文档库 最新最全的文档下载
当前位置:文档库 › 矢量数据的获取与处理

矢量数据的获取与处理

矢量数据的获取与处理
矢量数据的获取与处理

第3章矢量数据与栅格数据的获取及处理

导读:GIS项目中费用最大的部分是数据库建设,即基础地理信息的获取与处理,这其中就包括矢量数据和栅格数据的获取与处理,例如遥感影像数据现已作为地理信息系统的重要数据来源。本章分别介绍了矢量数据的获取与处理以及栅格数据的获取与处理,以及他们的应用。并在最后一节介绍了矢栅一体化数据结构的基本概念。

3.1矢量数据的获取与处理方法

3.1.1矢量数据的概念

矢量数据(Vector Data)即在直角坐标系中,用X、Y坐标表示地图图形或地理实体的位置的数据。矢量数据一般通过记录坐标的方式来尽可能将地理实体的空间位置表现的准确无误。

在计算机地图制图中,各地图图形元素在二维平面上的矢量数据表示为:点——用一对(x,y)坐标表示;

线——用一串有序的(x,y)坐标对表示;

面——用一串有序的但首尾坐标相同的(x,y)坐标对表示其轮廓范围。

地图数据与其他大多数由计算机处理的科学数据是极其不同的。大部分地图数据都是反映制图现象的地理分布,故具有定位的性质,也称这类地图数据为空间数据(或几何数据)。空间数据可反映点、线和面状物体的定位特性。还有一部分地图数据是用来描述制图现象的质量和数量特征,如哪是河流,哪是道路,哪是居民点以及它们的名称和其他有关的特征描述等,这类数据通常称之为属性数据。任何地图数据都有时间性,即现势性,这是显而易见的。

3.1.2几何数据的获取

几何数据是根据给定各要素相对位置或绝对位置的坐标来描述的。其获取的方法主要有:

1)由外业测量获得,如数字测图。野外实地测量等获取的数据可转换后直接进入GIS的地理数据库,以便于进行实时的分析和进一步的应用。GPS所获取的数据也是GIS的重要数据源。

2)由栅格形式的空间数据转换获得。栅格数据结构向矢量数据结构的转换又称为矢量化。如卫星测地、扫描数字化仪扫描、航摄像片等。可以用此类数据转化为矢量数据。

基于图像数据的矢量化方法:

①二值化:线画图形扫描后产生图像栅格数据,这些数据是按0~255的不同灰度值量度的,将这种256级不同的灰度压缩到2个灰度形成二值图,即0和1两级灰度图。

②细化:细化是消除线画横断面栅格数的差异,使得每一条线只保留代表其轴线或周围轮廓线位置的单个栅格的宽度。对于栅格线画的细化方法,可分为“剥皮法”和“骨架法”。

③跟踪:跟踪的目的是将细化处理后的栅格数据转化为从节点出发的线段或闭合的线条,并以矢量形式存储线段的坐标。跟踪时,从起始点开始,根据八个邻域进行搜索下一个相邻点的位置,记录坐标,直到完成全部栅格数据的矢量化。

3)对现有地图跟踪数字化获得,将现有的地图图形离散化为数据。

跟踪数字化是目前应用最广泛的一种地图数字化方式,是通过记录数字化板上点的平面坐标来获取矢量数据的。其基本过程是:将需数字化的图件(地图、航片等)固定在数字化板上,然后设定数字化范围、输入有关参数、设置特征码清单、选择数字化方式(点方式和流方式等),就可以按地图要素的类别分别实施图形数字化了。

由于跟踪数字化本身几乎不需要GIS的其它计算功能,所以跟踪数字化软件往往可以与整个GIS系统脱离开,因而可单独使用。

图3.1 手扶跟踪数字化仪示意图

3.1.3属性数据的获取

1)特征码

地图要素是根据各自的位置和属性说明进行编码的,仅有描述空间位置的几何数据是不够的,还必须有描述它们的属性说明。其中用来描述要素类别、级别等分类特征和其他质量特征的数字编码叫特征码,它是地图要素属性数据的主要部分。其作用是反映地图要素的分类分级系统,同时也便于按特定的内容提取、合并和更新,因此特征码表的编制应根据原图内容和新编图的要求设计。

一般地,对地图要素进行分类编码时应遵循以下原则:

①科学性和系统性,即以适合计算机和数据库技术应用和管理为目标,按国土基础信息的属性或特征进行严格的科学分类,形成系统的分类体系;

②相对稳定性,即分类体系以各种地图要素最稳定的属性或特征为基础,能在较长时间里不发生重大变更;

③不受地图比例尺的限制,即同一地图要素在不同比例尺的地图数据库中有一致的分类代码,虽然分类不一定与多种比例尺地形图一一对应,但分类码要覆盖各种比例尺的地图符号,即每类地图符号都应具有相应的代码;

④完整性和可扩充性,即要素的分类既要反映其属性,又要反映其相互联系,具有完整性;代码结构应留有适当的可扩充的余地,具有可扩充性;⑤与国家已颁布的有关规范和标准一致,即直接引用或参照相关的国家规范和标准;⑥适用性,即特征码(或属性编码)尽可能地简短和便于记忆。依据上述原则,以国土基础信息为例,其编码可分为大类,并依次再分为小类、一级和二级。分类代码由6位数字组成,其结构如下:

地图要素分类编码举例见表3.1。

表3.1 地图要素分类编码

2)特征码的输入

用键盘输入,特征码同几何数据一起存入地图数据库。事先设置好清单,在获取几何数据时,选择特征码。在GIS中,选择对象,弹出一个属性数据框,输入各类的属性数据。

3.1.4数据处理

数据处理是计算机地图制图过程中的一个重要环节,包括对制图数据的存储、选取、分析、加工、输出等操作,以完成地图制作过程中的几何改正、比例尺和投影变换、要素的制图综合、数据的符号化等。

1)矢量数据的基本操作

矢量数据的处理,一般有两种方式,一是按人机交互方式进行处理;二是按批处理方式进行处理。另外,也可将这两种方式结合起来进行。

矢量数据处理过程可分解为八种基本运算操作,即存取、插入、删除、搜索、分类、复制、归并和分隔。

存取,又叫访问,是指与内存打交道(如读/写)的操作。它是图形显示、统计分析,或更复杂的分析和制图的基础。从地图制图的角度来考虑,插入和删除主要是在编辑过程中用来修改和更新地图内容。搜索在计算机地图制图作业执行过程中显得特别重要,例如在全要素地图数据库中寻找道路数据或某一级道路数据。分类是重新组织内存中的点集或较大的地理实体,使之便于处理和标出对地图用户具有特定意义的某些分布的分级排列。复制使得数据能被传输而使它更有价值。归并能把低层次的数据集合到实用的地区或国家这些高级的范畴上来。分隔则可以获得较小的数据集(例如开窗),以便对原有数据进行更详细或更直观的处理。

2)数据编辑

数据编辑又叫数字化编辑,它是指对地图资料数字化后的数据进行编辑加工,其主要目的是在改正数据差错的同时,相应地改正数字化资料的图形中。一般地,数据编辑工作分两步进行。第一,显示数据,即在显示屏上显示或校核绘图显示,以便用目视的方法或与数字化原图套合比较的方法进行检查,找出数字化资料的差错,显示其出错位置。第二,数字化定位和编辑修改。编辑命令基本上只有两种指令类型:删除数据和增加数据。常用到的命令,诸如“变更”、“移动”、“删除”、“加入”、“截去”、“延长”、“分割”、“合并”等指令,都是这两种基本指令的组合或其中之一。

