文档库 最新最全的文档下载
当前位置:文档库 › 咪唑类酸性离子液体催化剂的制备及其表征

咪唑类酸性离子液体催化剂的制备及其表征

咪唑类酸性离子液体催化剂的制备及其表征
咪唑类酸性离子液体催化剂的制备及其表征

咪唑类酸性离子液体催化剂的制备及其表征

【摘要】本文用一步合成法制备了三种咪唑类Br?覫nsted酸性离子液体:[Hmim]CH3COO、[Hmim]H2PO4、[Hmim]C4H7O2,收率分别为85.5%、79.0%、87.0%,并通过FT-IR对三种离子液体进行了表征,对其结构及性质进行了初步的研究。

【关键词】咪唑;酸性离子液体;FT-IR

0 概述

离子液体,是由一系列杂环阳离子和多种阴离子组合而成[1]。在电化学业、重金属离子提取、相转变催化、重合、增溶作用以及在酶反应中做低挥发的有机溶剂等领域有着潜在的商业应用[2]。离子液体虽然为离子组成,但其组成可调变,故称为“设计溶剂”(designed solvents)。采用一步合成法制备离子液体,操作简便,没有副产物,产品易分离,纯化[3-4]。离子液体可用波谱学、物理学方法和电化学等手段对其进行表征。通过IR图谱的分析,可以证实产物(特别是阳离子部分)是否正确[5]。本文合成三种咪唑类离子液体[Hmim]CH3COO、[Hmim]H2PO4、[Hmim]C4H7O2,并采用光谱法对其结构及性质进行了初步的研究。

1 实验部分

1.1 试剂

N-甲基咪唑(wt≥98%,浙江省宁海市凯乐化工公司)、冰醋酸(化学纯,上海凌峰化学试剂有限公司)、磷酸(分析纯,国药集团化学试剂有限公司)、正丁(分析纯,上海化学试剂有限公司)等。

1.2 离子液体催化剂制备

[Hmim]CH3COO的制备

称量摩尔比为1:1的N-甲基咪唑8.21g和醋酸6.01g于250ml三口烧瓶中,加入少量水作溶剂,旋转搅拌,将温度控制在80℃,反应进行6h,得到淡黄色液体。将得到的淡黄色液体进行减压蒸馏,控制减压蒸馏的真空度为0.07MPa,顶部温度为92℃,蒸馏时间为3h,即得到咪唑醋酸盐离子液体[Hmim]CH3COO。

[Hmim]C4H7O2的制备

称量摩尔比为1:1的N-甲基咪唑8.21g和正丁酸8.82g于250ml三口烧瓶中,加入少量水作溶剂,加热并搅拌,反应温度控制在80℃,反应7h,得到黄色液体。将得到的液体进行减压蒸馏,控制真空度为0.05MPa,顶部温度为75℃

催化剂制备与表征

催化原理考试复习题 一概念 离子交换法:利用载体表面存在着可进行离子交换得离子,将活性组分通过离子间得变换而附载在载体上得方法。 化学键合法:通过化学键(离子键、共价键、配位键)把络合物催化剂与高分子载体相结合得过程。 吸附法:利用载体对活性组分得吸附作用来制备负载型催化剂得方法。 超均匀共沉淀:就是将沉淀分两步进行,首先制备盐溶液得悬浮层,并将这些悬浮层立即混合成为超饱与溶液,然后由超饱与溶液得到均匀沉淀。 二、填空 1、沉淀老化时,颗粒长大方法有:再凝结、凝聚 2、正加法加料时,溶液得PH值由低到高 3。竞争吸附时,当反应由外扩散控制时,球形催化剂上活性组分得分布以蛋壳型为益,由动力学控制时,均匀型为益 三、简答题 1、固体催化剂制备方法:①原料准备②催化剂(母体)得制备③成型④活化 2、催化剂制备可粗分为:干法与湿法 干法包括热熔法、混碾法与喷涂法 湿法包括胶凝法、沉淀法(共沉淀法,均匀沉淀法与超均匀沉淀法)、浸渍法、离 子交换法、沥滤法。 3、催化剂在工业得到应用满足得条件 ★催化性能:具有良好得活性,选择性与稳定性 ★机械性能:有一定得机械强度,合适得形状,颗粒大小与分布 ★有一定得抗毒性能:最好能活化再生,使用寿命长 ★催化剂制备方面:要求原料能稳定供应,制备工艺能适合于大规模工业生产,环境友好,最好无"三废”污染。 4、选择原料得基本原则: A原料中要包括催化剂所需要得全部组分,同时也要考虑到原料中得杂质能适合 生产中得要求。 B原料中不含对催化剂有害得成分,或对环境有污染得成分 C来源充足,价格便宜 D使用活性组分含量高,用量少得原料。 5、催化剂组成得表示方法: 固体催化剂…主催化剂,助催化剂,载体 配合物催化剂~助催化剂与助催化剂 酶催化剂:酶蛋白与辅酶

