文档库 最新最全的文档下载
当前位置:文档库 › 厌氧氨氧化去除垃圾渗滤液中氨氮的实验_林建清

厌氧氨氧化去除垃圾渗滤液中氨氮的实验_林建清

厌氧氨氧化去除垃圾渗滤液中氨氮的实验_林建清
厌氧氨氧化去除垃圾渗滤液中氨氮的实验_林建清

 第29卷 第 期

华侨大学学报(自然科学版)Vo l .29 No .1 2008年1月Jo ur nal of Huaqiao U niver sity (Na tur al Science )Jan .2008

文章编号: 1000-5013(2008)01-0061-03厌氧氨氧化去除垃圾渗滤液中氨氮的实验

林建清1,方宏达1,杨春霖1,高培卿2,

鞠高良3,施建臣4,郑维翔

4(1.集美大学生物工程学院,福建厦门361021;2.厦门市市容环境卫生管理处,福建厦门361004;

3.厦门市集美污水处理厂,福建厦门361021;

4.国家海洋局第三海洋研究所,福建厦门361005)

摘要: 以市政污水处理厂浓缩池污泥作为种泥,采用升流式厌氧污泥床(U A SB )作为厌氧氨氧化反应器,对垃圾渗滤液的脱氮进行3个月的连续实验.实验结果表明,厌氧氨氧化反应器对氨氮具有去除效果,且去除率呈上升趋势,月均去除率第1个月为13.1%,第2个月为27.9%,第3个月上升至39.8%.显微镜检验表明,种泥结构松散,启动运行3个月后,污泥密实且具有良好的颗粒性状;从色泽上比较,种泥为灰色,启动后的污泥略显红色,可见实验过程培养出了厌氧氨氧化细菌.

关键词: 垃圾渗滤液;氨氮;厌氧氨氧化;升流式厌氧污泥床

中图分类号: X 799.305文献标识码: A

垃圾渗滤液是一种含氨氮很高的废水[1],垃圾渗滤液主要采用生物技术,最成熟的是生物硝化反硝化脱氮工艺.厌氧氨氧化(A naerobic Amm onium Oxidatio n )是新发现的一种生物脱氮工艺,已经引起

国内外学者的广泛关注[2-4].该技术是在厌氧环境中,微生物直接以NH +4为电子供体,以NO -3或NO -

2为电子受体,将N H +4,NO -3或NO -2直接还原为N 2的生物氧化过程.但是这些研究均局限在人工配制废水范围内,对成功处理实际的垃圾渗滤液的例子还未见报道.本文采用UASB 反应器对垃圾渗滤液厌氧氨氧化脱氮技术进行了实验研究,直接采用垃圾渗滤液(有毒性)进行UASB 生物反应器的启动, 图1 试验装置 Fig .1 T he equipment 探讨能否由此获得厌氧氨氧化细菌,以及反应器对氨氮的处理效果.

1 实验方法

1.1 实验装置

反应器采用玻璃管制成,高110cm ,内径8cm ,总容积5.5L ,实验

装置如图1所示.进水泵采用美国米顿罗P056计量泵.实验期间装置

外部采用不透光材料包裹,防止光线对厌氧氨氧化细菌的灼伤.

1.2 实验材料

(1)菌种.原菌种于2006年4月取自福建厦门集美污水处理厂的

浓缩污泥池,撇去上清液后向UASB 反应器中接种20cm 高的种泥,经

过半年的实验培养后,将该菌种保存于实验装置中,并于2006年11月

开始本实验.(2)实验用水.实验用原废水取自福建厦门东孚垃圾填埋

场的垃圾渗滤液,化学耗养量(COD Cr )为13.5g ·L

-1,氨氮(NH +4-N )质量浓度为2.3g ·L -1,pH 值为7.48.高浓度的氨氮对微生物具有毒

性作用,实际工程可通过出水回流处理来降低进水浓度.本实验采用自来水对原废水进行稀释,代替出水回流的方法.原废水经过稀释后,一部分采用序批式活性污泥反应器对废水中的氨氮进行氧化,氧化 

收稿日期: 2007-10-22 作者简介: 林建清(1966-),男,副教授,博士,主要从事环境工程领域的研究.E -mail :jqlin @jmu .edu .cn . 基金项目: 福建省自然科学基金资助项目(D0440007);福建省科技计划资助项目(2005Y016)

处理后的出水与另外一部分废水混合作为UASB 反应器的进水.

1.3 水样分析

氨氮分析采用纳氏试剂分光光度法[5],显微镜图片采用M otic B -2生物数码显微镜拍摄.

2 结果与讨论

2.1 污泥的显微镜图片

图2为刚从污水处理接种的污泥和实验后的污泥显微镜图片.由图2(a )可见,种泥结构松散.

(a )启动期间(×10)(b )实验后期(×10)

(c )实验后期(×40)

图2 污泥菌胶团的显微镜图片

Fig .2 M ic rog raphs o f zo og loea 过实验运行后,污泥密实且具有良好的颗粒性状.从色泽上比较,培养后的菌胶团比实验前的微生物略

显红色.Jetten 等[6-10]曾对厌氧氨氧化细菌的酶颜色问题进行研究,在对厌氧氨氧化细胞和富集液的提

取物作可视镜检时发现,当生物团厌氧氨氧化活性提高期间,在468nm 处的信号逐步增加并达到吸收高峰.进一步研究表明,这是由于厌氧氨氧化活性酶中存在较高的亚铁红素.说明经过实验的启动后,本实验的UASB 反应器中厌氧氨氧化活性细菌得到富集.