3)数据的预处理

数据的预处理主要内容包括几何改正、数据压缩、数据规范化和数据匹配。

(1)几何改正

数据编辑处理一般只能消除或减少在数字化过程中因操作产生的局部误差或明显差错,但因图纸变形和数字化过程中产生的随机误差,则必须经过几何改正才能消除。

(2)数据压缩

数据压缩是把大量的原始数据或由存储器取出来的数据转换为有用的、有条理的、精炼而简单的信息的过程,又称数据简化或数据综合。目的是删除冗余数据,减少数据的存储量,节省存储空间,加快后继处理速度。

常用的数据存储方法有:

①间隔取点法每隔k个点取一点,或舍去那些离已选点比规定距离更近的点,但首末点一定要保留,见图3.2。

图3.2 a 由上到下隔一点取一点b由上到下依次按距离临界值取值

②垂距法和偏角法

这两种方法是按垂距或偏角的限差选取符合或超过限差的点,其过程见图

3.3。

③道格拉斯-普克法

该方法试图保持曲线走向并且允许制图人员规定合理的限差,其执行过程见图3.4。步骤为:

a首未相连;

b 计算中间各点到直线的距离;

c 删去距离小于临界值的点;

d 在留下的点中,选择距离最大的点,将曲线分成两段;

e 重复①~④,依次类推。

3)数据规范化

从事地图数据采集和应用的部门日益增多,为了协调数字化地图的生产和提高数据的共享程度,地图数据规范化的工作引起了许多国家的重视,是国际地图制图协会的重要研究方向之一。

(1)定义规范

该部分使用零维、一维和二维数据,系统地、广泛地定义一组基本的、单一的制图目标,它们包括:单纯的几何目标;单纯的拓扑目标,几何和拓扑目标。并以此来建立地图要素的数字表示法。其规定了本标准中使用的主要概念性术语:要素、实体和目标。要素是指一个确定的实体及其目标的表示;实体是描述地球上一种不能再细分的真实的现象;目标是一个实体的全部或部分的数据表示。

图3.3垂距法和偏角法

图3.4道格拉斯-普克法

(2)空间数据转换规范

制定该规范的目的是方便空间数据从一个空间数据处理系统向另一个空间数据处理系统转换,而与它们使用的计算机硬件和操作系统无关。内容包括各种转换模块;每个模块包含一组模块记录;每个模块记录包括若干个数据字段,它们按信息的目的和功能分组;数据字段包含要转换的信息。这些模块可完成矢量转换、关系转换和栅格转换等。

(3)数字制图数据质量控制规范,每幅数字地图都必须有一份质量报告,其内容包括数据情况略图、位置精度、属性精度、逻辑一致性和完整性等五个部分。

(4)制图要素规范

这一部分包括说明制图要素的概念模型和一份实体及属性定义表。概念模型定义了三个概念和两个辅助项,它们分别是实体、属性、属性值、标准项和内含项。

4)数据匹配

数据匹配是实现误差纠正的又一种方法,是数据处理的一个重要方面.

(1)顶点匹配。在数字化多边形地图和其它网结构图形时,同一点(如几个多边形的公共顶点)可能被数字化好几次,即使在数字化时很仔细,但由于仪器本身的精度和操作问题,都不能保证几次数字化都获得同样的坐标值。为此在数据处理时,需将它们的重心重新安放,这就是“顶点匹配”(或称结点匹配)。该方法是用匹配程序对多边形文件进行处理,即让程序按规定搜索位于一定范围内的点,求其坐标的平均值,并以这个平均值取代原来点的坐标。经处理后,在多边形生成时若再发现少数顶点不匹配,经查明原因后可辅以交互编辑的方法处理。

(2)数字接边

在数字化地图时,一般是一幅一幅地进行,受数字化仪幅面的限制,有时一幅图还需分块进行,见图3.5(1)。由于纸张的伸缩或操作误差,相邻图幅公共图廓线(或分块线)两侧本应相互连接的地图要素会发生错位,见图3.5(2),

这是不可避免的。因此在拼幅或合幅时均须对这些分幅数字地图在公共边上进行相同地图要素的匹配,这就是数字接边,接边后的结果如图3.5(3)所示。

数字接边在数字地图更新时非常重要,尤其是在局部区域内的数据需全部更新时,新旧资料拼接线上的要素必须作接边处理。

除了上述两种数据匹配外,属性数据与几何数据的匹配、几何图形校正(如矩形图形的四个角不全为直角)和齐边改正(如线段端点与图边、水涯线等的正确接合)等的数据处理均属数据匹配。

(1)

(2)(3)

图3.5 数字接边过程

3.2栅格数据的获取与处理方法

3.2.1栅格数据的概念

栅格数据是按网格单元的行与列排列、具有不同灰度或颜色的阵列数据。栅格结构是大小相等分布均匀、紧密相连的像元(网格单元)阵列来表示空间地物或现象分布的数据组织。是最简单、最直观的空间数据结构,它将地球表面划分为大小、均匀、紧密相邻的网格阵列。每一个单元(象素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中,数据组织中的每个数据表示地物或现象的非几何属性或指向其属性的指针

如果一个图像的灰度值只有两种(通常用1表示前景元素,用0表示背景元素),则这个图像也称“二值图像”(或称“二元图像”)。图3.6表明如何用矢量数据和栅格数据来表示一条曲线。

图3.6 矢量数据和栅格数据的区别

在矢量形式表示中,曲线由一个顺序点列的(X,Y)坐标值给出,并通过对每相邻的两点作连线而予以再现;而在栅格形式表示中,曲线是通过对其经过的所有像元赋以特定的数值而给出,即“线上”与“线外”的像元具有不同的灰度值。只要通过一种装置,将栅格数据中不同的灰度值变为物理上不同的亮度,就可以将曲线再现出来。

在计算机地图制图中,用栅格数据表示各种地图基本图形元素的标准格式如下(见图3.7):

点状要素——用其中心点所处的单个像元来表示;

线状要素——用其中轴线上的像元集合来表示。中轴线的宽度仅为一个像元,即仅有一条途径可以从轴上的一个像元到达相邻的另一个像元。这种线划数据称细化了的栅格数据;

面状要素——用其所覆盖的像元集合来表示。

图3.7 栅格数据表示基本图形元素的格式

图3.8 四邻域和八邻域

图3.9 四邻域和八邻域的栅格数据

在栅格数据中,常用的相邻概念有四方向相邻和八方向相邻两种,如图3.8。设所讨论的中心像元为(i,j)(即第i行、第j列的像元),若只定义与其有公共边的四个像元(i-l,j)、(i,j+1)、(i+1,j)、(i,j-1)与中心像元(i,j)相邻,则这种相邻称为四方向相邻。此时,像元(i,j)具有四向邻域;若除了上述的四个像元以外,还定义像元(i-1,j-1)、(i-1,j+1)、(i+1,j+1)、(i+1,j-1)也与中心像元(i,j)相邻,则这种相邻称为八方向相邻。此时,像元(i,j)具有八向邻域。从图像上看,同样都是细化了的栅格数据,四方向相邻与八方向相邻的栅格数据各有特点,如图3.9所示。八方向相邻的图形线划显得纤细,位置过渡较自然,与矢量数据的对应图形相比,栅格化“抖动”(也称阶梯效应)相对较弱;而四方向相邻的图像线划显得粗壮、结实,同时,栅格化的阶梯效应较明显,但其特点是沿任何方向横截一条连通的栅格线划时,其截面宽度不小于一个像元的边长。