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

柴油车尾气净化催化剂制备、表征及性能测试实验报告(DOC)

广州大学化学化工学院 本科学生综合性、设计性实验报告实验课程化学工程与工艺专业实验 实验项目化学工程与工艺专业实验 专业精细化工 班级08精工 学号0813020060 姓名赖家雄 指导教师及职称梁红教授 开课学期2011 至2012 学年第一学期 时间2011 年11 月20 日

柴油车尾气净化催化剂制备、表征及性能测试化学化工学院 08精工 0813020060 赖家雄 摘要:本实验通过小组设计方案,制备柴油车尾气净化催化剂及其表征和性能进行测试。目的是掌握柴油车尾气处理净化催化剂的制备方法,并了解催化剂的制备过程中影响催化剂性能的各种因素;了解催化剂活性测试方法和仪器的构成和使用方法;学会用X-射线衍射仪(XRD)测定催化剂的晶相结构。学会用FT-IR测定催化剂的结构。预习实验报告了解了柴油车尾气的危害,同时了解沉淀法制备催化剂的主要方法,以氧化铝为载体进行制备。 关键词: 柴油车尾气; 危害;催化剂制备方法; 温度:数据处理 柴油车排放的污染物主要是颗粒物(PM)和氮氧化物(NOx),还有少量的一氧化碳(CO)、碳氢化合物(HC)、挥发性烃类有机化合物(VOC)。柴油车排放的污染物和汽油车相比较,汽油车排气中的CO、HC和VOC比较多,柴油车排气中的PM比较多,近年来因机动车所造成的污染日趋严重,对机动车尾气进行治理具有重要意义。综合目前柴油车尾气的处理方法,采用催化燃烧的方法除去颗粒物是目前实现柴油车颗粒物排放控制最为有效和简单的方法,其中催化剂的选择是最为关键的因素。 实验内容 一、实验目的 本实验拟以金属氧化物为活性组分,三氧化二铝(Al 2O 3 )为载体制备柴油车尾气 净化催化剂,并了解催化剂制备过程中各种因素对催化剂活性的影响,拟达到如下目的: 1.初步了解和掌握催化剂产品开发的研究思路和实验研究方法; 2.学会独立进行实验方案的设计,组织与实施; 3.了解和掌握催化剂的各种制备方法,催化剂活性评价方法及数据处理的方法; 4.了解催化剂比表面积(BET),X射线粉末衍射(XRD)、程序升温还原(TPR)等

咪唑类酸性离子液体催化剂的制备及其表征

咪唑类酸性离子液体催化剂的制备及其表征 【摘要】本文用一步合成法制备了三种咪唑类Br?覫nsted酸性离子液体:[Hmim]CH3COO、[Hmim]H2PO4、[Hmim]C4H7O2,收率分别为85.5%、79.0%、87.0%,并通过FT-IR对三种离子液体进行了表征,对其结构及性质进行了初步的研究。 【关键词】咪唑;酸性离子液体;FT-IR 0 概述 离子液体,是由一系列杂环阳离子和多种阴离子组合而成[1]。在电化学业、重金属离子提取、相转变催化、重合、增溶作用以及在酶反应中做低挥发的有机溶剂等领域有着潜在的商业应用[2]。离子液体虽然为离子组成,但其组成可调变,故称为“设计溶剂”(designed solvents)。采用一步合成法制备离子液体,操作简便,没有副产物,产品易分离,纯化[3-4]。离子液体可用波谱学、物理学方法和电化学等手段对其进行表征。通过IR图谱的分析,可以证实产物(特别是阳离子部分)是否正确[5]。本文合成三种咪唑类离子液体[Hmim]CH3COO、[Hmim]H2PO4、[Hmim]C4H7O2,并采用光谱法对其结构及性质进行了初步的研究。 1 实验部分 1.1 试剂 N-甲基咪唑(wt≥98%,浙江省宁海市凯乐化工公司)、冰醋酸(化学纯,上海凌峰化学试剂有限公司)、磷酸(分析纯,国药集团化学试剂有限公司)、正丁(分析纯,上海化学试剂有限公司)等。 1.2 离子液体催化剂制备 [Hmim]CH3COO的制备 称量摩尔比为1:1的N-甲基咪唑8.21g和醋酸6.01g于250ml三口烧瓶中,加入少量水作溶剂,旋转搅拌,将温度控制在80℃,反应进行6h,得到淡黄色液体。将得到的淡黄色液体进行减压蒸馏,控制减压蒸馏的真空度为0.07MPa,顶部温度为92℃,蒸馏时间为3h,即得到咪唑醋酸盐离子液体[Hmim]CH3COO。 [Hmim]C4H7O2的制备 称量摩尔比为1:1的N-甲基咪唑8.21g和正丁酸8.82g于250ml三口烧瓶中,加入少量水作溶剂,加热并搅拌,反应温度控制在80℃,反应7h,得到黄色液体。将得到的液体进行减压蒸馏,控制真空度为0.05MPa,顶部温度为75℃