2.2 反应器对氨氮的去除效果

实验过程中,进出水的氨氮质量浓度(ρ)变化及氨氮去除率(η)随时间变化,分别如图3,4所示.

图3 进出水的氨氮质量浓度随时间变化

图4 氨氮去除率随时间变化 F ig .3 A mmo nium co ncentration in Fig .4 A mmonium remo val ratio

the influent and the effluent

图3,4可见,实验初期的24d 内,反应器对氨氮的去除率低且非常不稳定,去除率在0%~30%之间波动,平均去除率为13.1%.随着实验的进行,反应器对氨氮的去除效果有所增大.在随后的31d 内,去除率在15%~60%之间波动,平均去除率为27.9%.在接下来的26d 内,反应器对氨氮去除效果又有所增强,去除率在25%~80%之间波动,平均去除率为39.8%.可见,随着实验的进行,反应器对氨氮的去除能力不断增强.Je tten 等[6]研究发现厌氧氨氧化菌属自养型,其倍增时间长达11d ,说明厌氧氨氧化生物反应器的启动是一个相对较长的过程.这也是经过3个月的实验后,反应器对氨氮的去除率不断得到提高,但仍未达到稳定值的原因所在.

62华侨大学学报(自然科学版) 2008年

3 结束语

研究结果表明,以市政污水处理厂浓缩池污泥作为种泥,采用实际的垃圾渗滤液来启动反应器,所培养的菌胶团从色泽上看,种泥为灰色,启动后的的污泥略显红色.这与厌氧氨氧化细菌的形态特征相一致,可见通过该实验过程培养并富集了厌氧氨氧化细菌.厌氧氨氧化反应器对氨氮的平均去除率分别是,第1个月为13.1%,第2个月为27.9%,第3个月为39.8%,去除率逐渐提高.厌氧氨氧化反应器的启动过程较为缓慢,要获得更高的去除率需要更长的培养时间.

参考文献:

[1] 王继明.城市垃圾处理中的几个问题[C ]∥废弃物处理与管理:中国科学技术协会论文集.北京:中国科学技术出版

社,1990.

[2] 袁 怡,黄 勇,龙腾锐.厌氧氨氧化过程的研究进展[J ].工业水处理,2003,23(2):1-6.

[3] 郑 平,徐向阳,胡宝兰.新型生物脱氮技术[M ].北京:科学出版社,2004:106~107.

[4] 赵志宏,李小明,廖德祥,等.厌氧氨氧化研究进展及其应用[J ].净水技术,2006,25(5):47-52.

[5] 国家环境保护总局.水和废水监测分析方法[M ].3版.北京:中国环境科学出版社,1998.

[6] JET T EN M S M ,S T RO US M ,V an de PA S -SCH OO N EN K T ,e t al .T he anaerobic o xidatio n o f ammonium [J ].

F EM S M icrobio lo gy ,1999,22(5):421-437.

[7] H OO PE R A B .Enzy molog y of the ox idatio n of ammonia to nitrite by bacteria [J ].A nto nie V an Leeuw enho ek ,

1997,71(1):59-67.

[8] A RCIERO D M ,HO O PER A B .Evidence fo r the structure of the active site heme P460in hy drox ylame ox i -

do reductase of nit rosomo nas [J ].Biochemistry ,1993,32(31):9370-9378.

[9] HO O PER A B ,DEBEY P ,A N DERSSO N K K ,e t al .H eme P460of hy drox ylamine ox idor eductase of nit ro -

so monas :Reactio n w ith CO and H 2O 2[J ].Eur J Biochem ,1983,134(1):83-87.

[10] PRIN CE R C ,G EO RG E G N .T he remarkable co mplexity of hy drox ylamine o xido reductase [J ].N ature Str uct .

Boil ,1997,4(2):247-250.

Study on the Removal of Ammonia -Rich Leachate with

Anaerobic Ammonium Oxidation

LIN Jian -qing 1,FA NG H ong -da 1,YA NG Chun -lin 1,

G AO Pei -qing 2,JU G ao -liang 3,

SH I Jian -chen 4,ZH ENG Wei -xiang

4(1.S chool of Biotech nology En gineering ,Jimei Univers ity ,Xiamen 361021,China ;

2.Xiam en Environmental S anitation Research Ins titute ,Xiam en 361004,China ;

3.Jim ei M unicipal W as tew ater Treatment Plant ,Xiamen 361021,C hina ;

4.Third Ins titu te of Oceanograph y ,S tate Oceanic Admin stration ,Xiamen 361005,China )

A bstract : T he up -f low anaero bic sludge (UA S

B )equipment was used to study the r emoval o f ammo nia in the landfill leachate .In the equipment ,the sludge o f municipal w astew ater trea tment pla nt a nd ammonia -rich leacha te wer e used to sta rt the process .In the pro ce ss of 3-month e xperiment ,ammo nia can be removed and depura tion ratio incr eased g radual -ly ;the averag e remov al ra tio of ammonia in the leachate was 13.1%in the first month ,27.9%in the seco nd mo nth ,and 39.8%in the third mo nth .T hro ug h the micro scope examina tion ,the sludge in the equipme nt turned f rom loo se to close -g rained and g ra nula r in shape ,f rom g rey to pink in co lo r ;it show ed that a naero bic ammo nium ox idatio n (A N A M M OX )bacteria we re obtained and enriched in the pr ocess .