3.3.2栅格数据的获取

在计算机地图制图中,栅格数据的来源可以有多种。

(1)通过遥感手段获得

通过遥感手段获取的数字图像,从概念上讲,就是一种栅格数据。它是遥感传感器在某个特定的时间、对某一地区地面景象的辐射和反射能量进行扫描抽样,并按不同的光谱段分光并量化后,以数字形式记录下来的像素亮度值序列。这些数据按一定的格式,存储在计算机中。

(2)由对图片扫描而来

利用扫描机可以把光学模拟图像(如一张像片或底片)或图件(如手工制图原稿或现有地图)提供的资料转换为栅格数据。

(3)由矢量数据转换而来

栅格数据也可以通过计算机,由矢量数据转换而来。

(4)由平面上行距、列距固定的点内插或抽样而来

假定图11.5是地形图的一部分,如果我们在它的上面覆盖上行距、列距固定的矩形网格,并将每个网格线交点处的高程值通过内插读出来,按不同的高程值逐行逐列进行编码,就能得到一个栅格阵列数据。

3.2.3栅格数据的处理

1)栅格数据的基本运算

栅格图像的处理常用到下述的基本运算:

(1)灰度值变换

为了利用栅格数据,得到尽可能好的图像、图形质量或分析效果,往往需要将原始数据中像元的原始灰度值按各种特定方式变换。各种变换方式可以用所谓“传递函数”来描述。其中,原始灰度值与新灰度值之间的关系,正如函数中自变量与因变量之间的对应关系。

“临界值操作”是指凡低于(或高于)某一个临界值的灰度值都被置成一种新灰度值(例如0),其余的也可均置为另一种不同的灰度值常量(例如1)。原来带有各种灰度值的一幅栅格图像,经过灰度值的临界值操作,变换为只带有两种灰度值(0和1)的二值栅格图像。

“分割型传递函数”的目的是把确定范围(例如灰度值在125~222之间)内的原始灰度值原封不动地予以接收,而把其余所有的原始灰度值均置为零。这一带有选择性接收的过程被形象地叫作“切片”。正像和负像的互换,可以采用“反转型”传递函数。

还可以设计出许多传递函数。例如,为了把若干原始的制图物体(例如公路)的等级在制图综合时合并成一个新的等级,可以设计出相应的“归类函数”。

(2)栅格图像的平移

这是一种极为简单而重要运算.即原始的栅格图像按事先给定的方向平移一个确定的像元数目。如图3.10(1)为原始图像,(2)是原始图像分别向右、向上平移了一个像元而形成的新图像。

(1)(2)

图3.10栅格图像的平移

(3)两个栅格图像的算术组合

栅格图像的算术组合是指将两个栅格图像互相叠置,使它们对应像元的灰度值相加、相减、相乘等。例如图3.11的(1)、(2)为原始图像,(3)为灰度值组合的结果。

(4)两个栅格图像的逻辑组合

将两个图像相对应的像元,利用逻辑算子“或”、“异或”、?…与”和“非”进行逻辑组合。例如图3.10的(4)、(5)、(6)、(7)。

图3.11 灰度值相加、相减、相乘等运算

还有其它一些常见的基本运算,例如;

①将栅格图像的所有灰度值置成一个常数。如果此常数为0,这就是将整个栅格图像涂成背景色的“冲0”操作;

②把一个栅格图像的所有灰度值乘以或加上一个常量;

③对一个栅格图像的灰度值在求其正弦、余弦、方根、对数、指数函数等后,取而代之;

④求一个栅格图像所有元素灰度值之和;

⑤找出一个栅格图像中灰度值为最大的元素;

⑥求出两个栅格图像相应像元灰度值的数量积;

⑦将两个栅格图像按元素进行比较,并把每一个较大元素记入结果栅格图像中;

⑧将两个栅格图像按元素进行比较,当第一个栅格图像中的元素大于第二个中的相应元素时,在结果栅格图像中记“1”,否则“0”。

2)栅格数据的宏运算

宏运算较上述基本运算复杂,但更为直接地显示出在制图上的作用,下面结合其在制图上的应用,列举一些常用的宏运算。

(1)扩张

在这种算法中,同一种属性的所有物体将按事先给定的像元数目和指定的方向进行扩张。图3.12表明原图向右扩张两个像元的原理、过程及结果。

图3.12扩张运算

(2)侵蚀

在这种算法中,同一种属性的所有物体将在指定的方向上按事先给定的像元数目受到(背景像元的)侵蚀。实际上就是背景像元在这个方向上的扩张。图3.13表示原图及在原图右侧被蚀去一列后的结果。

图3.13侵蚀运算

(3)加粗

在加粗算法中,同一种属性的所有物体将按事先给定的像元数目加粗。图3.14表示出一条线被加粗一个像元的原理及过程。可以看出,为了构成这种加粗的宏运算,要多次应用到基本运算“平移”和两个栅格图像的逻辑组合。因图3.14所描述的过程是按四个主方向进行了平移(都从原图出发),所以被称为“四向邻域的加粗”。类似地,也可以实现“八向领域的加粗”过程。

(4)减细

减细的原理和过程与加租几乎是一样的,因为加粗“0”像元就是减细“l”像元。要注意的是,这种减细的批处理过程若不加一些必要的限制,可能会导致线划的断裂或要素的消失。

显然,加粗是扩张的发展;减细是侵蚀的发展。综合运用扩张、侵蚀,加粗、减细的宏运算,就有可能使制图物体的形态,按要求向好的方面转化。例如,假定图3.15中原图的两个要素间有粘连现象,则可以先从一侧进行侵蚀(具体侵蚀多少应视粘连程度而定,本例为一个像元),然后再向同一侧扩张同样的像元数。结果是消除了粘连,而其它要素不变。这一过程也叫断开。相反,如果一个连续的制图物体由于材料、工艺及老化等原因使图形(如等高线)出现断缺、裂口等缺陷,此时我们可以将原图先扩张再侵蚀或先加粗再减细,就可获得连续、光滑的图形,从而改善线划符号的质量(如图3.16),这一过程也叫合上。

图3.14 加粗算法

图3.15侵蚀与扩张

图3.16综合运用扩张、侵蚀,加粗、减细的宏运算(5)填充

这种宏运算的目的是让一些单个像元(填充胚)在给定的区域范围内,通过某种算法而蔓延,由它们把这些区域全部充满。在利用多边形范围线的栅格图像进行人机交互或自动的多边形标识时,往往要用到“填充”这种宏运算。在此介绍两种算法:

图3.17填充算法1

图3.18填充算法2 1)逐步加粗法

如图3.17,设“1”为区域范围线上的像元,“2”为填充胚。首先考察原图填充胚的上、下、左、右四邻,凡是不属于范围线上的像元,均置成与填充胚同样的灰度值“2”,即让它们成为新的填充胚。第二步是在经上述对填充胚加粗的基础上,找出一个填充胚,考察它的四邻,只要不属于范调线上的像元,均被置成“2”,并作为新填充胚记入,这样反复进行下去。由于在加粗过程中,不能对灰度值为1”的像元置“2”,因此这种算法可以称为带有边界约束条件的逐步加粗法。