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

钒改性催化剂制备及表征论文

钒改性催化剂的制备及表征 摘要:为了提高废水处理的效果,文章以高岭土为载体,制备了负载型的钒改性高岭土催化剂,并通过x射线单晶衍射、傅立叶红外光谱、扫描电子显微镜等手段对催化剂进行了表征,结果表明:高岭土经改性后,高岭土中的al-o八面体结构部分被破坏,导致结构无序化,高岭土的层间距和比表面积显著增大,改性后的催化剂负载铁离子时催化效果较好。 abstract: v-modified kaolin was prepared using kaolin as the starting materials. xrd, ftir, sem are used to character the v-modified kaolin. the results indicated that, the v- polycations are introduced into the layer of kaolin and such materials show enhanced basal spacing, and surface are stability. 关键词:高岭土;制备表征;钒改性高岭土;催化剂 key words: kaolin;preparation;characterization;v- modified kaolin;catalyst 中图分类号:g633.8 文献标识码:a 文章编号:1006-4311(2012)33-0011-02 0 引言 目前,水污染是世界各国普遍面临的急需解决的问题之一。水处理过程中涉及的催化剂种类较多,主要有均相催化剂(金属盐类)、非均相催化剂(铜系、贵金属系及稀土系列)等,金属盐类

离子液体的制备教学文稿

离子液体的制备

一.3.1 咪唑类离子液体的制备(制备氧化锆) 3.1.1 溴化1-辛基-3-甲基咪唑([C8mim]Br)的合成及纯化 这种离子液体的合成反应可表示为: C8H17Br + C4H6N2 → [C8mim]Br 实验步骤:在圆底烧瓶中加入100 g新蒸馏的N-甲基咪唑和300 mL三氯乙烷,在强烈搅拌下,在60℃滴加236 g新蒸馏的正溴辛烷,滴加时间超过2 h,滴加完毕后在83℃下回流约3 h,反应现象是先浑浊后变为橙黄色粘稠的液体,经分液漏斗分离出离子液体, 并用三氯乙烷洗涤数次后, 在65℃真空干燥48 h除去残余的溶剂和水,即可得到最终产品。 3.1.2 1-辛基-3-甲基咪唑四氟硼酸盐([C8mim][BF4])的合成及纯化 该离子液体的制备反应可表示为: [C8mim]Br + NaBF4 → [C8mim][BF4] + NaBr 实验步骤:将160.6 gNaBF4溶于550 mL水中,再加入202.6 g[C8mim]Br,搅拌48 h,而后用二氯甲烷萃取,有机层多次用水洗涤,直到在被除去的水相中滴加AgNO3溶液没有黄色沉淀出现为止。先蒸去二氯甲烷溶剂,再在65℃真空干燥48 h用以除去残余的溶剂和水。 3.1.3 溴化1-十二烷基-3-甲基咪唑([C12mim]Br)的合成及纯化 该离子液体的制备反应可表示为: C12H 25Br + C4H6N2 → [C12mim]Br 实验步骤:在圆底烧瓶中,加入75 g新蒸馏的N-甲基咪唑和250 mL三氯乙烷,在强烈搅拌下,在60℃滴加250 mL新蒸馏的正溴十二烷,滴加时间超过2 h,滴加完毕后在83℃再回流3 h,反应现象是先浑浊后变为橙黄色粘稠的液体。然后蒸出溶剂三氯乙烷,得到此离子液体极其粘稠,[C12mim]Br在65℃真空干燥48 h用以除去残余的溶剂和水。