Keywords : landfill leachate ;ammonia ;anae robic ammonium ox idatio n ;up -flo w a naero bic sludg e

(责任编辑:黄仲一)63第1期 林建清,等:厌氧氨氧化去除垃圾渗滤液中氨氮的实验

浅谈厌氧氨氧化及其工艺的研究

浅谈厌氧氨氧化及其工艺的研究 摘要厌氧氨氧化工艺是生物脱氮领域里不断发展起来的新工艺。由于厌氧氨氧化生物脱氨技术在经济方面的优势,成为近来研究的热点。目前,我国对该技术的研究主要处于实验室小试阶段,缺少中试及以上规模厌氧氨氧化工程的实际应用。综述列举了厌氧氨氧化工艺的应用及出现的一些问题,从而为该技术更深入的研究奠定了基础,同时对该技术的进一步发展提出了展望。 关键词厌氧氨氧化;SHARON/ANAMMOX;OLAND;前景 目前,随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,引起了严重的水体环境污染和水质富营养化问题,许多湖泊水体已不能发挥其正常功能进而影响了工农业和渔业生产。近年来,国内外学者一直在寻找一种低能耗、高效率的新型生物脱氮技术。就目前情况而言,厌氧氨氧化由于是自养的微生物过程、不需要外加碳源以及反硝化、污泥产率低,成为国内外学者研究的热点问题。 1厌氧氨氧化原理 厌氧氨氧化反应是由奥地利理论化学家Engelbert Broda在1977年根据反应的自由能计算而提出的。后来在荷兰Delft技术大学一个中试规模的反硝化流化床中发现了ANAMMOX工艺。厌氧氨氧化是指在厌氧或缺氧条件下,微生物直接以NH4+作为电子供体,以NO3-或NO2-作为电子受体,将NH4+、NO3-或NO2-转变成N2的生物氧化过程。反应方程式如下: NH4++0.85O2→0.435N2+0.13N03-+1.3H2O+1.4H+ (1) ANAMMOX工艺在发生反硝化反应时不需外加碳源。因为反应所产生的吉布斯自由能能够维持自养细菌的生长,这一现象是摩德尔等对使用硫化物作电子供体的流化床反应器中自养菌反硝化运行工况进行仔细观测和研究发现的。 1)存在的问题。厌氧氨氧化工艺启动缓慢,世界上第一座生产性装置的启动时间长达3.5年,过长的启动时间是其工程应用的重大障碍。 厌氧氨氧化菌为自养菌,以CO2为碳源,无需有机物,因此厌氧氨氧化工艺适于处理C/N值较低的含氮废水。在大多数的实际废水中,有机物往往与氨氮共存,不利于厌氧氨氧化菌的生长。厌氧氨氧化的基质为氨和亚硝酸盐,均具毒性,尤以亚硝酸盐毒性更大。厌氧氨氧化工艺的运行稳定性是其工程应用必须解决的重大难题。 2)解决的方法。研究证明,厌氧氨氧化工艺的启动过程依次呈现菌体自溶、活性迟滞、活性提高和活性稳定等4个阶段。为此可采取如下控制对策:①在菌体自溶阶段,消除接种物中的残留有机物,控制反硝化所致的pH过高;②在活

厌氧氨氧化反应器资料总结

厌氧氨氧化的反应器 一、全球运行的厌氧氨氧化的工程实例 表1-2 全球运行的厌氧氨氧化工程实例 Table 1-2 Application of ANAMMOX in the world SHARON-ANAMMOX工艺由荷兰TU Delft大学研究开发,该工艺流程分成两段,第一段是在好氧反应器中将一半的NH4+转化为NO2-,第二段是在厌氧反应器中将剩余的NH4+和NO2-一起直接转化为N2。

图1-7短程硝化与厌氧氨氧化结合工艺流程 Figure1-7The combined SHARON-ANAMMOX process 二、SHARON-ANNOMMOX工艺反应器资料 AN A MM OX的生化反应式为: 因此AN A MM OX反应器进水要求有氨氮和亚硝氮且比例最好为1:1。而S H AR ON工艺的生化反应式为: SHARON(短程反硝化)反应装置 SHARON常用SBR、CSTR反应装置

SHARON(短程反硝化)反应条件控制 (1)当溶解氧(DO)浓度在1.1-1.5mg/L、氨氮负荷0.029kgNH4+--N/KgVSS.d 和PH 值在7.3-7.8时,可以使亚硝酸盐得到稳定积累,出水亚硝态/总硝态氮大于90%,出水NO2--N/NH4+-N接近1.0,满足厌氧氨氧化的进水要求。(2)实现短程硝化的关键是在硝化阶段实现NO2--N的积累,国内外的研究都是着眼于积累NO2--N的控制条件。根据国内外文献报道,SHARON工艺的操作温度以30~35℃为宜,pH适应控制在7.4~8.3之间,溶解氧浓度己控制在1.0~1.5mg/L范围,供氧方式可采用间歇曝气。基质中游离氨浓度调控在5~10mg/L范围内有利于实现短程硝化,污泥(以VSS计)氨负荷为 0.02~1.67kg/(kg·d),泥龄在1~2.5天。 (3)大量国内外试验表明,在废水温度较高、Do较低条件下,利用亚硝酸菌和硝酸菌的不同生长速度,通过控制水力停留时间,将生长速率较慢的硝酸菌冲走,使亚硝酸菌大量积累,可以使短程反硝化成功运行。 ANNOMMOX反应器

