止的障碍物,主动规划路径,进而完成预定任务。 2 国外工业机器人的研究现状 2.1 仿生机器人与新型机构 对人的研究,国外侧重于对人行走时的步态分析, 通过对人脚形状的分析,得出具有圆形截面的脚趾和脚后跟以及具有扁平截面的连接脚趾和脚后跟的中间 部分具有最佳的动力学性能。对人形机器人步态规划问题,Xia Zeyang 等人提出了一种基于样品的决定性的脚步规划方法,该方法综合考虑了自身独特的运动能力和稳定性。对于在不同类型障碍的复杂环境中脚步规划,Yasar Ayaz 采用与人走近障碍物时绕过的方法,通过脚步实时的生成成功避开障碍物。此外,对于双足步行机器人的复杂地面运动的研究也有新的进展,研究出一种新型的双足机构,能实现不平区域稳定地行走,该足由4个分别带光学传感器的鞋钉组成,总重1.5kg 。对动物的研究则表现为对诸如蛇、鱼的结构以及运动性能的研究。仿蛇机器人不仅可以作为管道检测装置,也可以作为地震或矿难探索装置,更可以当作极地探测器来进行科研活动。Shigeo 和Hiroya Yamada 就将仿蛇机器人的机械结构分为5种类型:活 动的弯曲关节式;活动的弯曲和拉伸关节式;活动的弯曲关节和活动的车轮式;被动弯曲关节和活动车轮式;活动的弯曲关节和履带式。Aksel Andreas Transeth 等采用摩擦力模型方法建立了一蛇形机器人模型,该机器人能与包括地面的障碍物以外的物体接触,对地震或矿区救援很有帮助。Kristin Y.Pettersen 等人对蛇形机器人在存在障碍物环境中运动进行了复合建模,仿真结构证明该模型能实现不规则环境中的一般运动。但蛇形机器人目前要真正达到在复杂环境中畅通无阻地运动,还有待进一步研究。对海洋的开发,相对于其它的水下自动化装置,仿生鱼具有更好的推进力和流体适应性。其研究主要体现在结构和运动特性上。Jun Gao 和K.H.Low 等人对胸鳍驱动和尾鳍驱动鱼形机器 人进行了分析,讨论了鱼结构和运动各参数的关系。 Yu Zhong 等人对由阀体与尾鳍构成的机器人鱼的运 动性能进行了研究,采用量纲分析方法,建立了一种能预测运动的机器鱼模型。Giuseppe Tortora 等人设计了 工业机器人研究现状及发展趋势 □ 曹文祥 □ 冯雪梅 武汉理工大学机电工程学院 武汉 430070 摘 要:作为最典型的机电一体化的高科技装备,工业机器人得到了非常广泛的应用。综述了国内外工业机器人的 研究热点现状,并预测了其发展趋势。 关键词:工业机器人现状 发展趋势 中图分类号:TP242.2 文献标识码:A 文章编号:1000-4998(2011)02-0041-03 Abstract:As the typical high-tech equipment of mechanoelectronic integration,industrial robots have been widely used.The current situation of research hot points of IR is presented and the developing trend forecasted. Key Words:Industrial Robot (IR)Current Situation Developing Trend 收稿日期:2010年9月 41

智能机器人的现状及其发展

智能机器人的现状及其发展 学院:电气信息学院姓名:张琪学号:1143031172 摘要:本文主要介绍了智能机器人的发展现状、关键技术及其在各个领域的应用。然后总结了智能机器人在发展中存在的一些问题。最后提出了自己的建议和设想。 关键词:智能机器人;发展现状;传感器技术;智能控制;人机接口;应用 1.引言 机器人是一种可编程和多功能的,用来搬运材料、零件、工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统。智能机器人则是一个在感知- 思维- 效应方面全面模拟人的机器系统,外形不一定像人。它是人工智能技术的综合试验场,可以全面地考察人工智能各个领域的技术,研究它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。一部智能机器人应该具备三方面的能力:感知环境的能力、执行某种任务而对环境施加影响的能力和把感知与行动联系起来的能力。智能机器人与工业机器人的根本区别在于,智能机器人具有感知功能与识别、判断及规划功能。 随着智能机器人的应用领域的扩大,人们期望智能机器人在更多领域为人类服务,代替人类完成更复杂的工作。然而,智能机器人所处的环境往往是未知的、很难预测。智能机器人所要完成的工作任务也越来越复杂;对智能机器人行为进行人工分析、设计也变得越来越困难。目前,国内外对智能机器人的研究不断深入。 本文对智能机器人的现状和发展趋势进行了综述,分析了国内外的智能机器人的发展,讨论了智能机器人在发展中存在的问题,最后提出了对智能机器人发展的一些设想。 2.国内外在该领域的发展现状综述 智能机器人是第三代机器人,这种机器人带有多种传感器,能够将多种传感器得到的信息进行融合,能够有效的适应变化的环境,具有很强的自适应能力、学习能力和自治功能。 目前研制中的智能机器人智能水平并不高,只能说是智能机器人的初级阶段。智能机器人研究中当前的核心问题有两方面:一方面是,提高智能机器人的自主性,这是就智能机器人与人的关系而言,即希望智能机器人进一步独立于人,具有更为友善的人机界面。从