咪唑盐离子液晶

中国科学: 化学 2010年第40卷第8期: 1072 ~ 1079 SCIENTIA SINICA Chimica https://www.wendangku.net/doc/454952929.html, https://www.wendangku.net/doc/454952929.html, 《中国科学》杂志社SCIENCE CHINA PRESS 论文 1-烷基-3-甲基咪唑溴化盐离子液体的 晶体结构及性能 魏西莲①?, 魏增斌①, 傅式洲①, 刘杰①, 孙德志①, 尹宝霖①, 王大奇①, 王素娜①, 王慧①, 吴明周①, 李干佐②? ①聊城大学化学化工学院, 聊城 252059 ②山东大学胶体与界面化学教育部重点实验室, 济南 250100 ?通讯作者, E-mail: weixilian@https://www.wendangku.net/doc/454952929.html,; coliw@https://www.wendangku.net/doc/454952929.html, 收稿日期: 2009-05-17; 接受日期: 2009-08-19 摘要以不同链长溴代烷烃和N-甲基咪唑反应得到1-烷基-3-甲基咪唑溴化盐, 用元素分析和核磁共振对化合物进行了表征. 室温下用溶剂蒸发法得到了单晶, 并用X射线单晶衍射法测定了晶体结构, 该晶体属于三斜晶系, 空间群为P-1. 化合物采用双分子层结构, 水分子参与结构的形成, 整个化合物由交叉的线性烷基链、咪唑头基、溴离子和水分子组成, 溴离子和水分子之间较强的氢键作用在(010)方向上形成了一个无限的O?H···Br氢键链. 用偏光显微镜、差示扫描量热(DSC)技术研究了其液晶行为, 证明其一水合物为近晶相热致液晶. 液晶区域的温度范围较宽说明水分子起到稳定作用. 关键词 离子液体晶体晶体结构 液晶性能 热力学性能 1 引言 近年来, 各类离子液体尤其是由N,N′-二烷基咪唑阳离子与阴离子构成的咪唑类离子液体以其独特的物理化学性质和在众多领域的巨大应用潜能而引起广泛的关注和研究兴趣[1, 2]. 这类长链两亲离子盐不仅具有表面活性, 而且在有机溶剂中也可以形成晶体而被称为离子液体晶体[3]. 作为一类新型材料, 它们的液晶也不同于通常的液晶, 它结合了离子液体和热致液晶的特点, 可作为离子传导材料[4]、有机反应中的定向溶剂[5]、功能纳米材料模板[6]以及有序膜的组成[7]等. 而晶体结构的特性对这些材料的应用是至关重要的, 因此近年来对其结构特征的研究也引起了人们极大的兴趣[8~17]. 国内对此类研究还见未报道. 一些短链的1-烷基-3-甲基咪唑盐的晶体已有部分报道[18~20]. 对于长链的咪唑盐类, Gordon等[21]和Roche等[22]先后报道了[C12-mim][PF6]、[C14-mim][PF6]和[C16-mim][PF6]的晶体结构, Abdallah等[23]测定了季盐离子液晶体的结构数据. 2002年Hardacre等[24]用小角X射线散射(SAXS)和DSC详细探讨了[C n mim]X (n=12~18, X=Cl, Br, OTF, TFI)的液晶行为, 并根据层间距等参数预测出晶体中存在着三维氢键和双层结构模型. 随即在2004年[25]制备出[C18-mim]Cl·H2O和 [C14-dmim]Cl·H2O的晶体, 证实了所预测的结构模型, 并指出由于氯离子和水分子之间形成了较强的氢键而使得长链烷基咪唑氯化盐在常温下是以一水合氯化盐的形式而稳定存在. 2008年Getsis和Mudring[26]考察了[C n mim]Br·H2O (n=12, 14)和无水化合物晶体的热力学及光学特征. 以上研

催化剂的制备与表征

一、简答(任选五25) (1)沸石的笼结构;(2)离子交换法制备催化剂;(3)布拉格方程(Bragg衍射条件方程,要求:写出方程,并注明每个字母的物理意义):(4)催化剂的中毒;(5)载体的 作用;(6)简述沉淀法制备催化剂过程的主要影响因素;(7)溶胶——凝胶过程制 备催化剂。 二、对于下列催化剂反应(15) 苯+H2——环己烷 请(1)选择一个固体催化剂;(2)写出它的制备过程及方法;(3)表征方法(要求:简要描述所列表正内容)。 三、金属分散度是金属催化剂的重要表面性质之一。对于负载型金属催化剂,可以利用测定 氢气在金属上的化学吸附量来计算金属组分的分散度,请以H2在载体型铂催化剂上的化学吸附为例,给出Pt的分散度计算公式。 提示:一般认为,请以原子态吸附:H2+2M——2M-H 四、蒸汽转化催化剂是以Al2O3为载体,活性组分为NiO.其制备方法为:85%的Al(OH)3 先于1100oC煅烧4h,磨细再与15%的NiO 干混,成型,于1100oC煅烧2h.对4.0g催化剂作还原TG测试(如下图),发现TG曲线有三个失重段,其中:400-500oC失重段,△W=0.8g;760-1000oC失重段,△W=1.3g. 请组成及其含量,并描述分析过程。 五、简述电子能谱分析基本原理。下图为三氟乙酸乙酯的C1s XPS光电子能谱。请在图中标出CF3C=OOCH2CH3中每个C原子对应的化学位移 六.简述红外技术在催化剂研究中的应用。下图为利用固体红外技术测定固体表面酸性的结果,请简要分析。(e)为粘土REY,(f)为SIO2-Al2O3。实验过程为:150度,1.6×103Pa吡啶下固体催化剂吸附1h后,150 抽空6h,