厌氧氨氧化工艺如何处理污水

厌氧氨氧化工艺如何处理污水 1 引言 随着科技的迅速发展,工业化和城市化程度的不断提高,水体富营养化的问题日益严重,使得水资源更加紧张.而氮是引起水体富营养化的主要因素.所以越来越多的国家和地区制定了氮排放标准.因此,研究开发经济、高效的脱氮技术已成为水污染控制工程领域的研究重点. 生物处理法作为19 世纪末废水处理新型技术,与物化处理法相比具有处理费用低,不会对环境造成二次污染等优点.因此,生物处理法至今已成为世界各国污水二、三级处理的主要手段.众所周知氮元素可在相应微生物的作用下转化成各种氧化态和化学形式(目前已知的生物氮循环途径如图 1所示),因此在污水生物脱氮处理中衍生了大量组合工艺.而厌氧氨氧化过程是目前最捷径的生物脱氮过程,因此被誉为最具前景的污水脱氮工艺.为了更好的将厌氧氨氧化工艺应用到实际规模中,本文着重对厌氧氨氧化菌的发现及其与污水处理中常见细菌的协同与竞争关系进行了详细的综述.旨在为厌氧氨氧化工艺在污水生物处理中的应用提供理论依据,并为今后厌氧氨氧化工艺的研究方向提出一些意见. 图 1 氮循环示意图 2 厌氧氨氧化概述 早在1976年,Broda预言在自然界中存在一种以NO-2或NO-3作为电子受体把NH+4氧化成N2的化能自养型细菌.直到1995年,Mulder等处理酵母废水的反硝化流化床反应器内发现了NH+4消失的现象,从而证实了厌氧氨氧化反应的存在. 厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)是在缺氧条件下以亚硝酸盐(NO-2)为电子受体将氨(NH+4)转化成氮气(N2),同时伴随着以亚硝酸盐为电子供体固定CO2并产生硝酸盐(NO-3)的生物过程.执行该过程的微生物称之为厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB),其化学计量学方程式如下: 1NH+4+1.32NO-2+0.066HCO-3+0.13H+→ 1.02N2+0.26NO-3+0.066CH2O0.5N0.15+ 2.03H2O

厌氧氨氧化基础知识累积

一、世界Anammox的工程应用概述 (2016.12.19生物工程学报)厌氧氨氧化(Anaerobic ammonium oxidation,ANAMMOX)工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。在过去的20年中,许多基于ANAMMOX反应的工艺得以不断研究和应用。综述了各种形式的ANAMMOX工艺,包括短程硝化-厌氧氨氧化、全程自养脱氮、限氧自养硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厌氧氨氧化-反硝化耦合、单级厌氧氨氧化短程硝化脱氮工艺。对一体式和分体式工艺运行条件进行了比较,结合ANAMMOX工艺工程(主要包括移动床生物膜,颗粒污泥和序批式反应器系统)应用现状,总结了工程化应用过程中遇到的问题及其解决对策,在此基础上对今后的研究和应用方向进行了展望。今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。 厌氧氨氧化(Anaerobicammonium oxidation,ANAMMOX) 工艺,最初由荷兰Delft工业大学于20 世纪末开始研究,并于本世纪初成功开发应用的一种新型废水生物脱氮工艺。它以20 世纪90 年代发现的ANAMMOX 反应(1) 为基础,该反应在厌氧条件下以氨为电子供体,亚硝酸盐为电子受体反应生成氮气,在理念和技术上大大突破了传统的生物脱氮工艺。ANAMMOX 工艺具有脱氮效率高、运行费用低、占地空间小等优点,在污水处理中发展潜力巨大。目前该工艺在处理市政污泥液领域已日趋成熟,位于荷兰鹿特丹Dokhaven 污水厂的世界上首个生产性规模的ANAMMOX 装置容积氮去除速率(NRR) 更是高达9.5 kg N/(m3·d)。此外,ANAMMOX 工艺在发酵工业废水、垃圾渗滤液、养殖废水等高氨氮废水处理领域的推广也逐步开展,在世界各地的工程化应用也呈星火燎原之势。 本文介绍了不同形式的ANAMMOX 工艺,通过比较其运行条件,并结合ANAMMOX 工艺工程应用现状,总结了该工艺工程化应用面临的问题和解决对策,在此基础上对今后的研究和应用方向进行了展望。

厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)

厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON) 【格林大讲堂】 厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。 厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。 其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,

NH2OH经N2H4,N2H2被转化为N2。 厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。 全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。 同时通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。

厌氧氨氧化

厌氧氨氧化作用即在厌氧条件下由厌氧氨氧化菌利用亚硝酸盐为电子受体,将氨氮氧化为氮气的生物反应过程。这种反应通常对外界条件(pH值、温度、溶解氧等)的要求比较苛刻,但这种反应由于不需要氧气和有机物的参与,因此对其研究和工艺的开发具有可持续发展的意义。 厌氧氨氮化一般前置短程硝化工艺,将废水中的一部分氨氮转化成亚硝酸盐。目前在处理焦化废水、垃圾渗滤液等废水方面已经有成功的运用实例。 厌氧氨氧化是一个微生物反应,反应产物为氮气。具有一些优点:由于氨直接作反硝化反应的电子供体,可免去外源有机物(甲醇),既可节约运行费用,也可防止二次污染;由于氧得到有效利用,供氧能耗下降;由于部分氨没有经过硝化作用而直接参与厌氧氨氧化反应,产酸量下降,产碱量为零,这样可以减少中和所需的化学试剂,降低运行费用,也可以减轻二次污染。 厌氧氨氧化反应是一种化能自养的古菌(俗称Anammox)的反应。简单式为:1NH4+ + 1NO2- → N2 + 2H2O。如果在化学方程式里加入微生物本身,则为:1NH4+ + 1.32NO2- + 0.066 HCO3- + 0.13H+ → 1.02N2 + 0.26 NO3- + 0.066 CH2O0.5N0.15 + 2.03H2O 该古菌为自养型,只需无机碳源CO2,并且在全球碳循环过程中发挥着很重要的作用。在目前污水的氨氮处理上被广为看好。但是由于亚硝酸根含量在大部分污水是不够显著的,所以anammox技术要结合其他技术来使用,比如已经在荷兰鹿特丹投产的Sharon+anammox工艺,就是结合了短程硝化和厌氧氨氧化工艺,还是比较成功的。 利用混合污泥培养厌氧氨氧化颗粒污泥

