文档库 最新最全的文档下载
当前位置:文档库 › 小球运动仿真教程

小球运动仿真教程

小球运动仿真教程
小球运动仿真教程

第1章运动仿真进度

本章重点

应力分析的一般步骤

边界条件的创建

查看分析结果

报告的生成和分析

本章典型效果图

1.1机构模块简介

在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。

使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。

使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。

1.2总体界面及使用环境

在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。

图1-1 由装配环境进入机构环境图

图1-2 机构模块下的主界面图

图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:

接轴的限制设置。

也可编辑或删除现有的凸轮从动机构。

或删除现有的槽从动机构。

复制现有的齿轮副。

伺服电动机:打开“伺服电动机”对话框,使用此对话框可定义伺服电动机,也可编辑、移除或复制现有的伺服电动机。

执行电动机:打开“执行电动机”对话框,使用此对话框可定义执行电动机,也可编辑、移除或复制现有的执行电动机。

弹簧:打开“弹簧”对话框,使用此对话框可定义弹簧,也可编辑、移除或复制现有的弹簧。

阻尼器:打开“阻尼器”对话框,使用此对话框可定义阻尼器,也可编辑、移除或复制现有的阻尼器。

力/扭矩:打开“力/扭矩”(对话框,使用此对话框可定义力或扭矩。也可编辑、移除或复制现有的力/扭矩负荷。

重力:打开“重力”对话框,可在其中定义重力。

初始条件:打开“初始条件”对话框,使用此对话框可指定初始位置快照,并可为点、连接轴、主体或槽定义速度初始条件。

质量属性:打开“质量属性”对话框,使用此对话框可指定零件的质量属性,也可指定组件的密度。

拖动:打开“拖动”对话框,使用此对话框可将机构拖动至所需的配置并拍取快照。

连接:打开“连接组件”对话框,使用此对话框可根据需要锁定或解锁任意主体或连接,并运行组件分析。

分析:打开“分析”对话框,使用此对话框可添加、编辑、移除、复制或运行分析。

回放:打开“回放”对话框,使用此对话框可回放分析运行的结果。也可将结果保存到一个文件中、恢复先前保存的结果或输出结果。

测量:打开“测量结果”对话框,使用此对话框可创建测量,并可选取要显示的测量和结果集。也可以对结果出图或将其保存到一个表中。

轨迹曲线:打开“轨迹曲线”对话框,使用此对话框生成轨迹曲线或凸轮合成曲线。

除了这些主要的菜单和工具外。还有几个零散的菜单需要注意。

1.2.1“编辑”菜单

在“编辑”菜单中与“机构”模块有关的菜单主要是:

重定义主体:打开“重定义主体”对话框,使用此对话框可移除组件中主体的组件约束。通过单击箭头选择零件后,对话框显示已经定义好的约束,元件和组建参照,设计者可以移除约束,重新指定元件或组件参照,如图1-6所示。

设置:打开“设置”对话框,使用此对话框可指定"机械设计"用来装配机构的公差,也可指定在分析运行失败时“机械设计”将采取的操作。如是否发出警告声,操作失败时是否暂停运行或是继续运行等等,该配置有利于设计者高效率的完成工作。如图1-7所示。

图1-6 重定义主体对话框图1-7 设置对话框

1.2.2“视图”菜单

在“视图”菜单中与“机构”模块有关的菜单主要是:

加亮主体:以绿色显示基础主体。

显示设置:机构显示,打开“显示图元”对话框,使用此对话框可打开或关闭工具栏上某个图标的可见性。去掉任何一个复选框前面的勾号,则该工具在工具栏上不可见。

图1-8 显示图元对话框

1.2.3“信息”菜单:

单击“信息”→“机构”下拉菜单,或在模型树中右键单击“机构”节点并选取“信息”,系统打开“信息”菜单,如图1-9所示。使用“信息”菜单上的命令以查看模型的信息摘要。利用这些摘要不必打开“机构”模型便可以更好地对其进行了解,并可查看所有对话框以获取所需信息。在两种情况下,都会打开一个带有以下命令的子菜单。选取其中一个命令打开带有摘要信息的 Pro/ENGINEER 浏览器窗口。

(1)摘要:机构的高级摘要,其中包括机构图元的信息和模型中所出现的项目数。如图1-10 (2)详细信息:包括所有图元及其相关属性。如图1-11所示。

(3)质量属性:列出机构的质量、重心及惯性分量。如图1-12所示。

机构为“模型树”中每个“机械设计”图元都提供一个“信息”选项。右键单击并为某个特定图元选中此选项后,会打开一个带有针对该图元的详细摘要的浏览器窗口。

图1-9 信息菜单中机构信息图图1-10 摘要信息图

图1-11 详细信息图图1-12 质量属性信息图

1.3机械设计模块的分析流程

要进行机构运动仿真设计,必须遵循一定的步奏。Pro/Engineer“机械设计”模块包括“机械设计运动”(运动仿真)和“机械设计动态”(动态分析)两部分,使用“机械设计”分析功能,可在不考虑作用于系统上的力的情况下分析机构运动,并测量主体位置、速度和加速度。和前者不同的是“机械动态”分析包括多个建模图元,其中包括弹簧、阻尼器、力/力矩负荷以及重力。可根据电动机所施加的力及其位置、速度或加速度来定义电动机。除重复组件和运动分析外,还可运行动态、静态和力平衡分析。也可创建测量,以监测连接上

的力以及点、顶点或连接轴的速度或加速度。可确定在分析期间是否出现碰撞,并可使用脉

冲测量定量由于碰撞而引起的动量变化。由于动态分析必须计算作用于机构的力,所以它需要用到主体质量属性。两者进行分析时流程基本上一致:

表1.1 分析流程表

1.4 机械设计运动分析详解

了解了上面基本的分析过程后,下面通过具体的例子一步一步来进行具体的分析。

(1)将光盘文件复制到硬盘上,启动pro/engineer。单击菜单“文件”→“设置工作目录”。

打开“选取工作目录”对话框工作,将目录设置为X:/example_1。单击确定。则系统工作在此目录下。如图1-13所示。

(2)单击菜单“文件”→“新建”。打开“新建”对话框,选择“组件”选项,将组件名改为asm。去掉“使用缺省模版”复选框前面的勾号,单击“确定”按钮,系统打开“新文件选项”对话框,如图1-14所示。

(3) 在列表中选择mmns_asm_design为模板,单击确定。

(4)单击图标,打开“打开”对话框,如图1-15所示。选取a.prt,单击“打开”按钮,系统弹出“元件放置”对话框。单击按钮接受缺省约束放置,单击确定按钮。

这样系统自动定义此为基础主体。如图1-16所示。

图1-13 选取工作目录对话框

图1-14 新文件选项对话框

图1-15 打开对话框

图1-16元件放置对话框图1-16 元件放置后图

(5)单击图标,打开“打开”对话框,选取b.prt,单击“打开”按钮,系统弹出“元件放置”对话框。单击“连接”选项卡,对话框变成如图1-17所示,接受默认连接的名称为connnection_1,选择类型为销钉连接,按照图1-19选取a.prt的轴A1对齐b.prt的轴A1,平移选项选取轴端大端面和b.prt一个侧面,单击确定,完成后如图1-19所示。在完成连接的过程中,可以通过如图1-20 所示的移动选项卡对话框调整机构位置。可以平移,旋转元件到一定的位置。便于观察和选取基准轴或面。