催化剂制备与表征之欧阳家百创编

催化原理考试复习题 欧阳家百(2021.03.07) 一概念 离子交换法:利用载体表面存在着可进行离子交换的离子,将活性组分通过离子间的变换而附载在载体上的方法。 化学键合法:通过化学键(离子键、共价键、配位键)把络合物催化剂与高分子载体相结合的过程。 吸附法:利用载体对活性组分的吸附作用来制备负载型催化剂的方法。 超均匀共沉淀:是将沉淀分两步进行,首先制备盐溶液的悬浮层,并将这些悬浮层立即混合成为超饱和溶液,然后由超饱和溶液得到均匀沉淀。 二、填空 1.沉淀老化时,颗粒长大方法有:再凝结、凝聚 2.正加法加料时,溶液的 PH值由低到高 3.竞争吸附时,当反应由外扩散控制时,球形催化剂上活性组分的分布以蛋壳型为益,由动力学控制时,均匀型为益 三、简答题 1.固体催化剂制备方法:①原料准备②催化剂(母体)的制备③成型 ④活化 2.催化剂制备可粗分为:干法和湿法

干法包括热熔法、混碾法与喷涂法 湿法包括胶凝法、沉淀法(共沉淀法,均匀沉淀法和超均匀沉淀法)、浸渍法、离子交换法、沥滤法。 3.催化剂在工业得到应用满足的条件 ★催化性能:具有良好的活性,选择性和稳定性 ★机械性能:有一定的机械强度,合适的形状,颗粒大小和分布 ★有一定的抗毒性能:最好能活化再生,使用寿命长 ★催化剂制备方面:要求原料能稳定供应,制备工艺能适合于大规模工业生产,环境友好,最好无"三废"污染。 4.选择原料的基本原则: A原料中要包括催化剂所需要的全部组分,同时也要考虑到原料中的杂质能适合生产中的要求。 B原料中不含对催化剂有害的成分,或对环境有污染的成分 C来源充足,价格便宜 D使用活性组分含量高,用量少的原料。 5.催化剂组成的表示方法: 固体催化剂…主催化剂,助催化剂,载体 配合物催化剂~助催化剂和助催化剂 酶催化剂:酶蛋白和辅酶 6.金属溶解一般选用稀HNO3原因: ★大多数金属(除Au,Pt)可溶解在硝酸中制成硝酸盐 ★NO3在加热时,能除去,不会使之留在催化剂中。 ★节省原料角度,稀硝酸好

催化剂制备与表征

催化剂制备简答题: 36.挤条成型过程中影响催化剂的性能有哪些因素? 粉体颗粒度、混捏时间和方式、水粉比、助挤剂。 37.喷雾干燥、油柱成型的原理是什么? 喷雾干燥成型和油柱成型是利用物料的自身表面张力、收缩成微球或小球。原理:前者是把料浆高速通过喷头(雾化器)将原料浆液分散成雾滴,并用高温气流干燥雾滴,失水成干燥微球;后者是将溶胶滴入油类中,利用介质和溶胶本身的表面张力将物料切割成小滴并收缩成小球。 38.连续流动搅拌反应器和活塞流反应器(无体积变化)的速率公式推导。 (1)连续流动搅拌反应器 从反应的稳态料平衡分析: 反应物进入反应器的流速=反应物离开反应器的流速+ 反应物反应速率 Q 0:反应物体积进料速度;W :反应器中催化剂的重量; C 0和C :反应物进入和流出反应器的摩尔浓度 r :单位重量催化剂上的总反应速率。 则上述物料平衡式可表述为Q 0C 0=Q 0C+rW 所以r=(C 0-C)Q 0/W 另一方面,速率也可以按单位催化剂体积来表示,在这种情况下r=(C 0-C)Q/V 式中V 为反应器中所盛催化剂的体积。 测量进料和出料中反应物浓度的变化,即可求得反应速率。 (2)活塞流反应器 在理想的活塞流反应器中,假定没有轴混,而且无浓度或流体速度的径向梯度,只是流体的组成随流动的距离而变化,所以须分析微分体积元dV 中的物料平衡。参照图,对微分体积元dV ,设 F :反应物的摩尔流量;V :催化剂体积;r :单位催化剂体积的反应速率. 则物料平衡式为F=(F+dF)+rdV 由此可得出r= -dF/dV 设F 0为反应物进入反应器的摩尔进料速率,x 为转化率,如果在反应时无体积改变,则 F =F o (1一x),r= - dF/dV=F 0×dx/dV 对截面为S 的管式反应器,dV =Sdl ,dl 为微分圆柱形体积元的厚度,则 F r 与CSTR 相反,PFR 不能直接测量反应速率,只有在转化率小到可以用x 代替dx 时才给出速率的直接测量。这实际上意味着使用极少量的催化剂,这种反应器称之为微分反应器。在这种条件下,速率可以由简单的差分方程计算而得 然而极小的dx 值在分析上有较大的困难,所以PFR 大都是在较高的转化率的情况下进行实验的,即按积分方式运转。其反应速率随反应器的轴向位置而改变,此时 (1) 式中停留时间=V/Q 0。将(1)式对整个反 应器积分,则得