厌氧氨氧化技术生物脱氮机理

厌氧氨氧化技术生物脱氮机理 摘要:在过去一个多世纪中,传统的废水生物脱氮技术硝化-反硝化工艺得到了非常广泛的应用,随着生物技术的发展,涌现出很多新型的废水生物脱氮技术,厌氧氨氧化便是其中之一。本文对厌氧氨氧化脱氮技术的作用机理和优缺点进行了分析。 关键词:生物脱氮;硝化;短程硝化;反硝化;厌氧氨氧化 Abstract: The traditional nitrification-denitrification process was widely used in the past century. With the development of biotechnology, many new biological nitrogen removal processes were put forward, such as anaerobic ammonium oxidation. This paper described the mechanisms and strengths-weaknesses of anaerobic ammonium oxidation technology. Keywords: biological nitrogen removal; nitrification; shortcut nitrification; denitrification; anaerobic ammonium oxidation 氮是维持生态系统营养物质循环的一种重要元素,然而由于人类活动对自然生态系统中氮素循环的干扰和破坏,使之成为引起水质恶化、生物多样性降低和生态系统失衡的主要因素之一,已经严重影响了人类正常的生产生活。对于氮素的污染控制己经受到了人们广泛的重视。在废水脱氮技术的研发应用中,各种行之有效的脱氮处理工艺得到了发展,构成了废水脱氮处理的技术体系。物化法除氮以其较为宽泛的适用性在工业废水脱氮中得到广泛发展,而生物法脱氮以低廉的成本、运行的简便等优点受到人们的青睐。 近些年来,随着生物技术的迅猛发展,国内外学者加强了对生物脱氮理论和技术的研究,多种氮转化途径被发现,新的脱氮反应机理被提出,由此产生了生物脱氮理念的革新,厌氧氨氧化生物脱氮便是其中之一[1]。 1 传统生物脱氮的原理 传统废水的生物脱氮是由两个阶段完成的。这条途径也可称之为全程(或完全)硝化—反硝化生物脱氮。 第一阶段为硝化阶段,这一阶段是在好氧条件下由亚硝酸菌和硝化菌等细菌将氨将转化为硝酸盐,其反应可用(1)和(2)式表示: NH4+ + 1.5O2 → NO2- +H2O +2H+(亚硝化过程,好氧) (1) 2NO2- +O2 → 2NO3- (硝化过程,好氧) (2)

城市污水厌氧氨氧化生物脱氮研究进展

城市污水城市污水厌氧氨氧化厌氧氨氧化厌氧氨氧化生物脱氮研究进展生物脱氮研究进展 唐崇俭,郑 平 (浙江大学 环境工程系,浙江 杭州 310029) 摘 要:厌氧氨氧化菌可在厌氧条件下以亚硝酸盐为电子受体将氨氧化为氮气,是目前废水生物脱氮的研究热 点之一。小试的研究表明,该工艺的容积负荷可高达125kg N/(m 3 ·d)。城市污水处理厂污泥厌氧消化液以及城市 生活垃圾填埋场渗滤液都含有高氨氮浓度以及低有机物浓度,十分适合采用厌氧氨氧化工艺进行处理。目前,生 产性厌氧氨氧化工艺已在荷兰、丹麦和日本等国成功应用于这两类废水的脱氮处理,最大容积氮去除速率高达 9.5kg N/(m 3·d),显示了该工艺诱人的工程应用前景。本文分析了世界上第一个生产性厌氧氨氧化工艺处理城市 污水厂污泥厌氧消化液的运行情况,论述了厌氧氨氧化工艺在城市污水处理中面临的问题。结合课题组内的研究 结果,提出了一种新型的菌种流加式厌氧氨氧化工艺,并探讨了其在城市污水处理中的作用。 关键关键词词:厌氧氨氧化;城市污水;生物脱氮;工程应用 Application of Anammox Process in Municipal Wastewater Treatment Tang Chongjian, Zheng Ping (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China ) Abstract : Under anoxic condition, anaerobic ammonium-oxidizing (Anammox) bacteria can oxidize ammonium to nitrogen gas using nitrite as electron acceptor. It becomes a topic issue on biological nitrogen removal from ammonium-rich wastewater due to some promising advantages such as low operational cost and super high volumetric loading rate. As reported, the nitrogen loading rate reached up to 125 kg N/(m 3·d). Characterized by high ammonium concentration and relatively low biodegradable organic content, the sludge digester liquor from the municipal wastewater treatment plant and the landfill leachate are demonstrated to be very suitable for application of Anammox process to realize high-rate nitrogen removal. The full-scale application of Anammox process has already been applied for nitrogen removal from sludge digester liquor and landfill leachate in The Netherlands, Japan and Denmark with the maximum nitrogen removal rate as high as 9.5 kg N/(m 3·d). Thus, the operation of the first full-scale Anammox reactor treating municipal sludge digester liquor was introduced, and the problems during the application of Anammox process in municipal wastewater treatment were discussed. An innovative Anammox process with sequential biocatalyst addition (SBA-Anammox process) was proposed to overcome the drawbacks and accelerate the application of Anammox process in municipal wastewater nitrogen removal.