图1-17 连接中的轴对齐图图1-18 连接中的平移图

1.4.1连接的作用

Pro/E提供了十种连接定义。主要有刚性连接,销钉连接,滑动杆连接,圆柱连接,平面连接,球连接焊接,轴承,常规,6DOF(自由度)。最后两种是野火2.0新增加的。

连接与装配中的约束不同,连接都具有一定的自由度,可以进行一定的运动

接头连接有三个目的:

?定义“机械设计模块”将采用哪些放置约束,以便在模型中放置元件;

?限制主体之间的相对运动,减少系统可能的总自由度(DOF);

?定义一个元件在机构中可能具有的运动类型;

1.销钉连接

此连接需要定义两个轴重合,两个平面对齐,元件相对于主体选转,具有一个旋转自由

度,没有平移自由度。如图示

图 1-21 销钉连接示意图

2.滑动杆连接

滑动杆连接仅有一个沿轴向的平移自由度,滑动杆连接需要一个轴对齐约束,一个平面匹配或对齐约束以限制连接元件的旋转运动,与销连接正好相反,滑动杆提供了一个平移自由度,没有旋转自由度。

图 1-22 滑动杆连接示意图

3.圆柱连接

连接元件即可以绕轴线相对于附着元件转动,也可以沿着轴线相对于附着元件平移,只需要一个轴对齐约束,圆柱连接提供了一个平移自由度,一个旋转自由度。

图1-23 圆柱连接示意图

4.平面连接

平面连接的元件即可以在一个平面内相对于附着元件移动,也可以绕着垂直于该平面的

轴线相对于附着元件转动,只需要一个平面匹配约束。

图 1-24 平面连接示意图

5.球连接

连接元件在约束点上可以沿附着组件任何方向转动,只允许两点对齐约束,提供了一个平移自由度,三个旋转自由度。

图 1-25 球连接示意图

5.轴承连接

轴承连接是通过点与轴线约束来实现的,可以沿三个方向旋转,并且能沿着轴线移动,需要一个点与一条轴约束,具有一个平移自由度,三个旋转自由度。

图1-26 轴承连接示意图

6.刚性连接

连接元件和附着元件之间没有任何相对运动,六个自由度完全被约束了。

7.焊接

焊接将两个元件连接在一起,没有任何相对运动,只能通过坐标系进行约束。

刚性连接和焊接连接的比较:

(1)刚性接头允许将任何有效的组件约束组聚合到一个接头类型。这些约束可以是使装配元件得以固定的完全约束集或部分约束子集。

(2)装配零件、不包含连接的子组件或连接不同主体的元件时,可使用刚性接头。

焊接接头的作用方式与其它接头类型类似。但零件或子组件的放置是通过对齐坐标系来固定的。

(3)当装配包含连接的元件且同一主体需要多个连接时,可使用焊接接头。焊接连接允许根据开放的自由度调整元件以与主组件匹配。

(4)如果使用刚性接头将带有“机械设计”连接的子组件装配到主组件,子组件连接将不能运动。如果使用焊接连接将带有“机械设计”连接的子组件装配到主组件,子组件将参照与主组件相同的坐标系,且其子组件的运动将始终处于活动状态。

1.4.2连接过程中的调整方式

在连接机构时,常常会出现位置放置不合理现象,使得连接设置无法快速定位,可通过手动的方式来直接移动或转动元件到一个比较恰当的位置。该过程主要是通过“元件放置”对话框中的“移动”选项卡来完成。如图1-27所示。

图1-27 移动方式图图1-28 选取对话框

1.“运动类型”组合框:选择手动调元件的方式。

(1)“定向模式”:可相对于特定几何重定向视图,并可更改视图重定向样式,可以提

供除标准的旋转、平移、缩放之外的更多查看功能。

(2)“平移”:单击机构上的一点,可以平行移动元件。

(3)“旋转”:单击机构上的一点,可以旋转元件。

(4)“调整”:可以根据后面的运动参照类型,选择元件上的曲面调整到参照面,边,坐标系等。选择调整,会弹出图1-28所示的选取对话框。

2.“运动参照”组合框:选择需要参照的类型

(1)“视图平面”:系统缺省采用此种参照,且不会弹出图1-28所示的对话框。除了该项外,选择下面任何一项均会弹出1-28所示的对话框。

(2)“选取平面”:可以选择创建的基准面,或是曲面作为参照。

(3)“图元/边”:可以选择图元上的边作为参照。

(4)“平面法向”:可以选择某个平面,则系统自动选取该平面的法向为参照。

(5)“2点”:可以选择两点定义矢量方向作为参照。

(6)“坐标系”:选择坐标系作为参照。

3.“运动增量”组合框:设置运动位置改变的大小,有两种方式

(1)“平移”下拉框:有光滑,1,5,10四个选项。选择光滑,一次可以移动任意长度的距离。其余是按所选的长度每次移动相应的距离。

(2)“选转”下拉框:有光滑,5,10,30,45,90六个选项。其中光滑为每次旋转任意角度。其余是按所选的角度每次旋转相应的角度。

4.“位置”组合框:当用鼠标移动元件时,在“相对”文本框中显示移动的距离。

1.4.3连接轴设置

定义完连接后,元件就能相对主体进行一定的运动,可以进行连接轴设置,以进一步设定运动的范围,运动的起点等。单击“机构”→“连接轴设置”进入“连接轴设置”对话框,如图1-29所示。各选项介绍如下:

1.“选取连接轴”选项组

单击箭头用鼠标在机构上选取连接轴

2.“连接轴位置”选项组

表示连接轴位置的度量,对于连接轴使用角度表示的,是相对于零点位置的角度值,介于-180-180度之间。

3.“零参照”选项卡

(1)“指定参照”复选框:勾选该复选框,绿色主题参照和橙色主体参照变为可选。(2)“绿色主体参照”选项组:选取一个点、顶点、曲面或平面作为“绿色主体参照”。(3)“橙色主体参照”选项组:选取一个点、顶点、曲面或平面作为“橙色主体参照”。

定义旋转轴的连接轴零点参照时应注意下列事项:

(1)点-点零点参照:“机械设计模块”以垂直于旋转轴的方向从每一点绘制向量。这两个向量对连接零点应重合。这两个点不能位于连接轴上。

(2)点-平面零参照:包含点和旋转连接轴的平面应平行于为连接零点选取的平面。该点不能位于连接轴上。

(3)平面-平面零参照:这两个平面在连接零点处平行。两个平面都必须平行于旋转轴。

这里的主体主要是指如果通过 Pro/ENGINEER 中的连接方式将主体连接一起,则第一主体是组件,被添加的主体是元件。“零参照”选项卡上的绿色主体指元件放置过程中的组件主体,而橙色主体则指元件。选取连接轴后,系统会将组件主体和元件主体分别以绿色和橙色显示,同时“机械设计”还显示平面或向量,用来定义零点参照。对于平移连接轴,显示一个绿色平面和一个橙色平面。对于旋转连接轴,显示一个绿色箭头和一个橙色箭头。另一个绿色箭头用于指示正测量的方向。这些参照会改变方向,以反映“连接轴位置”文本框中的值。