2)逐行填充法

如图 3.18(1),仍然定义设“1”为区域范围线上的像元,“2”为填充胚。该方法找出一个填充胚后,便以此为起点向左、向右尽可能将其所在行用同一灰度“2”填满,直至左右两端均受到范围线“1”像元的阻挡,如图3.18所示。然后,在新近被填充的行的上下两侧,搜索新的填充胚位置。重复行填充和上下搜索新填充胚位置的过程,直至完成。

3.3矢栅一体化的研究

3.3.1矢栅一体化概念

对于面状地物,矢量数据用边界表达的方法将其定义为多边形的边界和一内部点,多边形的中间区域是空洞。而在基于栅格的GIS中,一般用元子空间充填表达的方法将多边形内任一点都直接与某一个或某一类地物联系。显然,后者是一种数据直接表达目标的理想方式。对线状目标,以往人们仅用矢量方法表示。事实上,如果将矢量方法表示的线状地物也用元子空间充填表达的话,就能将矢量和栅格的概念辨证统一起来,进而发展矢量栅格一体化的数据结构。假设在对一个线状目标数字化采集时,恰好在路径所经过的栅格内部获得了取样点,这样的取样数据就具有矢量和栅格双重性质。一方面,它保留了矢量的全部性质,以目标为单元直接聚集所有的位置信息,并能建立拓扑关系;另一方面,它建立了栅格与地物的关系,即路径上的任一点都直接与目标建立了联系。

图3.19 矢栅一体化概念

因此,可采用填满线状目标路径和充填面状目标空间的表达方法作为一体化数据结构的基础。

每个线状目标除记录原始取样点外,还记录路径所通过的栅格;

每个面状地物除记录它的多边形周边以外,还包括中间的面域栅格。

无论是点状地物、线状地物、还是面状地物均采用面向目标的描述方法,因而它可以完全保持矢量的特性,而元子空间充填表达建立了位置与地物的联系,使之具有栅格的性质。这就是一体化数据结构的基本概念(图3.19)。从原理上说,这是一种以矢量的方式来组织栅格数据的数据结构。

3.3.2一体化数据结构设计

线性四叉树(Morton)是基本数据格式,三个约定设计点、线、面数据结构的基本依据,细分格网法保证足够精度。

1)点状地物和结点的数据结构

约定1:点仅有位置、没有形状和面积,只要将点的坐标转化为地址码M1和M2,结构简单灵活,便于点的插入和删除,还能处理一个栅格内包含多个点状目标的情况。

ArcGIS影像配准及矢量化

实验三、影像配准及矢量化 一、实验目的 1.利用影像配准(Georeferencing) 工具进行影像数据的地理配准 2.编辑器的使用(点要素、线要素、多边形要素的数字化)。 注意:在基于ArcMap 的操作过程中请注意保存地图文档。 二、实验准备 数据:昆明市西山区普吉地形图1:10000 地形图――70011-1.Tif,昆明市旅游休闲图.jpg (扫描图)。 软件准备: ArcGIS Desktop ---ArcMap 三、实验内容及步骤 第1步地形图的配准-加载数据和影像配准工具 所有图件扫描后都必须经过扫描配准,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。打开ArcMap,添加“影像配准”工具栏。把需要进行配准的影像—70011-1.TIF 增加到ArcMap中,会发现“影像配准”工具栏中的工具被激活。 第2步输入控制点 在配准中我们需要知道一些特殊点的坐标。通过读图,我们可以得到一些控件

点――公里网格的交点,我们可以从图中均匀的取几个点。一般在实际中,这些点应该能够均匀分布。在”影像配准”工具栏上,点击“添加控制点”按钮。使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置 用相同的方法,在影像上增加多个控制点(大于7个),输入它们的实际坐标。点 击“影像配准”工具栏上的“查看链接表”按钮。 第3步设定数据框的属性 增加所有控制点,并检查均方差(RMS)后,在”影像配准”菜单下,点击“更新显示”。执行菜单命令“视图”-“数据框属性”,设定数据框属性

●更新后,就变成真实的坐标。 第4步矫正并重采样栅格生成新的栅格文件 ●在”影像配准”菜单下,点击“矫正”,对配准的影像根据设定的变换公式重新采样,另存为一个新的影像文件。

矢量数据配准具体步骤(ARCGIS软件)

ArcGIS下矢量数据配准 ArcGIS 空间校正(spatial adjustment)是个常用的工具,下面简单说一下它的使用方法。 下图中,青色的是已经有坐标系的要素(基准要素),黄色的是需要校正的要素(被校正要素)。 1、将已经具有坐标系的要素类和需要校正的要素类加进arcmap中(注意:先加入有坐标系的图层),调出spatial adjustment工具条,使需要校正的图层处于编辑状态。

2、在spatial adjustment工具条菜单里设置要校正的数据,把要校正的要素类打钩, 3、设置校正方法 每种校正方法的适用范围和区别可看帮助文件。仿射变换是最常用的方法,建议使用。

4、设置结合环境,以便准确地建立校正连接 Editor->snapping: 5、点置换连接工具 6、点击被校正要素上的某点,然后点基准要素上的对应点,这样就建立了一个置换链接,起点是被校正要素上的某点,终点是基准要素上的对应点。用同样的方法建立足够的链接。理论上有三个置换链接就能做仿射变换,但实际上一般是是不够用的。实际使用中要尽量多建几个链接,尤其是在拐点等特殊点上,而且要均匀分布。

7、点spatial adjustment工具条菜单下的adjust,即可应用配准,然后保存编辑。

当熟悉整个过程后,可以试试其他几种变换(相似、投影、橡皮拉伸等)。 上面的方法是将一个没有坐标系的要素类校正到一个有坐标系的要素类,简单说是图对图校正。如果只有一个没有坐标系的要素类,但知道它上面关键点的真实坐标,上面的4、5、6步用下面方法代替: 4、读出原图上关键点的屏幕坐标,找到和它对应的真实坐标 5、建立连接链接文件,格式为文本文件,第一列是关键点的屏幕x坐标,第二列是关键点的屏幕y坐标,第三列是关键点真实的x坐标,第四列是关键点真实的y坐标,中间用空格分开,每个关键点一行。如下图所示 6、在spatial adjustment菜单中打开链接文件,选刚才建立好的链接文件

ArcGIS下矢量数据配准 spatial adjustment

ArcGIS下矢量数据配准 spatial adjustment ArcGIS 空间校正(spatial adjustment)是个常用的工具,下面简单说一下它的使用方法。 下图中,青色的是已经有坐标系的要素(基准要素),黄色的是需要校正的要素(被校正要素)。 1、将已经具有坐标系的要素类和需要校正的要素类加进arcmap中(注意:先加入有坐标系的图层),调出spatial adjustment工具条,使需要校正的图层处于编辑状态。 2、在spatial adjustment工具条菜单里设置要校正的数据,把要校正的要素类打钩,

3、设置校正方法 每种校正方法的适用范围和区别可看帮助文件。仿射变换是最常用的方法,建议使用。 4、设置结合环境,以便准确地建立校正连接 Editor->snapping:

5、点置换连接工具 6、点击被校正要素上的某点,然后点基准要素上的对应点,这样就建立了一个置换链接,起点是被校正要素上的某点,终点是基准要素上的对应点。用同样的方法建立足够的链接。理论上有三个置换链接就能做仿射变换,但实际上一般是是不够用的。实际使用中要尽量多建几个链接,尤其是在拐点等特殊点上,而且要均匀分布。

7、点spatial adjustment工具条菜单下的adjust,即可应用配准,然后保存 编辑。 当熟悉整个过程后,可以试试其他几种变换(相似、投影、橡皮拉伸等)。 上面的方法是将一个没有坐标系的要素类校正到一个有坐标系的要素类,简单说

是图对图校正。如果只有一个没有坐标系的要素类,但知道它上面关键点的真实坐标,上面的4、5、6步用下面方法代替: 4、读出原图上关键点的屏幕坐标,找到和它对应的真实坐标 5、建立连接链接文件,格式为文本文件,第一列是关键点的屏幕x坐标,第二列是关键点的屏幕y坐标,第三列是关键点真实的x坐标,第四列是关键点真实的y坐标,中间用空格分开,每个关键点一行。如下图所示 6、在spatial adjustment菜单中打开链接文件,选刚才建立好的链接文件 其它步骤与前面的相同。 本篇文章来源于 GIS空间站转载请以链接形式注明出处网址: https://www.wendangku.net/doc/442314609.html,/Article/1640.htm

在ArcGIS下基于Python的矢量数据处理方法

测绘技术装备 第18卷 2016年第4期 技术交流 63 在ArcGIS 下基于Python 的矢量数据处理方法 林璐 王爽 李海泉 侯兴泽 马鹏刚 (国家测绘地理信息局第二地形测量队 陕西西安 710054) 摘 要:在ArcGIS 中地理处理可以通过Python 脚本语言来具体实现。通过Python 串联Arcgis 的地理处理工具,实现工作流自动化完成,同时,实践批处理过程,解放人工的机械重复工作,提高效率,进而保证数据质量。现以地形图中示坡线的正确、严谨表达为实践案例,介绍了在ArcGIS 下利用Python 处理矢量数据,为矢量数据处理的高效、自动化提供解决方法。 关键词:Python ARCGIS 地理处理 示坡线 1 引言 地理处理是GIS 用户应用的重要组成部分,ArcGIS 的ArcToolbox 窗口为GIS 用户提供了数百个地理处理。对于数据处理人员在使用ArcGIS 地理处理工具时,就会遇到这样的难题,如何将几个简单的地理处理工具串联起来,自动化地完成一个简单工作流,使得人工操作转换为自动化的程序批处理 过程[1] 。 Python 是一种不受局限、跨平台的开源编程语言,它功能强大且简单易学。同时,它可伸缩程度高,适于大型项目或小型的一次性程序(称为脚本), 并且可嵌入(使ArcGIS 可脚本化)。目前,Python 已延伸到ArcGIS 中,成为了一种用于进行数据分析、数据转换、数据管理和地图自动化的语言。运用 Python 语言可以实现对地理数据的批处理,从而有 助于提高工作效率[2] 。 2 开发案例说明 示坡线,是指示斜坡降落的方向线,它与等高线垂直相交。一般表示在谷地、山头、鞍部、图廓边及斜坡方向不易判读的地方。凹地的最高、最低 一条等高线上也应表示示坡线[3] 。在测绘4D 产品之一的数字线划图(DLG)中,示坡线一般以有向点或有向线(长度为定值的线段)的方式表达。其中,有向点应严格捕捉相应等高线,通过填写要素角度属性项表达所示方向;有向线为线段,起始节点应严格捕捉相应等高线,终止节点指向所示方向,线段长度为规范要求长度。 图1 山丘、山峰和盆地、洼地的示坡线示意图 一般在DLG 制作过程中,特别是中小比例尺地形图,通常利用立体测图系统,在恢复立体影像相对模型的情况下,人工判断地貌,并采集示坡线。采集时要求在对应等高线采集第一点,沿斜坡的方向采集第二点。为提高生产效率及生产工序技术要求,此时采集的示坡线,不符合前述DLG 拓扑规范要求。存在未严格捕捉等高线,造成悬挂和相交的拓扑问题;或示坡线要素长度不定,不符合技术要求;亦或示坡线采集图形上看正确,实际上刚好与要求相反,是由斜坡降落方向向等高线采集。这些情况致使下工序矢量数据编辑处理时,需要人工核对、修改,工作量大且繁琐(尤其是在沙漠、特殊丘陵地区,1幅1∶10000比例尺地形图可能需要上千个示坡线表示地貌形态),如果作业人员责任心不足还易造成质量隐患。 3 处理方案设计 3.1 方案设计思路 数据要素处理的关键是两点:一是解决拓扑问题,二是实现示坡线角度正确表达。因此解决思路是:首先,要满足拓扑要求,即相应要素之间严格

Arcgis矢量数据处理案例

. Arcgis空间数据处理案例 空间数据处理 (2) 第1步裁剪要素 (2) 第2步拼接图层 (4) 第3步要素融合 (5) 第4步图层合并 (7) 第5步图层相交 (9) 定义地图投影 (10) 第6步定义地理坐标系统 (10) 第7步投影变换,(地理坐标系->北京1954坐标系转换->西安80坐标系) (11) 补充:图层相减,计算面积 (12)

空间数据处理 ●数据:云南县界.shp; Clip.shp西双版纳森林覆盖.shp 西双版纳县界.shp ●步骤: 将所需要的数据下载后,解压到到 e:\gisdata, 设定工作区:在ArcMap中执行菜单命令:<地理处理>-><环境>,在“环境设置”选项页里, 点击“工作空间”按钮,在工作空间对话框中的常规设置选项中,设定“临时工作空间”为 e:\gisdata 第1步裁剪要素 ◆在ArcMap中,添数据GISDATA\云南县界.shp,添加数据GISDATA\Clip.shp (Clip 中有四 个要素) ◆激活Clip图层。选中Clip图层中的一个要素,注意确保不要选中“云南县界”中的要素!

点击打开ArcToolbox, 指定输出要素类路径及名称,这里请命名 为“云南县界_Clip11” 指定输入类:云南县界 指定剪切要素:Clip(必须是多边形要素) 依次选中Clip主题中其它三个要素,重复以上的操作步骤,完成操作后将得到共四个图层(“云 南县界_Clip11” , “云南县界_Clip12”,“云南县界_Clip21”,“云南县界_Clip22” )。 注:1.观察剪切后面积是否有变化; 2.如果用split是否可以,如可以,需要怎么做?(用文本型字段进行split)

ArcGis中进行地形图的配准

ArcGis中进行地形图的配准 地形图配准 1.1.1 方法简介  1.1.1.1 方法0  所有图件扫描后都必须经过扫描纠正,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。 对影像的配准有很多方法,下面介绍一种常用方法。 (1)打开 ArcMap,增加 Georeferncing 工具条。 (2)把需要进行纠正的影像增加到 ArcMap 中,会发现 Georeferncing 工具条中的工具被激活。 (3)在配准中我们需要知道一些特殊点的坐标,即控制点。可以是经纬线网格的交点、公里网格的交点或者一些典型地物的坐标,我们可以从图中均匀的取几个点。如果我们知道这些点在我们矢量坐标系内坐标,则用以下方法输入点的坐标值,如果不知道它们的坐标,则可以采用间接方法获取。 (4)首先将 Georeferncing 工具条的 Georeferncing 菜单下 Auto Adjust 不选择。 (5)在 Georeferncing 工具条上,点击 Add Control Point 按钮。 (6)使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置: (7)用相同的方法,在影像上增加多个控制点,输入它们的实际坐标。