咪唑离子液体

咪唑离子液体 离子液体是由阴阳离子组成,其中阳离子有几种类型,主要部分是咪唑环的则称为咪唑类离子液体,如图为1,3-二甲基咪唑阳离子,侧链可以是不同碳链的,也可以是1,2,3三取代的,这些阳离子组成的离子液体都称为咪唑类离子液体 根据离子液体的酸碱性可把离子液体分为Lewis酸性、Lewis碱性、Br?nsted酸性、Br?nsted 碱性和中性离子液体。广义的酸性离子液体就是指可以提供质子或者得到电子的离子液体 反应类型 1934年,英国曼彻斯特Bragg研究小组的年轻物理学者J. F. Keggin在实验室中合成出H3 PW12O40 ·5H2O,他把该物质粉末的X射线衍射实验的结果与计算值进行比较,提出了具有划时代意义的Keggin结构模型(1: 12系列A型) 。40年后,即1974年,再次测定证明Keggin结构是正确的。1953年,Dawson首次用X射线衍射法测定了K6 [ P2W18O60 ] ·14H2O的结构,结果表明其为三斜晶系。Strandbery在对Na6 [ P2Mo18O60 ] ·24H2O的结构进行测定后指出: Na6 [ P2Mo18O60 ] ·24H2O和K6 [ P2W18O60 ] ·14H2O具有相同的结构构型。此后一些有关2: 1868系列杂多化合物的结构相继被测定出来,它们都具有与K6 [ P2W18O60 ] ·14H2O相类似的骨架。后人为纪念Dawson,称2: 18系列杂多化合物为Dawson结构杂多化合物。早在1937年, J. A.Anderson就已经推测出1: 6型杂多化合物的结构,如: [ IMo6O24 ]6 - ,其中 I( Ⅶ) :Mo = 1: 6,但直到1974年才被最终确定下来,故称1: 6系列杂多化合物为Anderson结构杂多化合物,但第一个真正的Anderson结构化合物被认为是1948 年Evans报[ FeMo6O24 ]6 - 。1953 年,Wangh首次合成了(NH4 ) 6 [XMo9O12 ] (X =Ni4 + ,Mn4 + ) ; 1960年B rown. D. H 报道了1: 9BeW9的合成;上世纪70年代以后,相继合成了以P、Si、As为杂原子的钼的杂多化合物和以P、Si、As、Ge、Sb为杂原子的钨的杂多化合物,后人称此类化合物为Wangh结构( 1: 9系列)杂多化合物。此外还有Silverton (1: 12系列B型)结构,它们与Keggin、Dawson、Anderson以及同多酸的Lindqvist结构(M6O19结构)一起被称为多酸的6种基本结构[ 2 ] 。由于多酸化合物中原子数目较多,结构复杂,传统的描述方法是把它们的结构看成是以金 属为中心的MOn多面体通过共有角氧和边氧形成的组合。由于受测试手段的限制,到1971年,能够进行结构解析的多酸晶体只有14种(其中单晶12种) 。从20世纪80年代开始,随着四圆X射线衍射仪的普及,迄今已确定了100多种多酸结构,其中Keggin结构和Dawson结构是两种常见的基本结构[ 4 ] 。 (1) Keggin结构(1: 12系列A型)具有Keggin结构的杂多阴离子结构通式为[ XM12 O40 ]n - (X = P、Si、Ge、As等,M =Mo、W) 。四面体的XO4位于分子结构的中心,相互共用角氧和边氧的12 个八面体MO6包围着XO4。Keggin结构杂多阴离子共有α、β、γ、δ和ε型5种异构体(2) Dawson结构(2: 18系列)

咪唑类离子液体在中药有效成分提取中的应用

Pharmacy Information 药物资讯, 2019, 8(3), 43-48 Published Online May 2019 in Hans. https://www.wendangku.net/doc/454952929.html,/journal/pi https://https://www.wendangku.net/doc/454952929.html,/10.12677/pi.2019.83005 Application of Imidazole Ionic Liquids in Extracting Active Ingredients in Traditional Chinese Medicine Yalan Wang1, Suya Gao1,2*, Miaojie Yang1, Tian Cao1, Yuze Mao1, Dali Tao1, Tangna Zhao1, Jiawen Li1,Rui Wang1, Jiaojiao Wang1 1College of Pharmacy, Xi’an Medical University, Xi’an Shaanxi 2Institute of Medicine, Xi’an Medical University, Xi’an Shaanxi Received: Mar. 29th, 2019; accepted: Apr. 10th, 2019; published: Apr. 17th, 2019 Abstract Ionic liquid is new type of green organic solvent. Compared with traditional volatile organic sol-vents, it has many advantages such as good solubility, non-combustible and non-explosive, good controllability, good stability, good safety and environmental protection, and so on. In particular, imidazoles are easy to be synthesized and convenient to be used. In recent years, they have been widely used in chemical industry and medicine. In this paper, the application and advantage of imidazoles ionic liquids are reviewed in extracting effective ingredients from traditional Chinese medicine to provide reference for expanding the application scope of imidazole ionic liquids and optimizing the extraction process of effective components in traditional Chinese medicine. Keywords Imidazole Ionic Liquids, Extraction Method, Active Ingredients, Application 咪唑类离子液体在中药有效成分提取中的应用 汪亚兰1,高苏亚1,2*,杨妙洁1,曹甜1,毛宇泽1,陶大利1,赵瑭娜1,李佳雯1,王睿1,王皎皎1 1西安医学院药学院,陕西西安 2西安医学院药物研究所,陕西西安 收稿日期:2019年3月29日;录用日期:2019年4月10日;发布日期:2019年4月17日 *通讯作者。