4.“再生值”选项卡:

勾选指定再生值复选框,在“再生值”文本框中输入想要的位置,再按下Enter键,机构即可按指定的位置重新生成。如图1-30所示。

图1-29连接轴设置对话框图 1-30 再生值选项卡

5.“属性”选项卡:可以指定是否启用限制和摩擦。

(1)启用限制:勾选此复选框,可以为连接轴指定最小和最大位置,限制连接轴在此范围内运动。恢复系数用在凸轮从动连接,槽连接等具有冲击的运动中,恢复系数定义为两个图元碰撞前后的速度比,数值范围为0-1。完全弹性碰撞的恢复系数为 1。完全非弹性碰撞的恢复系数为 0。

(2)启用摩擦:勾选此复选框,可以为连接轴指定摩擦,为静摩擦系数,为动摩擦系数,R为接触半径(只限于旋转轴)。

图1-31 属性选项卡

连接轴设置体验:接上面的例子example1

(6)单击“应用程序”→“机构”,选择“连接轴设置”。弹出“连接轴设置”对话框,单击“选取连接轴”,通过鼠标选取上面所定义的连接轴。在“连接轴位置”文本框中输入角度为120度,单击“生成零点”。

(7)单击“再生值”选项卡,勾选“启用再生值”复选框,在“再生值”文本框中输入60,按下Enter键,机构立即改变到图1-32所示的位置。重新输入-120度,按下Enter

键,机构立即改变到图1-33所示的位置,单击确定按钮。此两幅图依据读者的系统有所不同。主要是体验一下连接轴的设置功能。读者可以自行输入自己所要的角度值进行比较。

图1-32 60度位置图图1-33 -120度位置图

1.4.4拖动功能

定义完连接轴后,可以使用拖动功能,来查看定义是否正确,连接轴是否可以按设想的方式运动。可使用快照创建分析的起始点,或将组件放置到特定的配置中。可以使用接头禁用和主体锁定功能来研究整个机械或部分机械的运动。单击“机构”→“拖动”或直接单击工具栏图标可以进入拖动对话框。

分别介绍一下各个菜单的功能。

1.快照与拖动工具栏:

给机构拍照。拖动到一个位置时单击此按钮可以拍照。同时该照添加到快照列表中。

拖动点。选取主体上某一点,该点会突出显示,并随光标移动,同时保持连接。该点不能为基础主体上的点。

拖动主体。该主体突出显示,并随光标移动,同时保持连接。不能拖动基础主体。

撤消命令。

重做命令。

所谓的基础主体,就是在装配中添加元件或新建组件时按接受缺省约束定义为基础主体。

2.快照选项卡:

显示选定快照。在列表中选定快照后单击此按钮可以显示该快照中机构的具体位置。

打开“快照构建”对话框,选取其他快照零件位置用于新快照。就是拷贝其他快照。

将选定快照的名改为“当前快照”输入框中的名称。相当于改变列表框中快照的名称。

使选定快照可用作 Pro/ENGINEER 分解状态。随后分解状态可用Pro/ENGINEER 绘图视图中。单击此按钮时,“机械设计”在列表上的快照旁放置一个图标。

从列表中删除选定快照。

图1-34拖动对话框图1-35 约束选项卡

3.“约束”选项卡:

应用约束后,“机械设计”会将其名称放置于约束列表中。通过选中或清除列表中所选约束旁的复选框,可打开和关闭约束。也可选择如下选项进行临时约束:

选取两个点、两条线或两个平面。这些图元将在拖动操作期间保持对齐。

选取两个平面。两平面在拖动操作期间将保持相互匹配。

为两个平面定向,使其互成一定角度。

并选取连接轴以指定连接轴的位置。指定后主体将不能拖动。

并选取主体,可以锁定主体。

并选取连接。连接被禁用。

从列表中删除选定临时约束。

使用所应用的临时约束来装配模型。

4.“高级拖动选项”选项卡:

打开“移动”对话框,它允许执行封装移动。

指定当前坐标系。通过选择主体来选取一个坐标系,所选主体的缺省坐标系是要使用的坐标系。X、Y 或 Z 平移或旋转将在该坐标系中进行。

指定沿当前坐标系的 X 方向平移。

指定沿当前坐标系的 Y 方向平移。

指定沿当前坐标系的 Z 方向平移。

指定绕当前坐标系的 X 轴旋转。

指定绕当前坐标系的 Y 轴旋转。

指定绕当前坐标系的 Z 轴旋转。

参照坐标系:可使用选择器箭头在模型中选取坐标系。

拖动点位置:实时显示拖动点相对于选定坐标系的 X、Y 和 Z 坐标。

图1-36 高级拖动选项卡

拖动功能体验,接上一例子example1:

(8)选择“应用程序”→“标准”重新进入装配环境下。单击添加零件,打开“打开”

对话框,选取c.prt ,单击打开,弹出“元件放置”对话框。单击“连接”选项卡,选取c.prt的轴和a.prt的轴对齐如图1-39所示,选取轴的小端面和c.prt的一个侧面对齐如图1-40所示。完成连接定义,单击确定。实体参照如图1-37所示。完成后见图1-38所示。

图1-37 销钉连接实物图图1-38 连接完成图

图1-39 轴对齐图图1-40 平移图

(9)单击弹出“拖动”对话框,点击图标,然后选b.prt的一个点可以拖动b.prt 绕着轴旋转。按下后给当前机构拍照,列表框中增加快照Snapshot1。拖动b.prt 在不同的位置拍照,列表框中增加Snapshot2 ,Snapshot3, Snapshot4等快照列表。

如图1-41所示。

(10)任意选取其中某个快照,单击可以使机构重新定义到该快照中所记录的机构位置,选取快照Snapshot3,并在文本框中将其改为snapshot4,再单击,则将快照Snapshot3改成快照snapshot4所记录的机构位置。

(11)单击“约束”选项卡→单击“”锁定主体图标,选择b.prt和 c.prt,单击“确

定”→“确定”如图1-42所示,则完成主体锁定定义。列表框中出现“主体-主体锁定”复选框,去掉前面的勾号可以解除主体-主体锁定。系统以青色显示主动主体

b.prt,以橙色显示从动主体

c.prt。单击拖动。可看见c.prt随b.prt之一起转动。

实体图参考如图1-43所示。

图1-41 增加快照图图1-42 增加主体锁定图

图1-43 主体锁定实例参考图

1.4.5定义驱动

定义完连接后就需要加饲服电机才能驱使机构运动,单击“机构”→“伺服电动机”或直接单击工具栏图标。弹出“伺服电动机”对话框如图1-44所示。在对话框右边有新建,编辑,复制,删除四个按钮,左边的列表框显示定义的饲服电动机名称和状态,在Pro/E 中这样的对话框很多,可以方便的进行管理。单击“新建”按钮弹出饲服电动机定义对话框。