并联机器人机构静刚度研究现状与展望

并联机器人机构静刚度研究现状与展望* 李永刚1,2,宋轶民2,冯志友3 (1.天津工程师范学院机械工程学院,天津300222;2.天津大学机械工程学院,天津300072;3.天津工业大学机械工程学院,天津300160) 摘要:静刚度是并联机器人机构的一项重要性能评价指标,是并联机器人研究的热点领域之一。从有限元分析、静刚度解析模型、静刚度分析和静刚度设计等4个领域对并联机器人机构的静刚度研究现状进行了总结回顾,并对其未来发展趋势进行了分析。 关键词:并联机构;静刚度;有限元;建模 中图分类号:T H122文献标识码:A文章编号:1001-2354(2010)03-0001-04 与串联机器人机构相比,并联机器人机构具有刚度大、结构稳定、承载能力强、累积误差小、运动惯性小、运动学反解易求和便于实时控制等互补性优点,具有广阔的应用前景。因此,近30年来,并联机器人机构理论研究一直是机构学领域的研究热点之一。 然而,作为一项重要性能评价指标,静刚度不仅与机器人机构的拓扑结构有关,而且与机构的尺度参数和截面参数密切相关。显而易见,一个由细杆组成的并联机器人不一定比粗杆构成的串联机器人静刚度高。因此,为设计出大刚度的并联机器人,基于静刚度性能分析和设计的参数优化设计研究至关重要。许多学者在此领域做了大量卓有成效的工作。文中主要从有限元分析、静刚度解析模型、静刚度性能分析、静刚度设计4个方面对并联机器人机构静刚度研究现状进行了分析,并对其未来发展趋势进行了展望。 1国内外研究现状 1.1有限元分析 有限元分析是并联装备设计和静刚度性能预估的重要手段,主要是借助有限元分析软件如A NSYS等,对设计的虚拟并联装备样机进行受力分析,根据变形和应力分布情况,从而对样机的尺度参数和截面参数进行改进。朱春霞等[1-3]利用ANSYS软件对3-TPT并联机床进行了静刚度有限元分析,得到机床在不同姿态下的静刚度和静力特性,并调查了平行四边形结构对机床性能的影响。李育文等[4]利用有限元分析预估了6-UPS并联机床在整个工作空间内的静刚度性能分布,分析了结构参数对机床性能的影响,并通过静刚度实验对有限元分析的可靠性和有效性进行了验证。为研究并联机床单支路的刚度对系统性能的影响,李洋等[5]对单个U PS支链进行了有限元分析,研究发现虎克铰是应力集中的地方,其结构参数应做改进。魏永庚和胡景姝等[6-7]利用AN SYS软件对不同结构形式的6自由度并联机床进行了有限元分析,结果表明非交叉结构比较理想。梁军和付铁[8]采用结构矩阵分析和有限元分析相结合的方法,研究了BKX-I型并联机床刚度在工作空间中的分布规律。杨春辉等[9]分别采用有限元模型和线性理论模型研究了3RRR微动机器人的刚性,发现有限元分析的计算精度要高于线性理论模型。徐礼锯和范守文[10]基于刚度和弹性动力学的有限元分析,对比研究了一种新型4自由度并联机床和基于Stew art平台的并联机床的性能。徐洋等[11]利用ANSYS研究了基于Stew ar t平台的航海模拟平台的静、动态特性,并据此优化设计了平台的结构参数。由此可见,利用有限元分析计算机构的刚度方法简便,精确度较高,但耗时多,工作量大。因此,为便于并联机构参数的多变量优化设计,仍需要建立静刚度的解析或半解析模型。 1.2刚度解析模型 刚度解析模型是指机构的操作力和末端变形之间的映射。1990年Gosselin[12]依据虚功原理在只考虑主动关节弹性的前提下,首先给出了平面和空间机构操作力与末端变形间映射的建立方法,得到的映射为n@n矩阵,其中,n为机构的自由度数目。利用此方法,许多学者针对不同机构开展了静刚度分析和设计研究。由于此类刚度映射仅涉及主动关节的刚度,忽略了杆件和铰链等其他部件弹性的影响,因此所建模型缺乏完备性。H uang等[13]以此为基础,在考虑简单机架以及支链全部组件弹性的条件下,结合子结构综 第27卷第3期2010年3月 机械设计 JO U RN A L O F M ACH IN E D ESIG N V ol.27N o.3 M ar.2010 *收稿日期:2009-02-06;修订日期:2009-09-30 基金项目:国家自然科学基金资助项目(50675151) 作者简介:李永刚(1975-),男,河北永年人,讲师,博士,专业方向:并联机器人机构学,发表论文10余篇。

相关文档