(8)增加所有控制点后,在 Georeferencing 菜单下,点击 Update Display。 (9)更新后,就变成真实的坐标。 (10)在 Georeferencing 菜单下,点击 Rectify,将校准后的影像另存。 后面我们的数字化工作是对这个校准后的影像进行操作的。 1.1.1.2 说法1  在配准前,先在arctoolbox下的date management tool下的projections and transformations进行投影系统的定义;然后在arcmap中,利用georeferening工具,进行控制点的输入。增加所有控制点后在georeferening工具下点击updatedisplay,最后rectify保存影像。重新打开配准后的影像在界面的下方即可看到配准后显示的坐标。 1.1.1.3 说法  在利用ArcGIS进行数字化,或者把栅格图像加载到已有坐标系的地图中时,首先的工作就是进行地图的空间配准。 对栅格图像进行配准时,可以用Georeferencing工具。对已有GIS图与其它坐标系或者地图进行配准时,可以利用Spatial Adjustment工具。 1.利用Georeferencing工具配准栅格图像

Arcgis操作 实验四:ArcMap地图配准及矢量化(DOC)

实验四:地图配准及矢量化 一、实验目的 1、掌握影像配准(Georeferencing)工具进行地形图的地理配准的方法及步骤。 2、掌握ArcMap中进行矢量化方法。 二、实验准备 数据准备: 昆明市西山区普吉地形图1:10000 地形图――70011-1.tif (昆明市旅游休闲地图(YNKM.JPG)、Garmin 手持GPS野外采集数据(gpsdata.dbf))——选做数据 软件准备: ArcGIS Desktop9.x,ArcCatalog 三、实验内容 根据地形图坐标配准地形图,如图1所示。 图1 配准结果

四、实验步骤 第1步地形图的配准-加载数据和影像配准工具 所有图件扫描后都必须经过扫描配准,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。 ●打开ArcMap,添加“影像配准”工具栏。 ●把需要进行配准的影像—70011-1.TIF增加到ArcMap中,会发现“影像配准”工具栏中 的工具被激活。 第2步输入控制点 在配准中我们需要知道一些特殊点的坐标。通过读图,我们可以得到一些控件点――公里网格的交点,我们可以从图中均匀的取几个点。一般在实际中,这些点应该能够均匀分布。 ●在”影像配准”工具栏上,点击“添加控制点”按钮。

●使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位 置,如下图所示: ●用相同的方法,在影像上增加多个控制点(大于7个),输入它们的实际坐标。点击“影 像配准”工具栏上的“查看链接表”按钮。 ●注意:在连接表对话框中点击“保存”按钮,可以将当前的控制点保存为磁盘上的文件, 以备使用。

ArcGIS实验操作 九 地理配准

ArcGIS实验操作(九) 地理配准(Georeferncing) 数据:昆明市西山区普吉地形图 1:10000 地形图――70011-1.tif 要求:进行地图配准,以确保矢量化工作顺利进行。 操作步骤: 1.加载配准工具栏和地图数据: z打开ArcMap,添加“Georeferncing”工具栏。 在ArcMap中弹出如下工具栏: z把需要进行配准的影像—70011-1.TIF增加到ArcMap中,会发现“Georeferncing”工具栏中的工具被激活。

2.输入控制点: 在配准中我们需要知道一些特殊点的坐标。通过读图,我们可以得到一些控件点――公里网格的交点,我们可以从图中均匀的取几个点。一般在实际中,这些点应该能够均匀分布。 z在“Georeferncing”工具栏上,点击“添加控制点”按钮。

z使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位 对应的X、Y坐标值。如下图所示:

点击全图显示,可查看地图窗口: z用相同的方法,在影像上增加至少4个控制点(控制点能均匀分布于四周,且数目不能太少),输入它们的实际坐标。也可以点击添加控制点按钮后,在地图窗口上单击确定一个控制点,右击选择“Input X and Y”,即可输入实际坐标:

输入准确的坐标值: 注意:若输完坐标值后,配准地图不可见,可点击。 同上,输入其它控制点的实际坐标值,本操作仅输入4个控制点仅是为演示需要,实际情况下需要输入更多的均匀分布的控制点。 然后,点击工具栏上的“查看链接表”按钮:

注意: 检查控制点的残差和RMS,删除残差特别大的控制点并重新选取控制点。Total RMS误差越小越好。 在连接表对话框中点击“保存”按钮,可以将当前的控制点保存为磁盘上的文件,以备使用。 3.设定数据框的属性: z增加所有控制点,并检查均方差(RMS)后,在“影像配准”菜单下,点击“更新显示”。 执行菜单命令“视图”-“数据框属性”,设定数据框属性,在“常规”选项页中,将地图显示单位设置为“米”

矢量数据的获取与处理

第3章矢量数据与栅格数据的获取及处理 导读:GIS项目中费用最大的部分是数据库建设,即基础地理信息的获取与处理,这其中就包括矢量数据和栅格数据的获取与处理,例如遥感影像数据现已作为地理信息系统的重要数据来源。本章分别介绍了矢量数据的获取与处理以及栅格数据的获取与处理,以及他们的应用。并在最后一节介绍了矢栅一体化数据结构的基本概念。 3.1矢量数据的获取与处理方法 3.1.1矢量数据的概念 矢量数据(Vector Data)即在直角坐标系中,用X、Y坐标表示地图图形或地理实体的位置的数据。矢量数据一般通过记录坐标的方式来尽可能将地理实体的空间位置表现的准确无误。 在计算机地图制图中,各地图图形元素在二维平面上的矢量数据表示为:点——用一对(x,y)坐标表示; 线——用一串有序的(x,y)坐标对表示; 面——用一串有序的但首尾坐标相同的(x,y)坐标对表示其轮廓范围。 地图数据与其他大多数由计算机处理的科学数据是极其不同的。大部分地图数据都是反映制图现象的地理分布,故具有定位的性质,也称这类地图数据为空间数据(或几何数据)。空间数据可反映点、线和面状物体的定位特性。还有一部分地图数据是用来描述制图现象的质量和数量特征,如哪是河流,哪是道路,哪是居民点以及它们的名称和其他有关的特征描述等,这类数据通常称之为属性数据。任何地图数据都有时间性,即现势性,这是显而易见的。 3.1.2几何数据的获取 几何数据是根据给定各要素相对位置或绝对位置的坐标来描述的。其获取的方法主要有:

1)由外业测量获得,如数字测图。野外实地测量等获取的数据可转换后直接进入GIS的地理数据库,以便于进行实时的分析和进一步的应用。GPS所获取的数据也是GIS的重要数据源。 2)由栅格形式的空间数据转换获得。栅格数据结构向矢量数据结构的转换又称为矢量化。如卫星测地、扫描数字化仪扫描、航摄像片等。可以用此类数据转化为矢量数据。 基于图像数据的矢量化方法: ①二值化:线画图形扫描后产生图像栅格数据,这些数据是按0~255的不同灰度值量度的,将这种256级不同的灰度压缩到2个灰度形成二值图,即0和1两级灰度图。 ②细化:细化是消除线画横断面栅格数的差异,使得每一条线只保留代表其轴线或周围轮廓线位置的单个栅格的宽度。对于栅格线画的细化方法,可分为“剥皮法”和“骨架法”。 ③跟踪:跟踪的目的是将细化处理后的栅格数据转化为从节点出发的线段或闭合的线条,并以矢量形式存储线段的坐标。跟踪时,从起始点开始,根据八个邻域进行搜索下一个相邻点的位置,记录坐标,直到完成全部栅格数据的矢量化。 3)对现有地图跟踪数字化获得,将现有的地图图形离散化为数据。 跟踪数字化是目前应用最广泛的一种地图数字化方式,是通过记录数字化板上点的平面坐标来获取矢量数据的。其基本过程是:将需数字化的图件(地图、航片等)固定在数字化板上,然后设定数字化范围、输入有关参数、设置特征码清单、选择数字化方式(点方式和流方式等),就可以按地图要素的类别分别实施图形数字化了。 由于跟踪数字化本身几乎不需要GIS的其它计算功能,所以跟踪数字化软件往往可以与整个GIS系统脱离开,因而可单独使用。

arcgis配准和矢量化步骤

图像最好不要压缩,越精确地图的矢量化原精确,使用ArcGIS 9.2 Desktop完成。 一、栅格图像的校正和坐标系确定 启动ArcMap,新建一个新工程,右键Layers选择Add Data…添加TIF图像,将出现如下提示(如果提示无法加载rester data时请安装ArcGIS Desktop SP3补丁),单击Yes确定,加载图像后提示图像没有进行配准,确定然后配准图像。 图像加载后即可看到图像内容,右键工具栏打开Georeferencing工具条,进行图像的配准工作,在配准之前最好先保存工程。

在File菜单下打开Map Properties编辑地图属性,Data Source Options 可设置保存地图文件的相对路径和绝对路径。(这里选择相对路径以确保将工程复制到其他机器可用)。 配准前要先读懂地图,望都县土地利用现状图采用1954北京坐标系,比例尺1:40000,查阅河北省地图发现望都县位于东经115度附近,那么按6度分带属于20带中央经线117度,按3度分带属于38带。从图框看到的公里数发现没有带号,应该是公里数。 这里只找了4个点进行配置(可以找更多的点),从左到右从下到上,逆

时针编号为1、2、3、4;在ArcMap中单击Georefercning工具条上的Add Control Ponit工具(先掉Auto Adjuest选项),添加4个点控制点。 然后编辑Link Table中的4个控制点的代表的公里数,然后单击“Georeferecning下拉菜单的Auto Adjuest”图像即进行校正这时可看到参差值这里是0.00175(Total RMS)非常小说明配准较为精确。单击Save按钮可将控制点信息保存到文件,单击Load按钮可从文件加载控制点坐标。 给校准后的地图选择适合的坐标系,右键Layers打开Properties对话框属性对话框选择投影坐标系,(Prokected Coordinate Systems)展开

GIS矢量数据分析与栅格数据分析实验完整版

G I S矢量数据分析与栅 格数据分析实验 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本科学生实验报告 姓名尹永义学号 专业地理科学班级 2014B _ 实验课程名称地理信息系统概论(实验) 实验名称矢量数据分析与栅格数据分析 指导教师及职称速绍华(讲师) 开课学期 2014 _至_ 2015_学年_下学期云南师范大学旅游与地理科学学院编印

3、实验理论依据或知识背景: 矢量数据分析矢量数据以点、线和面空间要素为输入数据。 分析结果的准确性取决于空间特征的位置及形状的准确性。 拓扑关系是一些矢量数据分析(如建立缓冲区和叠置分析)的一个因素。 基于邻近(Proximity)概念,建立缓冲区可把地图分为两个区域:一个区域位于所选地图要素的指定距离之内,另一个区域在指定距离之外。 在指定距离之内的区域称为缓冲区。 围绕点建立缓冲区产生圆形缓冲区。围绕线建立缓冲区形成一系列围绕每条线段的长条形缓冲带。围绕多边形建立缓冲区则生成由该多边形边 界向外延伸的缓冲区。 对线要素建立缓冲区未必在线两侧都有缓冲区,可以只在线的左侧或右 侧建立缓冲区。 缓冲距离(又叫缓冲大小)未必为常数,可以根据给定字段取值而变 化。 缓冲区边界也可以被融合掉,使得缓冲区之间没有叠置区。 地图叠置操作是将两个要素图层的几何形状和属性组合在一起,生成新 的输出图层。 输出图层的几何形状代表来自各输入图层的要素的几何交集。 输出图层的每个要素包含所有输入图层的属性组合,而这种组合不同于 其邻域。 所有叠置方法都是基于布尔连接符的运算,即AND、OR 和 XOR。 若使用 AND 连接符,则此叠置操作为求交(Intersect)。 若使用 OR 连接符,则此叠置操作称为联合(Union)。 若使用 XOR 连接符,则此叠置操作称为对称差异(Symmetrical Difference)或差异(Difference)。 若使用以下表达式 [(Input Layer)AND(Identity Layer)] OR (Input Layer),则该叠置操作称为识别(Identity)或减去 (Minus)。 模式分析是关于二维空间点要素空间分配的研究。 在整体水平上,模式分析可以揭示某分布模式是随机、离散还是集聚 的。 在局部水平上,模式分析可以检测出分布模式中是否含有高值或低值的局部集聚。 模式分析包括点模式分析、量测空间自相关的莫兰指数(Moran’s I)和量测高/低聚集度的G 统计量。 栅格数据分析 栅格数据分析是基于栅格像元和栅格的。 栅格数据分析能在独立像元、像元组或整个栅格全部像元的不同层次上进行。 一些栅格数据运算使用单一栅格,而另一些则使用两个或更多栅格数 据。

矢量数据配准具体步骤ARCGIS软件

ArcGIS下矢量数据配准 ArcGIS 空间校正(spatial adjustment)是个常用的工具,下面简单说一下它的使用方法.?下图中,青色的是已经有坐标系的要素(基准要素),黄色的是需要校正的要素(被校正要素). 1、将已经具有坐标系的要素类和需要校正的要素类加进arcmap中(注意:先加入有坐标系的图层),调出spatial adjustment工具条,使需要校正的图层处于编辑状态.? 2、在spatial adjustment

工具条菜单里设置要校正的数据,把要校正的要素类打钩, 3、设置校正方法?每种校正方法的适用范围和区别可看帮助文件。仿射变换是最常用的方法,建议使用。 ?4、设置结合环境,以便准确地建立校正连接

Editor->snapping: ?5、点置换连接工具 ?6、点击被校正要素上的某点,然后点基准要素上的对应点,这样就建立了一个置换链接,起点是被校正要素上的某点,终点是基准要素上的对应点。用同样的方法建立足够的链接.理论上有三个置换链接就能做仿射变换,但实际上一般是是不够用的.实际使用中要尽量多建几个链接,尤其是在拐点等特殊点上,而且要均匀分布。

7、点spatial adjustment工具条菜单下的adjust,即可应用配准,然后保存编辑。 ?