厌氧氨氧化工艺影响因素

厌氧氨氧化工艺的影响因素研究 摘要:在稳定运行的厌氧氨氧化滤池基础上,研究了ph、有机物、溶解氧对厌氧氨氧化反应器运行性能的影响。结果表明:高、低ph会明显影响厌氧氨氧化反应器的脱氮性能,最适ph范围为7.65~8.25;一定浓度范围的有机物可以引起滤池内反硝化菌和厌氧氨氧化菌的协同作用,提高滤池的脱氮效果。溶解氧对厌氧氨氧化菌活性的抑制是可逆的。 关键词:厌氧氨氧化,ph,有机物,溶解氧 the study of the factors affecting on anammox process abstract: in this paper, the impacts of ph, organic compound, dissolved oxygen on the anammox reactor performance in the stable operation of anaerobic ammonium oxidation filter. the results indicated: high or low ph could influence the performance of nitrogen removal of the reactor, the appropriate range of ph is 7.65~8.25; a certain concentration of organic compound could improve the denitrification effect because of synergistic effect of denitrifying bacteria and anaerobic ammonium-oxidizing bacteria in the filter; the inhibition of dissolved oxygen on the activity anammox bacteria is reversible. keywords: anaerobic ammonium oxidation; ph; organic compound; dissolved oxygen.

城市污水厌氧氨氧化生物脱氮研究进展

城市污水厌氧氨氧化生物脱氮研究进展 唐崇俭,郑平 (浙江大学环境工程系,浙江杭州 310029) 摘要:厌氧氨氧化菌可在厌氧条件下以亚硝酸盐为电子受体将氨氧化为氮气,是目前废水生物脱氮的 研究热点之一。小试的研究表明,该工艺的容积负荷可高达125kg N/(m3·d)。城市污水处理厂污泥厌氧 消化液以及城市生活垃圾填埋场渗滤液都含有高氨氮浓度以及低有机物浓度,十分适合采用厌氧氨氧 化工艺进行处理。目前,生产性厌氧氨氧化工艺已在荷兰、丹麦和日本等国成功应用于这两类废水的 脱氮处理,最大容积氮去除速率高达9.5kg N/(m3·d),显示了该工艺诱人的工程应用前景。本文分析了 世界上第一个生产性厌氧氨氧化工艺处理城市污水厂污泥厌氧消化液的运行情况,论述了厌氧氨氧化 工艺在城市污水处理中面临的问题。结合课题组内的研究结果,提出了一种新型的菌种流加式厌氧氨 氧化工艺,并探讨了其在城市污水处理中的作用。 关键词:厌氧氨氧化;城市污水;生物脱氮;工程应用 Application of Anammox Process in Municipal Wastewater Treatment Tang Chongjian, Zheng Ping (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China) Abstract: Under anoxic condition, anaerobic ammonium-oxidizing (Anammox) bacteria can oxidize ammonium to nitrogen gas using nitrite as electron acceptor. It becomes a topic issue on biological nitrogen removal from ammonium-rich wastewater due to some promising advantages such as low operational cost and super high volumetric loading rate. As reported, the nitrogen loading rate reached up to 125 kg N/(m3·d). Characterized by high ammonium concentration and relatively low biodegradable organic content, the sludge digester liquor from the municipal wastewater treatment plant and the landfill leachate are demonstrated to be very suitable for application of Anammox process to realize high-rate nitrogen removal. The full-scale application of Anammox process has already been applied for nitrogen removal from sludge digester liquor and landfill leachate in The Netherlands, Japan and Denmark with the maximum nitrogen removal rate as high as 9.5 kg N/(m3·d). Thus, the operation of the first full-scale Anammox reactor treating municipal sludge digester liquor was introduced, and the problems during the application of Anammox process in municipal wastewater treatment were discussed. An innovative Anammox process with sequential biocatalyst addition (SBA-Anammox process) was proposed to overcome the drawbacks and accelerate the application of Anammox process in municipal wastewater nitrogen removal. Key words: Anammox; municipal wastewater; biological nitrogen removal; application “十一五”期间,化学需氧量(COD)排放得到有效控制,氨氮已上升为影响地表水质的首要指标。根据分析,氨氮有望在“十二五”被纳入全国主要水污染物排放约束性控制指标,以便有效控制氨氮排放总量,改善目前水质氨氮普遍超标的情况,缓解氮素污染。 我国氨氮排放量远远超出受纳水体的环境容量。据估算,2007年,我国氨氮排放总量约相当

厌氧氨氧化

厌氧氨氧化 厌氧氨氧化作用即在厌氧条件下由厌氧氨氧化菌利用亚硝酸盐为电子受体,将氨氮氧化为氮气的生物反应过程。这种反应通常对外界条件(pH 值、温度、溶解氧等)的要求比较苛刻,但这种反应由于不需要氧气和有机物的参与,因此对其研究和工艺的开发具有可持续发展的意义。 厌氧氨氮化一般前置短程硝化工艺,将废水中的一部分氨氮转化成亚硝酸盐。目前在处理焦化废水、垃圾渗滤液等废水方面已经有成功的运用实例。 厌氧氨氧化是一个微生物反应,反应产物为氮气。具有一些优点:由于氨直接作反硝化反应的电子供体,可免去外源有机物(甲醇),既可节约运行费用,也可防止二次污染;由于氧得到有效利用,供氧能耗下降;由于部分氨没有经过硝化作用而直接参与厌氧氨氧化反应,产酸量下降,产碱量为零,这样可以减少中和所需的化学试剂,降低运行费用,也可以减轻二次污染。 厌氧氨氧化(Anammox) 厌氧氨氧化的发现 Broda的预言 1977年,奥地利理论化学家Broda根据化学反应热力学,预言自然界存在以硝酸盐或亚硝酸盐为氧化剂的氨氧化反应,因为与以氧为氧化剂的氨氧化反应相比,它们释放出的自由能一点也不逊色。 序号电子受体化学反 应ΔG/(KJ/mol) 1 氧2NH4++3O2→ 2NO2-+2H2O+4H+ -241 2 亚硝酸盐 NH4++NO2-→ N2+2H2O -335 3 硝酸盐 5NH4++3NO3-→ 4N2+9H2O+2H+ -278 既然自然界存在自养型亚硝化细菌,能够催化反应1,那么理论上也应该存在另