咪唑类离子液体分析测试方法汇总

咪唑类离子液体分析测试方法汇总 (1)反相高效液相色谱法测定离子液体及其中的高沸点有机物姜晓辉,孙学文,赵锁奇,等. 反相高效液相色谱法测定离子液体及其中的高沸点有机物[J]. 分析测试技术与仪器,2006,12(4):195-198 摘要: 建立了反相键合相液相色谱分析离子液体咪唑类离子液体[bmim]PF6、[bmim]BF4、吡啶类离子液体[bupy]BF4的纯度及其中高沸点有机物的方法.以缓冲溶液控制流动相pH值,显著改善了峰形.保留时间定性,外标法定量. 关键词: 离子液体;高沸点有机物;高效液相色谱法 离子液体[1]也称室温融盐,是近年来新兴的溶剂.一些有关离子液体相平衡的基础数据[2~4],主要是通过紫外分光光度法[5]和折射率法测得的[6],这两种方法各有一定的局限性.另外,如何测定离子液体的纯度,目前也尚无简便可靠的方法.本文建立了在离子液体与杂质,高沸点有机物与离子液体完全分离的情况下测定离子液体及其中的高沸点有机物含量的高效液相色谱分析方法,比现有的两种方法具有更高的准确度,更短的分析时间. 参考文献: [1] Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis[J]. Chem Rev, 1999, 99:2 071-2 083. [2] Blanchard L A, Hancu D, Beckman E J,etal. Green processing using ionic liquids and CO2[J]. Nature(London), 1999, 399: 28-29. [3] Huddleston J G, Willauer H D, Swatloski R P,et al. Room temperature ionic liquids as novel media for 'clean' liquid2liquid extraction[J]. Chem Commun,1998, (16): 1 765-1 766. [4] Blanchard L A, Hancu D, Beckman E J,etal. Green processing using ionic liquids and CO2[J]. Nature(London), 1999, 399: 28-29. [5] Lynnette A Blanchard, Joan F Brennecke. Recovery of organic products from ionic liquids using supercritical carbon dioxide[J]. Ind Eng Chem Res,2001; 30: 287-437. [6] 叶天旭,张予辉,刘金河,等.烷基咪唑氟硼酸盐离子液体的合成与溶剂性质研究[J].石油大学学报(自然科学版), 2004,28(4):105-107. (2)反相高效液相色谱法直接测定离子液体中咪唑杂质含量 薛洪宝,马春辉,刘庆彬,等. 反相高效液相色谱法直接测定离子液体中咪唑杂质含量[J]广东化工,2006,33(12): 83-85 [摘要]研究了高效液相色谱法测定离子液体中的杂质(4-甲基咪唑)含量的测定方法。在不同色谱条件下,分离效果不同。在Allsphere ODS C18色谱柱上,以水-甲醇为流动相,两者流速比为水∶甲醇= 1∶9,流速为 1.0 mL/min,在215 nm 处进行紫外检测,离子液体能与4-甲基咪唑很好的分离。另外,在Hypersil BDS C18色谱柱上用类似的条件分离效果也较好。采用该法的线性范围,检出限分析考察,结果表明,其灵敏度高、定量准确、重现性好,适合于离子液中4-甲基咪唑这种杂质含量的测定。 [关键词]反相高效液相色谱法;离子液体;4-甲基咪唑 离子液体作为一种可代替挥发性有机溶剂[1-5]的绿色溶剂,已广泛应用于萃取分离过程,有机合成,化工及催化反应。离子液体有以下特点:热稳定性好,温度范围宽;对无机物、