图1-44 伺服电动机对话框

1.“新建”按钮:可以创建伺服电动机。

2.“编辑”按钮:重新编辑选定的伺服电动机。

3.“复制”按钮:在原有的基础上重新创建同样的电动机。

4.“删除”按钮:删除选定的电动机。

单击“新建”弹出“伺服电动机定义”对话框。

1.“名称”文本框:系统自动建立缺省名称ServerMotor1,用户可以更改之。

2“类型”选项卡:指定伺服电动机的类型和方向等如图1-45所示。

(1)“从动图元”下拉列表框。选择伺服电动机要驱动从动图元类型为连接轴型,点型和面型中的一种。

·连接轴:使某个接头作指定运动。

·点:使模型中的某个点作指定运动。

·平面:使模型中的某个平面作指定运动

(2)单击可以在窗口中直接选定连接轴

(3)“反向”按钮:改变伺服电动机的运动方向,单击反向按钮则机构中伺服电机黄色箭头指向相反的方向。

(4)“运动类型”:可以指定伺服电机的运动方式。如果从动图元选择为连接轴,变为灰

色不可选状态,同时系统自动选择为选转。

图1-45 伺服电动机定义对话框图1-46 轮廓选项卡

3“轮廓”选项卡:可以指定伺服电机的速度,加速度位置等如图1-46所示。

(1)“规范”组合框:

可以调出连接轴设置对话框,旁边的下拉框可以选择速度,加速度,位置三种类型。

对于不同的选项,相应会有不同的对话框出现。

位置:单击直接调用连接轴设置对话框设置连接轴。选定的连接轴将以洋红色箭头标示,同时高亮显示绿色和橙色主体。如图1-47所示

图 1-47位置对话框类型

速度:出现初始位置标签,选择当前。则机构以当前位置为准,也可以输入一个角度后按使机构的零位置变为数字所指示的位置。如图1-48所示。

加速度:在出现初始角度标签的同时,增加了一个初始角速度标签,可以指定初始角速

液压挖掘机工作装置在ADAMS中的运动仿真解析

液压挖掘机工作装置在ADAMS中的运动 仿真解析 姓名:XXX 部门:XXX 日期:XXX

液压挖掘机工作装置在ADAMS中的运动仿真解析虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法 和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式, 第 2 页共 5 页

将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进行STEP函数值设置时,应该满足运动函数需求。当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。 1.3.仿真过程 当工作面从最初的范围逐渐移动时,一般最初的指的是停机状态下。可以适当的对斗杆、铲斗液压缸进行调整,将其保持在全缩的状态中,逐渐对动臂液压缸拉伸,将其缩小到CD弧线上。这个伸缩过程需要得到弧线支撑,基于保障弧线运动轨迹基础上做好控制工作。其中在进行一次姿态调整之后,作业范围会缩小,而且包络图中的各个点会逐渐深入挖掘机的底部,在这个范围上可以实现挖掘,但是可能出现塌陷实现,导致机械无法正常施工。因此,一般除了有条件的挖沟作业之外进行使用,其他施工一般都不会使用。可以在模型中建立起一个处于回转中心轴的三维坐标,将坐标点确定为(608,.0,0.0,1254.3306),这样就可以测量出方向移动值,可以得出这个位置的位移,这样便可以达到最大高度值,其实这个测量方法比较简单,也比较容易掌握。根据曲线变化得出,从得到的曲线中得出最终的数值,可以查看到最大值,平均值以及最小值等。 工作装置模型的运动学仿真分析 2.1.参数范围 运动学仿真中的参数范围确定一般都包含速度、位移以及加速度,这些参数会有一个变化范围。在进行运动学仿真分析中,需要基于ADAMS/Solver求解,就可以得出代数方程。因此,在进行仿真系统自由度确认时,一般自由度的必须为零。如果这个时候会考虑到物体的惯性 第 3 页共 5 页

液压挖掘机工作装置在ADAMS中的运动仿真解析参考文本

液压挖掘机工作装置在ADAMS中的运动仿真解 析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

液压挖掘机工作装置在ADAMS中的运动仿真解析参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 虚拟样机技术在使用过程中为液压挖掘机设计提供了 有效的方法和手段,在使用过程中受到了条件限制,较少 的单位会对运行学进行仿真研究,降低了色剂方案可行 性。文章基于动力学仿真软件ADAMS建立起了挖掘机工 作装置虚拟系统,更好的完成了前期处理工作,使得建模 正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下 来之后,该挖掘机的工作范围也基本确定下来。简单理解 就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图

中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方

机构运动创新设计..

课程设计报告 学生姓名:________________ 学号:_________________ 学院: ______________________________________________ 班级: ______________________________________________ 题目: _______________ 机构运动创新设计______________

2015年1月5日 目录 、概述................................. 1 .....................................................

一、概述: 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况二、课程设计目的: 1、培养学生对连杆机构的理解掌握与创新设计能力,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。 2 、通过机构的拼接,在培养工程实践动手能力的同时,要求学生在拼装一个已有模型之外,自己通过对现实生产和生活中的连杆机构机械产品的观察和理解,通过试验台设备进行拼装和仿真。通过解决实际问题,促进学生理论联系实际,学以致用;锻炼学生独立思考能力和动手能力。 3 、加深学生对连杆机构组成原理的认识,进一步掌握连杆机构的创新设计方法。 4、学习机构运动简图的测绘与自由度的计算。 三、课程设计要求和内容: 实验设备和工具 CQJP-D 机构运动创新设计方案拼装及仿真实验台,包括组成机构的各种运动副、构件、动力源及一套实验工具(扳手、螺丝刀)。其中构件包括机架、连杆、圆柱齿轮、齿条、凸轮及从动件、槽轮及拨盘和皮带轮等;运动副包括转动副、移动副、齿轮副、槽轮副等。 实验原理 平面机构是由各个杆组依次联结到机架和原动件上形成的。机构具有确定运动的条件是机构的自由度大于零,且原动件数和机构的自由度相等。所拼接的机构必须满足以上两个条件。将主要由连杆构成的连杆机构(可加入一个其他类型构件如齿轮、凸轮、槽轮等)进行拼装,计算分析其自由度后,输入动力源进行 机构运行。实验内容与步骤

(完整版)Adams运动仿真例子--起重机的建模和仿真

1起重机的建模和仿真,如下图所示。 1)启动ADAMS 1. 运行ADAMS,选择create a new model; 2. modal name 中命名为lift_mecha; 3. 确认gravity 文本框中是earth normal (-global Y),units文本框中是MKS;ok 4. 选择setting——working grid,在打开的参数设置中,设置size在X和Y方向均为20 m,spacing在X和Y方向均为1m;ok 5. 通过缩放按钮,使窗口显示所有栅格,单击F4打开坐标窗口。 2)建模 1. 查看左下角的坐标系为XY平面 2. 选择setting——icons下的new size图标单位为1