一种自养型细菌,能够催化反应2和反应3。由于当时这种细菌还没有被发现,所以,Broda 认为它们是隐藏于自然界的自养型细菌。 Mulder的发现 20世纪80年代末,荷兰Delft工业大学开始研究三级生物处理系统。在试运期间,Mulder等人发现,生物脱氮流化床反应器除了进行人们所熟知的反硝化外,还进行着人们未知的某个反应使氨消失了。进一步观察发现,除了氨不明去向外,硝酸盐和亚硝酸盐也有一半以上不明去向。 而且伴随着氨与硝酸盐(亚硝酸盐)的消失,产气率大幅度提高,气体中的最主要的成分为N2。 对生物脱氮流化床反应器所做的氮素和氧化还原平衡发现,氨与硝酸盐之间的反应基本上按照反应3所预期方式进行。理论值与实测值非常接近。 为了对这一反应结果进行确认,Mulder等人进一步做了分批培养实验。实验证明,氨确实与硝酸盐同步转化;硝酸盐耗尽时,氨转化也停止;添加硝酸盐后,氨转化继续进行。伴随氨和硝酸盐的转化,累计产气量增加;转化停止时,累计产气量不变。气体的主要成分是N2。 至此,Mulder等人认为,生物脱氮流化床反应器中的氨和硝酸盐转化是按Broda 所预言的方式进行的,并将其称为厌氧氨氧化。 厌氧氨氧化的反应机理 Graff等采用15N的示踪实验研究表明,Anammox是通过生物氧化的途径实现的,过程中最可能的电子受体是羟胺(NH2OH),并推测出其代谢途径: 厌氧氨氧化菌首先将NO2-转化成NH2OH,再以NH2OH为电子受体将NH4+氧化生成N2H4;N2H4转化成N2,并为NO2-还原成NH2OH提供电子;实验中有少量NO2-被氧化成NO3-。 厌氧氨氧化涉及的化学反应为: NH2OH + NH3 → N2H4 + H2O N2H4 → N2 + 4[H] HNO2 + 4[H] → NH2OH + H2O 厌氧氨氧化工艺的技术要点 Anammox工艺的关键是获得足量的厌氧氨氧化菌,并将其有效地保持在装置内,

厌氧氨氧化

厌氧氨氧化(Anammox) 一、厌氧氨氧化的发现 1977年,奥地利理论化学家Broda根据化学反应热力学,预言自然界存在以硝酸盐或亚硝酸盐为氧化剂的氨氧化反应,因为与以氧为氧化剂的氨氧化反应相比,它们释放出的自由能一点也不逊色。 序号电子受体化学反应ΔG/(KJ/mol) 1、氧2NH4++3O2→2NO2-+2H2O+4H+ -241 2、亚硝酸盐NH4++NO2-→N2+2H2O -335 3、硝酸盐5NH4++3NO3-→4N2+9H2O+2H+ -278 既然自然界存在自养型亚硝化细菌,能够催化反应1,那么理论上也应该存在另一种自养型细菌,能够催化反应2和反应3。由于当时这种细菌还没有被发现,所以,Broda认为它们是隐藏于自然界的自养型细菌。 20世纪80年代末,荷兰Delft工业大学开始研究三级生物处理系统。在试运期间,Mulder等人发现,生物脱氮流化床反应器除了进行人们所熟知的反硝化外,还进行着人们未知的某个反应使氨消失了。进一步观察发现,除了氨不明去向外,硝酸盐和亚硝酸盐也有一半以上不明去向。而且伴随着氨与硝酸盐(亚硝酸盐)的消失,产气率大幅度提高,气体中的最主要的成分为N2。 对生物脱氮流化床反应器所做的氮素和氧化还原平衡发现,氨与硝酸盐之间的反应基本上按照反应3所预期方式进行。理论值与实测值非常接近。 为了对这一反应结果进行确认,Mulder等人进一步做了分批培养实验。实验证明,氨确实与硝酸盐同步转化;硝酸盐耗尽时,氨转化也停止;添加硝酸盐后,氨转化继续进行。伴随氨和硝酸盐的转化,累计产气量增加;转化停止时,累计产气量不变。气体的主要成分是N2。 至此,Mulder等人认为,生物脱氮流化床反应器中的氨和硝酸盐转化是按Broda所预言的方式进行的,并将其称为厌氧氨氧化。 二、厌氧氨氧化的反应机理