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

丙烷脱氢催化剂的制备与表征

丙烷脱氢催化剂的制备与表征 目前,丙烷脱氢制丙烯催化剂主要分为丙烷直接催化脱氢催化剂和丙烷氧化脱氢催化剂两大类,直接催化脱氢催化剂主要有Cr系催化剂和Pt系催化剂。 Pt系催化剂的制备方法 浸渍法 浸渍法是将贵金属负载到载体上的最常用的方法,以Pt系催化剂为例:制备单Pt催化剂时,先将Pt的前驱物如(NH4)2PtCl6,H2PtCl6或Pt(acac)2等用去离子水或有机溶剂制备成溶液,采用初湿浸渍法浸渍到载体上,然后再在适当的温度下进行烘干、焙烧和还原;制备Pt-Sn催化剂,可以采用顺序浸渍法,也可采用共浸渍法。顺序浸渍法是分别将Pt、Sn的前驱物制备成溶液,先浸渍一种,烘干后再浸渍另一种。共浸渍法则是将两种前驱物先制备成一种溶液再进行浸渍。 浸渍法虽然简单,但不能控制金属颗粒的大小,负载双金属或多金属时不能控制金属颗粒的组成。金属颗粒的大小和组成,与金属前驱体的组成、载体性质以及浸渍方法等都有关。此外采用有机溶剂溶解金属前驱物,在工业生产中还要考虑溶剂的回收问题。 离子交换法 该方法的原理是利用贵金属前驱物与载体表面的羟基相互作用,例如采用离子交换法制备Pt/SiO2催化剂,SiO2表面存在硅羟基,Pt的四铵络合物[Pt(NH3)4(OH)2]与硅羟基中的质子可以发生离子交换反应得到[Pt(NH3)4]2+,离子交换反应后先将催化剂烘干,然后在500℃下氧化,再用H2还原,制得Pt/SiO2催化剂,其中Pt颗粒的粒径集中分布在1~3 nm。采用离子交换法,也可以将Pt负载到Al2O3载体上,可以选用氯铂酸、氯铂酸铵等化合物作为Pt的前驱物。 溶胶凝胶法 溶胶凝胶法是制备催化剂的常用方法,一般用于制备金属氧化物催化剂和负载型非贵金属催化剂。该方法制备贵金属催化剂可在一定程度防止贵金属颗粒的烧结。采用溶胶凝胶法制备负载型贵金属催化剂,有以下2种方法:一种是将预先制备好的金属颗粒,直接加入到载体的溶胶凝胶中;另一种方法是将金属盐与制备载体的材料一起成胶或直接加入到制备载

咪唑类离子液体的合成、溶解性及其应用研究解读

咪唑类离子液体的合成、溶解性及其应用研究 离子液体是由正负离子组成的室温下为液体的盐,具有不挥发性,不易燃,高沸点,可循环性和化学稳定性等优点,广泛应用在有机合成、电化学、高分子科学、纳米材料合成以及分析领域。本文主要做了离子液体在天然高分子材料和无机材料中的应用研究。主要研究工作如下:1.合成了三种离子液体,考察了反应温度、反应时间等条件对离子液体转化率的影响,并用FT-IR、1H-NMR分析了离子液体的化学结构。随着一定范围内温度的升高和反应时间的延长,转化率增加,最高可达90%左右;要得到颜色较浅的离子液体,反应初期须保持较低的温度并慢慢升温。2.对比研究了三种离子液体对棉纤维素的溶解能力,并用FT-IR、SEM和XRD研究了溶解前和再生后纤维素的化学结构、形貌及晶体结构的变化。三种离子液体中,[C_2OC_1-EIM]Cl对棉纤维素的溶解性最好。在溶解过程中,随着温度的升高,纤维素在离子液体中的溶解度增加,但聚合度下降,特别是在[Cl-C_2OC_2-EIM]Cl中溶解时,纤维素的聚合度下降最严重。含羧基的离子液体会由于分子间氢键的缔合作用降低其对纤维素的溶解性。侧基较大的离子液体对纤维素的溶解性也较差。3.利用离子液体液化杉木粉,并利用液化产物改性酚醛树脂胶粘剂,研究了液化产物对胶粘剂性能产生的影响。液化反应的残渣率受到液化温度、时间、液比和离子液体种类等因素的影响;所得改性酚醛树脂胶黏剂的游离醛含量降低,剪切拉伸性能方面也优于未改性的酚醛树脂,离子液体的引入在粘结性能方面起到了重要的作用。4.以离子液体作为插层剂制备有机蒙脱土,研究其层间距的变化和影响因素。利用离子液体插层钠基蒙脱土,增大了蒙脱土的层间距,层间距与离子液体阳离子的结构与大小有关,且离子液体可与钠基蒙脱土直接发生离子交换反应;以离子液体为模板,正硅酸乙酯为硅源,制备纳米SiO_2粒子,研究离子液体与二氧化硅的相互作用,以及煅烧温度对SiO_2晶型的影响。离子液体负载二氧化硅前驱体中,离子液体与二氧化硅之间不存在化学反应,只是相互之间的物理作用;所得纳米二氧化硅材料在1200℃煅烧初步表现为部分晶态,1500℃煅烧下已完全为晶态物质,离子液体的加入减缓了SiO_2晶型的转变。 【关键词相关文档搜索】:材料学; 离子液体; 纤维素; 杉木粉; 酚醛树脂胶粘剂; 纳米二氧化硅

离子液体概述及其应用

离子液体概述及其应用前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL)仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden[1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes[3]领导的小组合成了一系列由咪唑阳离子与 BF, 4

-6PF 阴离子构成的对水和空气都很稳定的离子液体。此后在全世界范 围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液 体是亲水性的,而同样的阳离子和-6PF 或-2NTf 产生的是强憎水性的离 子液体。目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

相关文档
相关文档 最新文档