3. 在工具图标中,选择实体建模按钮中的box按钮 4. 设置实体参数; On ground Length :12 Height:4 Depth:8 5. 鼠标点击屏幕上中心坐标处,建立基座部分 6. 继续box建立Mount座架部件,设置参数: New part Length :3 Height:3 Depth: 3.5 设置完毕,在基座右上角建立座架Mount部件 7. 左键点击立体视角按钮,查看模型,座架Mount不在基座中间,调整座架到基座中间部位:

①右键选择主工具箱中的position按钮图标中的move按钮 ②在打开的参数设置对话框中选择Vector,Distance项中输入3m,实现Mount 移至基座中间位置 ③设置完毕,选择座架实体,移动方向箭头按Z轴方向,Distance项中输入2.25m,完成座架的移动 右键选择座架,在快捷菜单中选择rename,命名为Mount 8. 选择setting—working grid 打开栅格设置对话框,在set location中,选择pick 选择Mount.cm座架质心,并选择X轴和Y轴方向,选择完毕,栅格位于座架中心

Creo动态机构仿真操作手册完整版

C r e o动态机构仿真操 作手册 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

Creo2.0动态机构仿真操作手册 1 范围 本标准规定了Creo2.0动态机构仿真建模方法及思路。 本标准适用于公司产品结构设计选用。 2 Creo2.0机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Creo Parametric 2.0中“机构”模块是专门用来进行运动仿真和动态分析的模块。 design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图所示的“机构”下拉菜单,模型树增加了如图所示“机构”一项内容,窗口上边出现如图1-3所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。

图1-1 由装配环境进入机构环境图 图1-2 机构模块下的主界面图 图1-3 机构菜单

图1-4 模型树菜单 如图 1-4所示的“机构树”工具栏图标和图1-3中下拉菜单各选项功能解释如下: 连接轴设置:打开“连接轴设置”对话框,使用此对话框可定义零参照、再生值以及连接轴的限制设置。 凸轮:打开“凸轮从动机构连接”对话框,使用此对话框可创建新的凸轮从动机构,也可编辑或删除现有的凸轮从动机构。 3D 接触:打开“3D接触从动机构连接”对话框,使用此对话框可创建新的3D接触从动机构,也可编辑或删除现有的3D接触从动机构。

槽轮机构运动学仿真

湖南农业大学工学院 课程设计说明书 课程名称:机械CAD/CAM课程设计 题目名称:槽轮机构运动学仿真 班级:20 11 级机制专业四班 姓名: 学号: 指导教师: 评定成绩: 教师评语: 指导老师签名: 20 年月日

目录 摘要 (1) 关键词 (1) 1 槽轮机构的结构组成和工作原理 (1) 2 零件三维实体模型建立的方法 (1) 2.1 主动转盘三维实体模型建立的方法 (1) 2.2 从动槽轮三维实体模型建立的方法 (3) 2.3 其他零件三维实体模型建立的方法 (4) 3 装配模型建立的方法和步骤 (6) 4 建立装配模型的运动仿真 (9) 5 装配模型的运动仿真分析 (13) 6 装配模型的运动仿真分析结论 (15) 7 装配模型图集 (16) 7.1 总成图 (16) 7.2 爆炸图 (16) 7.3 零件图 (17) 7.4 主动转盘工程图 (18) 8 总结 (19) 参考文献.......................................... (19)

槽轮机构运动学仿真 学生: (工学院,11-机制4班,学号) 摘要:槽轮机构是将主动拨盘的连续转动转化为从动槽轮的间歇转动,以达到间歇进给、转位和分度等工作要求。运用Pro/E软件对槽轮机构进行三维实体建模及装配,并运用模块进行运动仿真分析,得出机构的角速度、角加速度随时间变化的曲线。 关键词:槽轮机构;间歇运动;运动仿真 1、槽轮机构的结构组成和工作原理 槽轮机构由槽轮和圆柱销组成的单向间歇运动机构,又称马尔他机构。它常被用来将主动件的连续转动转换成从动件的带有停歇的单向周期性转动。槽轮机构有外啮合和内啮合以及球面槽轮等。外啮合槽轮机构的槽轮和转臂转向相反,而内啮合则相同,球面槽轮可在两相交轴之间进行间歇传动。槽轮机构典型结构由主动转盘、从动槽轮和机架组成。 2、零件三维实体模型建立的方法 2.1、主动转盘三维实体模型建立的方法 ②选择模板

ADAMS机构设计与分析

曲柄滑块机构的仿真与分析: 图中件1、2、为齿轮,按圆柱建模,其中齿轮2半径350mm、厚度50mm;齿轮1半径150mm、厚度40mm;件3连杆(宽150mm;厚60mm)、件4长方体滑块(长600mm、宽300mm、高400mm),要求整个模型与栅格成对称状态。其中:齿轮1材料密度为7.8 10-3kg/cm2;连杆3质量Q=65kg,惯性矩Ixx=0.132kg.m2,Iyy=6.80kg.m2,Izz=6.91kg.m2;滑块4材料为铝。 绘图步骤简介: 步骤1:启动ADAMS/View程序 1)选择MD Adams>Adams-view MD 2010 2)在打开的对话框中选择create a new model 。 3)选择start in 后在单击,在自己指定的工作目录下新建的一个文件夹,以保存样机模型。 4)在model name栏中输入模型名称:model_lixiang 5)在gravity选项栏中选择earth normal(-global Y)。 6)在units文本框设定为MMKS—mm、kg、N、s、deg 。 7)单击ok按钮。如图:

步骤2:设定建模环境 1)选择settings>working grid,按图所示进行设置工作栅格大小及间距。 2)单击ok按钮,可看到工作栅格已经改变。 3)在主工具箱中选择,显示view控制图标。 4)按F键或在主工具箱中单击,可看到整个工作栅格。 步骤3:样机建模 1、创建设计点 1)在集合建模工具集中,单击点工具图标 2)在主工具箱的选项栏中选择添加到零件上add to ground。 3)在建模视窗中,先点击ground,再选择该点,点击右键,打开修改点对话框,修改坐标为A(-800,-20,20),重复此过程,依次创建点B(-300,0,25)、C(0,0,0)、D(1000,0,0) 2、创建驱动齿轮1 1)在集合建模工具集中,单击圆柱工具图标、。 2)在主工具箱的选项栏中选择新零件new part 3)在长度选项输入40mm、半径选项输入150mm,如图(1)。 4)在建模视窗中,点击点(-800,-20,20),水平拖动鼠标至点的右边点击,创建圆柱体5)旋转圆柱体与屏幕垂直:鼠标放在圆柱体左端附近,点击右键,选择标记点marker菜单,

机构运动创新设计..