厌氧氨氧化工艺研究进展

厌氧氨氧化工艺研究进展 路青* 张振贤付秋爽徐伟涛党酉胜 (河北胜尔邦环保科技有限公司,石家庄,050091) 摘要:厌氧氨氧化技术做为一种新型生物脱氮技术,在废水生物脱氮领域具有良好的应用前景.本文简要介绍了厌氧氨氧化技术的原理,分析总结了国内外对厌氧氨氧化工艺运行参数和影响因素的研究状况,比较了不同污泥源、反应器启动厌氧氨氧化运行过程的优缺点,指出了厌氧氨氧化工艺的应用前景. 关键词:厌氧氨氧化;生物脱氮;反应器 Research Progress on Anaerobic Ammonium Oxidation Process QingLu Zhenxian Zhang Qiushuang Fu Weitao Xu Yousheng Dang (Hebei Superior and Federal Environmental Protection Technology co., Ltd.,Shijiazhuang,050091)Abstract: Anaerobic Ammonia oxidation(Anammox) is a promising process of biological nitrogen removal in wastewater treatment. The mechanism of reaction was reviewed in this paper, Various factors involved in the Anammox process were analysed, the main advantages and disadvantages of different sludge ang reactor on the start-up and operation of Anammox process were compared, the further studies were proposed. Key words: Biological nitrogen removal; anaerobic ammonium oxidation; reactor 前言 废水生物脱氮已经成为水污染控制的一个重要研究方向。对于生化性较差的或高浓度含氮废水,传统生物脱氮工艺处理成本较高。目前,国内外对低碳氮比(C/N)废水处理技术的发展趋势是采用厌氧氨氧化(Anaerobic ammonium oxidation,Anammox)技术。基于Anammox 过程的微生物是自养型微生物,无需添加有机碳源、无需氧气参与、产碱量为零、同时还能减轻二次污染,故而成为目前最经济的新型生物脱氮工艺之一。 据报道[1,2],实验室规模处理模拟废水总氮去除速率最高达26.0 kg/(m3·d),生产性Anammox 反应器处理垃圾渗滤液,总氮去除速率最高达9.5 kg/(m3·d)。另外,Anammox工艺还具有较高的经济效益,对厌氧消化污泥分离液,若采用物理化学法处理,单位处理费用33~83 $/kg N,采用传统生物脱氮技术(全程硝化—反硝化工艺)处理,单位处理费用估计为17~33 $/kg N,若采用Anammox工艺单位处理费用估计为7~10 $/kg N[1]。 Anammox工艺因所具有经济、高效、无二次污染等优点,受到国内外学者的关注。本文参考国内外相关方面的研究情况,就Anammox机理、启动运行过程中的影响因子、污泥源、Anammox反应器、Anammox工艺应用前景作一综述。 Anammox机理 Anammox技术是以NH4+-N为电子供体、NO2--N为电子受体、羟胺和联氨为关键中间产物及氮气为终产物的生物反应。荷兰Delft工业大学于20世纪90年代初开发出了一种三级生物处理系统。在运行三级生物处理系统期间,Mulde[3]等人在其中的生物脱氮流化床反应器中发现,除了反硝化作用所致的各反应物的正常消失外,NH4+也在此条件下消失。由于NH4+和NO3-的消失同时发生且成正相关,他们认为反应器内存在如下反应: 5NH4++3 NO3-→4N2+9H2O+2H+ △G0= -278kJ/mol Van de Graaf[4]等进一步做了分批试验证实,Anammox的确是一个微生物反应,NH4+和NO3-被同步去除,反应产物为N2。 Van de Graaf[5]等随后通过N15标记的NH4+做研究,证明NO2-才是关键的电子受体的自养生物脱氮反应,其反应式:

厌氧氨氧化反应原理及工艺影响因素与应用

厌氧氨氧化反应原理及工艺影响因素与应用 厌氧氨氧化指的是在缺氧条件下以亚硝酸盐为电子受体将氨氧化为氮气的过程,该过程由一类独特的、被称为“厌氧氨氧化菌”的专性厌氧微生物催化完成;更重要的是,厌氧氨氧化在污水处理领域显示出良好的应用潜力,目前厌氧氨氧化工艺及其应用成为了研究的热点,本文重点介绍厌氧氨氧化菌的生物学特性,厌氧氨氧化反应原理,厌氧氨氧化工艺的影响因素及实际工程应用。 1引言 随着城市人口的增多和工业化水平的发展,我国水资源污染问题日渐突出,水体富营养化问题加剧,处理城市污水已成为当下的热点。相比于其他的脱氮工艺,厌氧氨氧化反应不但展现出更好的脱氮性能,而且不需要外加有机碳源作为电子供体,在节约成本的同时,防止了投加碳源所产生的二次污染;避免了温室气体的排放,同时也减少了实验所需的占地空间[1]。 2厌氧氨氧化菌的生物学特性 厌氧氨氧化菌作为浮霉菌的一类,必然具有浮霉菌细胞所具有的一切特性。浮霉菌具有十分独特而典型的细胞结构:由膜包裹形成的亚细胞结构。这种浮霉菌的特征结构在厌氧氨氧化菌中也得到体现,如图1所示。透射电镜分析表明厌氧氨氧化菌有自己独特的一类由膜包裹形成的细胞器,被命名为厌氧氨氧化体)。由图1,可以看出,厌氧氨氧化菌从外到内由八部分构成:(1)细胞壁;(2)细胞质膜;(3)PP质;(4)细胞内质膜;(5)核糖质;(6)细胞类核;(7)厌氧氨氧化体膜;(8)厌氧氨氧化体。 3厌氧氨氧化工艺的影响因素 (1) 温度,温度主要是通过影响酶的活性进而影响厌氧氨氧化反应。郑平等[2]研究表明,当温度从15 ℃提升到35 ℃时,反应的速率加快;随着温度升高到35 ℃时,反应速率随之下降,所以最适的温度在30 ℃左右。30~35 ℃是厌氧氨氧化菌的最佳生存的温度。

相关文档