课程设计报告 学生姓名:学号: 学院: 班级: 题目: 机构运动创新设计 指导教师:苏天一 2015 年 1 月5日

目录 一、概述 1 二、课程设计目的 1 三、课程设计要求和内容 1 四、原始数据及技术参数 2 五、设计原理及设备 2 六、机构自由度计算 5 七、机构动力分析与计算 7 八、机构运动分析与计算 9 十、参考文献 12

一、概述: 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况 二、课程设计目的: 1、培养学生对连杆机构的理解掌握与创新设计能力,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。 2、通过机构的拼接,在培养工程实践动手能力的同时,要求学生在拼装一个已有模型之外,自己通过对现实生产和生活中的连杆机构机械产品的观察和理解,通过试验台设备进行拼装和仿真。通过解决实际问题,促进学生理论联系实际,学以致用;锻炼学生独立思考能力和动手能力。 3、加深学生对连杆机构组成原理的认识,进一步掌握连杆机构的创新设计方法。 4、学习机构运动简图的测绘与自由度的计算。 三、课程设计要求和内容: 实验设备和工具 CQJP-D机构运动创新设计方案拼装及仿真实验台,包括组成机构的各种运动副、构件、动力源及一套实验工具(扳手、螺丝刀)。其中构件包括机架、连杆、圆柱齿轮、齿条、凸轮及从动件、槽轮及拨盘和皮带轮等;运动副包括转动副、移动副、齿轮副、槽轮副等。 实验原理 平面机构是由各个杆组依次联结到机架和原动件上形成的。机构具有确定运动的条件是机构的自由度大于零,且原动件数和机构的自由度相等。所拼接的机构必须满足以上两个条件。将主要由连杆构成的连杆机构(可加入一个其他类型构件如齿轮、凸轮、槽轮等)进行拼装,计算分析其自由度后,输入动力源进行

Matlab及adams联合仿真 仿真结果动画的保存及后处理

Matlab与adams联合仿真实例 本实例以matlab为外部控制程序,使用PID算法控制偏心杆的摆动,使偏心杆平衡到指定位置。 1.在adams/view中建立偏心杆模型 图1 偏心杆模型 1)新建模型 如图所示,将Units设置为MMKS。设置自己的Working Directory,这里设置为C:\adams\exercise。点击OK按钮。 图2 新建模型对话框 2)创建连杆 设置连杆参数为Length=400,Width=20,Depth=20,创建如图所示的连杆。 图3 创建连杆 3)创建转动幅 在连杆质心MARKER点处创建转动幅,旋转副的参数设置为1Location和Normal To grid将连杆与大地相连。

图4 创建转动幅 4)创建球体 球体选项设置为Add to part,半径设置为20,单击连杆右侧Marker点,将球体添加到连杆上 图5 创建球体 5)创建单分量力矩 单击Forces>Create a Torque(Single Component)Applied Forces,设置为Space Fixed,Normal to Grid,将Characteristic设置为Constant,勾选Torque并输入0,单击连杆,再点击连杆左侧的Marker点,在连杆上创建一个单分量力矩。 图6 创建单分量力矩

2.模型参数设置 1)创建状态变量 图7 新建状态变量 点击图上所示得按钮,弹出创建状态变量对话框,创建输入状态变量Torque,将Name 修改为.MODEL_1.Torque。 图8 新建输入状态变量Torque 再分别创建状态变量Angel和Velocity(后面所设计控制系统为角度PID控制,反馈变量为Angel,Velocity为Angel对时间求导,不需要变量Velocity,这里设置Velocity是为了展示多个变量的创建)。设置Angel的函数AZ(MARKER_3,MARKER_4)*180/PI,Velocity 的函数为WZ(MARKER_3,MARKER_4)*180/PI。(MARKER_3为连杆上的点,MARKER_4为地面上固定的点)AZ(MARKER_i,MARKER_j)表示MARKER_i绕MARKER_j的Z轴旋转的角度,WZ表示MARKER_i绕MARKER_j的Z轴旋转的角速度。

基于Adams的凸轮机构运动仿真教程

基于adams的凸轮机构运动仿真 摘要:虚拟样机技术是一种崭新的产品开发技术,其中ADAMS软件是目前最著名的虚拟样机分析软件之一。本文阐述了虚拟样机技术和ADAMS软件的特点及其应用,以凸轮机构为研究对象,对其进行动力学分析。主要运用我们学习过的机械原理等理论知识对机构进行运动学和动力学的相关理论计算;利用ADAMS软件在图形显示方面的优势,采用其基本模块ADAMS/View(界面模块)进行一系列建模、运动分析和动态模拟仿真工作,验证模型的正确性,并对机构在整个周期内的可行性进行计算分析,记录相应信息,输出所需要的位置、速度、加速度等曲线与理论结果比较,充分展现虚拟样机技术的优越性,为虚拟样机技术的深入研究打下基础。 关键词:ADAMS;凸轮机构;运动学分析;仿真 引言 凸轮机构的应用十分广泛,在生产机械中应用凸轮机构可以较容易的实现不同的工作要求。特别是实现间歇式的运动过程!但是,目前对于该类模型的动态仿真很少。本例主要就推程、回程等要求进行预设。力图通过adams实现对该凸轮机构的构建以及后续的仿真,并尝试进行一定的机构优化。 1.研究内容 这里,我主要研究内容为理论凸轮设计在adams中的设计及其动态仿真。后续,根据输出的相应的速度、加速度曲线等将进行一定的设计优化。力图真实还原凸轮机构在设计中的真实过程。 2.工作原理 凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。通过对凸轮轮廓进行不同的设计,可以实现从动件不同形式的运动。以此来满足机械设计中对于运动的精细控制过程。 3.动力学建模 (1)建模前期准备 情景设想:某公司需要设计一凸轮机构实现对物料的间歇夹紧过程。其给出相应数据如下。 注:其他的暂 不作要求。 (2)设计

Creo原创教程(九),接触碰撞运动仿真解析,引申模具顶针顶出件运动要点

Creo原创教程(九),接触碰撞运动仿真解析,引申模具顶针顶出件运动 今天我们来讲一下接触碰撞运动的仿真(这个恐怕是坛子里对凸轮连接最详细的教程)

之前很多人pm还有在qq群问我说做模具顶出件运动怎么做, 我直接回答用凸轮连接对设置连接,启用升离,再启用重力就可以了,这样还是有很多人不太明白,其这个东西听着很简单,里面还有很多的窍门和方法 再加上一些经验,只要你看过了本教程,再加上平时多联系,相信接触碰撞这里,一般的问题都可以解决了,我们来看一下,以前的2001版本以前方针分 析里面比较简单,简单的方针都可以做到,但是到了野火版本以后,功能提升了好多,在野火中有三种特殊的连接,可以设置特殊连接后进行各种分析, 这三种连接分别为凸轮副连接,槽连接,齿轮运动副连接,今天讲的是接触碰撞的仿真,主要用到的是凸轮的链接,所以只讲凸轮,齿轮和槽连接以后再 讲。 顶针顶出件运动仿真,其实就是在顶针头部和接触的件之间建立一个凸轮连接,有人会问,顶针和件是两个平面与平面相碰,怎么建立凸轮,在凸轮连接 时,里面有一些技巧,尤其是建立曲面和选择曲面时,技巧性比较强,相信很多高手有些时候都那凸轮连接因没有选择好曲面或是没有建立好曲面,导致 仿真多次失败。 我们先看一下凸轮的链接设置

1 “凸轮1”选项卡:定义第一个凸轮 (1)“曲面/曲线”:单击箭头选取曲线或曲面定义凸轮工作面,在选取曲面时若钩选自动 选取复选框则系统自动选取与所选曲面相邻的任何曲面,凸轮与另一凸轮相互作用的 一侧由凸轮的法线方向指示。如果选取开放的曲线或曲面,会出现一个洋红色的箭头, 从相互作用的侧开始延伸,指示凸轮的法向。 选取的曲线或边是直的,“机械设计模块”会提示选取同一主体上的点、顶点、平面实 体表面或基准平面以定义凸轮的工作面。所选的点不能在所选的线上。工作面中会出现 一个洋红色箭头,指凸轮法向。

ADAMS实例仿真解析

ADAMS大作业 姓名:柴猛

学号:20107064 目录 绪论 (1) 模型机构 (2) 模型建立 (3) 约束添

加 (9) 运动添加 (11) 模型仿真 (14) 小结 (17) 参考文献 (17)

绪论 大型旋挖钻机是我国近年来引进、发展的桩工机械, 逐步取代了对环境污染严重、效率低下的其它建筑工程桩孔施工机械。旋挖钻机的钻桅变幅机构对整机布局和操纵稳定性影响很大, 它是实现钻孔位置变化及改变钻桅位置状态的关键部件。钻桅是旋挖钻机主执行机构的重要支撑, 其为钻具、调整机构、加压系统等提供结构支撑, 整个桅杆对于保证整机的正常运行和工作质量起着至关重要的作用。 旋挖钻机主要是运用于灌注桩施工,功能为钻孔。而在当今灌注桩施工中旋挖钻机具有优于其它方式的优点: 1.钻井效率高; 2.成孔质量好; 3.环境污染小。 本文主要是对旋挖钻机的钻桅举升装置进行运动仿真分析。

模型机构 钻桅举升装置主要由钻头,钻杆,变幅机构,桅杆以及油缸组成, 工作过程:对孔,下钻,钻进,提钻,回转,卸土六个主要步骤。 对孔:为了保证钻桅的垂直度,采用了平行四边形平动机构,并结合液压杆及回转机构完成孔的定位; 下钻:由于钻具质量大,应控制其下降速度,将钢丝绳与钻杆通过回转接头连接,采用卷扬提升系统控制钻具的升降;钻进:通过动力头驱动扭矩并传递给钻杆,再由钻杆传递给钻钭以实现钻进;提钻:与下钻具有相同的控制系统和运动过程; 回转:由回转机构完成;卸土:通过卷扬系统和连杆的旋转来完成。

模型建立 把实际模型按比例缩 小 一.底座 因为底座不参与运动分析,所以可以用方块代替底座:

Adams动力学仿真分析的详细步骤

1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,并进行保存。 2、检查并修改系统的设置,主要检查单位制和重力加速度。 3、修改零件名称(能极大地方便后续操作)、材料和颜色。首先在模型界面,使用线框图来修改零件名称和材料。然后,使用view part only来修改零件的颜色。 4、添加运动副和驱动。 注意: 1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。 2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。若视图定向错了,运动方向就错了,驱动函数要取负。 3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。 4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。 5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错。 6)添加完运动副和驱动后,应对其进行检查。使用数据库导航器检查运动副和驱动的名称、类型和数量,使用verify model检查自由度的数目,此时要逐个零件进行自由度的检查和计算。 7)进行初步仿真,再次对之前的工作进行验证。因为添加了材料,有重力,但没有定义接触,此时模型会在重力的作用下下掉。若没问题,则进行保存。 5、添加载荷。

6、修改驱动函数。一般使用速度进行定义,旋转驱动记得加d。 7、仿真。先进行静平衡计算,再进行动力学计算。 8、后处理。 具体步骤如下: 1)新建图纸,选择data,添加曲线,修改legend。一般需要线位移,线速度,垂直轮压和水平侧向力的曲线。 2)分析验证,判断仿真结果的正确性(变化规律是否对,关键数值是否对)。 3)截图保存,得出仿真分析结论。

ADAMS行星齿轮运动学仿真详解

ADAMS行星轮仿真过程详解 1三维建模 使用UG进行三维建模并装配,UG中有齿轮库,可以直接生成齿轮。本例行星齿轮机构各齿轮参数及中心距如表1所示。行星轮与内齿轮各啮合点坐标如表2所示,啮合点坐标将在ADAMS建模时使用。 表1行星齿轮机构各齿轮参数 外齿轮齿顶圆直径 (mm)内齿轮齿顶圆直径 (mm) 行星轮齿顶圆直径 (mm) 内齿轮与行星轮中心距 (mm)200 120 50 80 表2行星轮与内齿轮啮合点坐标 行星轮1与内齿轮 (mm) 行星轮1与外齿轮 (mm) 行星轮2与内齿轮 (mm) 行星轮3与内齿轮 (mm) (0,0,60)(0,0,100) (0.0, -57, -18.5) (0.0, 48.5, -35.3) 将连接杆、内齿轮、外齿轮和行星轮装配到指定位置,装配图如图1所示,三个行星轮相互间夹角为120°。装配完成后导出.xt格式文件,用于ADAMS建模。 图1行星轮机构装配体

2ADAMS建模 1)导入模型。新建ADAMS模型,将.xt格式文件导入到ADAMS模型中。 2)添加运动副 行星轮系所需运动副共有6个,外齿轮与大地间的固定副JOINT_1(外齿轮不动);连接杆与外齿轮的旋转副JOINT_2,连接杆与内齿轮的旋转副JOINT_3,连接杆与三个行星轮之间的旋转副JOINT_4、JOINT_5、JOINT_6。记住此处一定是各构件和连接杆之间的旋转副,而不能是和大地之间建旋转副,如图2所示,这是后面建齿轮副的必要条件。 图2连接杆与各构件运动副 3)添加齿轮副 分别建立三个行星轮和内齿轮的齿轮副,一个行星轮和外齿轮的齿轮副。齿轮副选择的对象不是部件而是之前建立的旋转副,分别建立JOINT_2和JOINT_4,JOINT_3和JOINT_4,JOINT_3和JOINT_5,JOINT_3和JOINT_6之间的齿轮副。 齿轮副需要啮合点,对啮合点需要建立在两个旋转副共有的部件上,也就是连接杆上,啮合点的位置决定了两个运动副之间的传动比。分别在两两齿轮啮合点处

液压挖掘机工作装置在ADAMS中的运动仿真解析

液压挖掘机工作装置在ADAMS中的运动仿真解析Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订: ___________________ 审核: ___________________ 单位: ___________________

文件编号:KG-A0-4251-95 液压挖掘机工作装置在ADAMS中的 运动仿真解析 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 虚拟样机技术在使用过程中为液压挖掘机设计提 供了有效的方法和手段,在使用过程中受到了条件限 制,较少的单位会对运行学进行仿真研究,降低了色剂 方案可行性。文章基于动力学仿真软件ADAMS建立起 了挖掘机工作装置虚拟系统,更好的完成了前期处理工 作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1. 基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确 定下来之后,该挖掘机的工作范围也基本确定下来。简 单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在 包括图中,有些部分区间靠近的比较紧密,有的会深入

到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如: 挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 2?顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式,将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进

基于ADAMS的玩具飞机的机构运动仿真..

基于ADAMS的玩具飞机的机构运动仿真 摘要:本文首先对目前市场上涉及到的机械玩具进行了一个简要的概括,然后选取一款玩具飞机的模型分析了它的运动规律,并进行测绘利用SolidWorks建立了其总体结构;对玩具飞机的关键部件—发条机构进行了简要介绍,在运动学分析的基础上,运用虚拟样机仿真软件Adams对玩具飞机进行了仿真。结果表明:玩具飞机的运动是稳定的,基本和实际运动状态一致。 关键词:玩具飞机;ADAMS;运动学分析 Dynamic simulation of toy aircraft based on ADAMS Abstract: Firstly,mechanical toys on the market at present involved in a brief summary,and then choose a toy airplane model to analyze the movement rules of it,and mapping of SolidWorks was utilized to establish the overall structure; the key part of the toy plane clockwork mechanism are introduced,on the basis of kinematics analysis last,the application of virtual prototype simulation software Adams simulation of the toy plane. The results show that: the toy plane movement is stable,consistent with the basic and the actual state of motion. Key words:toy aircraft;ADAMS;kinematics analysis 1 引言 中国是世界上最大的玩具制造国和出口国,全球70%的玩具是在我国境内制造的。在琳琅满目的玩具之中,靠发条驱动的纯机械玩具吸引着许多小孩子的眼球这类玩具用塑料做成,价格低廉,体积较小,节能环保,大多模拟某一种动物的动作这类机械玩具在设计方面采用了大量的机械机构,如连杆机构,齿轮机构,凸轮机构,不完全齿轮机构,槽轮机构等,很多玩具的设计思想十分巧妙"对这些商品玩具进行测绘、建模、装配并做仿真,这对玩具的研发和设计,都具有重要的参考价值[2]。 然而,对机械玩具进行仿真的相关研究在国内期刊上很少见到"中科院自动化研究所的张志刚等从仿生学的角度出发,按照一系列步骤,编制了机器鱼的设计与仿真软件,实现了由生物特征到机器鱼实现的过渡,方便了机器鱼的设计[1]。在对玩具市场进行一番调研后发现,一款玩具飞机设计非常巧妙,也很有代表性,这里主要以它为例来阐述玩具的运动机理和y运动学仿真中的一些关键技术。 2 玩具飞机的运动原理及仿真方案 玩具飞机的虚拟仿真研究过程中,零件之间存在着各种相对关系,为得到理想的结 果,首先需要对玩具进行拆卸,然后分析出其零件间的连接关系,测绘出其零件的尺寸, 完成装配,为仿真准备好模型数据。玩具飞机的整体图如下:

液压挖掘机工作装置在ADAMS中的运动仿真解析(2021版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液压挖掘机工作装置在ADAMS中的运动仿真解析(2021版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

液压挖掘机工作装置在ADAMS中的运动仿 真解析(2021版) 虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖

掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式,将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进行STEP函数值设置时,应该满足运动函数需求。当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。

ADAMS 柔性体运动仿真分析及运用

ADAMS 柔性体运动仿真分析及运用 焦广发,周兰英 (北京理工大学机械与车辆工程学院100081) 摘要介绍了ADAMS柔性体基本理论及在ADAMS中生成柔性体的几种方法,并构建机械系统仿真模型.通过一个实例验证了ADAMS 柔性体运动仿真分析的实效. 关键词:ADAMS 柔性体运动仿真继电器 Application of ADAMS flexible body kinetic simulation Jiao guangfa Zhou lanying (Beijing institute of technology ,school of mechanical and vehicular engineering , Beijing 100081 ) Abstract Introduced the basic theory of ADAMS flexible body and some methods of adding flexible bodies to a model to study the dynamic characteristics of the mechanical system1,constructed mechanical system simulation model1 Tested the validity of the ADAMS flexible kinematical simulation through an example1. Key words :ADAMS Flexible body Kinetic simulation relay ADAMS全称是机械系统自动动力学分析软件,它是目前世界范围内最广泛使用的多体1系统仿真分析软件,其建模仿真的精度和可靠性在现在所有的动力学分析软件中也名列前茅.机械系统动力学仿真分析是机械设计的重要内容,过去分析时建立的模型,其构件都是属于刚体,在作运动分析时不会发生弹性变形.而实际上,在较大载荷或加、减速的情况下,机构受力后会有较大的变形和位移变化,产生振动.ADAMS的分析对象主要是多刚体,但ADAMS提供了柔性体模块,运用该模块可以实现柔性体运动仿真分析,以弹性体代换刚体,可以更真实地模拟出机构动作时的动态行为,同时还可以分析构件的振动情况[1]. 一、ADAMS柔性体理论及生成柔性体的几种方法 ADAMS柔性模块是采用模态来表示物体弹性的,它基于物体的弹性变形是相对于连接物体坐标系的弹性小变形,同时物体坐标系又是经历大的非线性整体移动和转动这个假设建立的.其基本 基金项目:北京市重点学科建设(XK100070424);北京理工大学基金(0303E10) 作者简介:焦广发(1982—),男,河北人,硕士,主要研究方向为动力学仿真,有限元分析和表面涂层技术. 思想是赋予柔性体一个模态集,采用模态展开法,用模态向量和模态坐标的线性组合来表示弹性位移,通过计算每一时刻物体的弹性位移来描述其变形运动.ADAMS柔性模块中的柔性体是用离散化的若干个单元的有限个结点自由度来表示物体的无限多个自由度的.这些单元结点的弹性变形可近似地用少量模态的线性组合来表示. ADAMS提供了四种生成柔性体的方法,对于外形简单的构件,可以采用直接生成柔性件的方法,即拉伸模式;对于外形复杂的构件,可以采用先建刚性件, 再进行网格划分的模式, 即构件网格模式(Solid). 1) 拉伸法生成柔性体:首先要确定拉伸中心线,再定义截面半径、单元尺寸、材料属性等,最后定义好柔性体跟其它构件的连接点即外连点,就可以生成柔性体.模型生成柔性件的同时生成模态中性文件,该模态中性文件中包含了柔性件的质量、质心、转动惯量、频率、振型以及对载荷的参数因子等信息.将模型中原有的刚体件上的运动副修改在柔性件上,使柔性件与模型上的其它构件连接起来,同时删除无效的刚性件.这样可以使模型保持原有的自由度,从而实现柔性构件的运动仿真运算.

相关文档
相关文档 最新文档