当熟悉整个过程后,可以试试其他几种变换(相似、投影、橡皮拉伸等)。 上面的方法是将一个没有坐标系的要素类校正到一个有坐标系的要素类,简单说是图对图校正。如果只有一个没有坐标系的要素类,但知道它上面关键点的真实坐标,上面的4、5、6步用下面方法代替:?4、读出原图上关键点的屏幕坐标,找到和它对应的真实坐标5、建立连接链接文件,格式为文本文件,第一列是关键点的屏幕x坐标,第二列是关键点的屏幕y坐标,第三列是关键点真实的x坐标,第四列是关键点真实的y坐标,中间用空格分开,每个关键点一行。如下图所示 6、在spatial adjustment菜单中打开链接文件,选刚才建立好的链接文件

最新ArcGIS中地形图数据配准步骤汇总

A r c G I S中地形图数据 配准步骤

扫描地形图配准的常用步骤: 在配准前,先在ArcGIS Toolbox下的Data management tool下的projections and transformations进行投影系统的定义。 1:50000的地形图,是基于北京1954坐标系,6度分带的高斯克吕格投影。在地形图方里网上可以看出本图幅位于哪个分度带。假设是19度带,因此我们要选择的是Beijing 1954 GK Zone 19.prj。同时目录里面还有一个Beijing 1954 GK Zone 19N.prj,这个是用于没有分度带号的。而我们的图幅是包括分度带号。(1)打开 ArcMap,增加 Georeferencing 工具条。 (2)把需要进行纠正的扫描地形图添加到 ArcMap 中,Georeferencing 工具被激活。 (3)在配准中我们需要知道一些特殊点的坐标,即控制点。可以是经纬线网格的交点、公里网格的交点或者一些典型地物的坐标,我

们可以从图中均匀的取几个点。如果我们知道这些点在我们矢量坐标系内坐标,则用以下方法输入点的坐标值。 (4)在Transformation里选择进行空间变换时所采用的方法。首先将 Georeferencing 工具条的 Georeferencing 菜单下 Auto Adjust 不选择。 (5)在 Georeferencing 工具条上,点击 Add Control Points 按钮。 (6)使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置。要注意的问题是,地形图上的方里网坐标为公里,而需要输入的应该是米。所以要在方里网对应坐标后面加000。如地形图上读出一个交点为(19387, 3420),19387的19为分带号,也要一并输入,那么这个点应该输入(19387000, 3420000)。 (7)用相同的方法,在影像上增加多个控制点,输入它们的实际坐标。一般在实际中,不少于7个,这些点应该能够均匀分布。特殊点一般是作为参考地图中多年或变化不大的坐标点,比如路口,河流交汇处,标志性建筑等。还应该增加一个规则:理论上控制点越多越均匀,配准效果越好,但是主要需要参考的是rms的值,rms小于一个象元的1/2为好,多加入控制点,RMS就越大说明其中某个控制点误差大或有错误,你可以查出来删除或修正.

ARCMAP配准和矢量化

一.影像校准 所有图件扫描后都必须经过扫描纠正,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。 对影像的校准有很多方法,下面介绍一种常用方法。 1.打开ArcMap,增加Georeferncing工具条。 2.把需要进行纠正的影像增加到ArcMap中,会发现Georeferncing工具条中的工具被激活。 3.在校正中我们需要知道一些特殊点的坐标。通过读图,我们知道坐标的点就是公里网格的交点,我们可以从图中均匀的取几个点。一般在实际中,这些点应该能够均匀分布。 4.首先将Georeferncing工具条的Georeferncing菜单下Auto Adjust不选择。 5.在Georeferncing工具条上,点击Add Control Point按钮。 6.使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置. 7.用相同的方法,在影像上增加多个控制点,输入它们的实际坐标。 8.增加所有控制点后,在Georeferencing菜单下,点击Update Display。 9.更新后,就变成真实的坐标。 10.在Georeferencing菜单下,点击Rectify,将校准后的影像另存。 二、图象二值化 11.把图像重新symbolize,使用classify分成两种类型,如:0-126,126-255。(补充:把图象二值化,否则不能进行数字化)在图象上鼠标右击,选取properties,在选symbolgy标签,在show中选classified ,classes等于2。 12.在arcCatalog中新建shp文件(分几层建几个,有点、线、多边形、多点四种类 型),将图象和SHP文件一起加入到ARCMAP中,对SHP文件进行编辑,此时可以激活 arcscan,进行矢量化。 13.arcScan 是arcmap工具组件之一。在使用arcscan之前,必须在tools工具条下的extension(扩展)选项中将arcscan标记为可用!然后再将arcscan工具在tools 栏的custom中将arcscan工具打开。[注:]在使用arcscan工具前,还要打开editor 图像最好不要压缩,越精确地图的矢量化原精确,使用ArcGIS 9.2 Desktop 完成。 栅格图像的校正和坐标系确定 启动ArcMap,新建一个新工程,右键Layers选择Add Data…添加TIF图像,将出现如下提示(如果提示无法加载rester data时请安装ArcGIS Desktop SP3补丁),单击Yes确定,加载图像后提示图像没有进行配准,确定然后配准图像。

矢量数据配准具体步骤(ARCGIS软件

欢迎阅读ArcGIS下矢量数据配准 ArcGIS 空间校正(spatial adjustment)是个常用的工具,下面简单说一下它的使用方法。 下图中,青色的是已经有坐标系的要素(基准要素),黄色的是 1 中( 2、在 3 4、设置结合环境,以便准确地建立校正连接 Editor->snapping: 5、点置换连接工具

6、点击被校正要素上的某点,然后点基准要素上的对应点,这样就建立了一个置换链接,起点是被校正要素上的某点,终点是基准要素上的对应点。用同样的方法建立足够的链接。理论上有三个置换链接就能做仿射变换,但实际上一般是是不够用的。实际 7、点 拉伸等)。 上面的方法是将一个没有坐标系的要素类校正到一个有坐标系的要素类,简单说是图对图校正。如果只有一个没有坐标系的要素类,但知道它上面关键点的真实坐标,上面的4、5、6步用下面方法代替:

4、读出原图上关键点的屏幕坐标,找到和它对应的真实坐标 5、建立连接链接文件,格式为文本文件,第一列是关键点的屏幕x坐标,第二列是关键点的屏幕y坐标,第三列是关键点真实的x 坐标,第四列是关键点真实的y坐标,中间用空格分开,每个关键点一行。如下图所示 6、在 准: 1 2、通过excel或记事本建立一个文本文件,输入几个控制点的坐标值,x表示经向,y为纬向,可以是公里网格坐标,和上面的定义的投影方式对应,保存;

3、在ArcMap里面打开矢量图,在“编辑器”(Editor)里设为“开始编辑”; 4、在“空间配准”(Spatial Adjustment)里把“设置配准数据”(set adjust data)定为“选择这些层中的所有要素”(All features in these),然后在“链接”(link)里打开上面建立的控制点文件; 5 6

arcgis影像配准及矢量化

目录 一.实验名称 (2) 二.实验目的及实验要求 (2) 三.实验过程 (2) 1. 地形图的配准-加载数据和影像配准工具 (2) 2.输入控制点 (3) 3.设定数据框的属性 (4) 4.矫正并重采样栅格生成新的栅格文件 (5) 5. 分层矢量化-在ArcCatalog中创建一个线要素图层 (6) 6. 从已配准的地图上提取等高线并保存到上面创建的要素类中. (9) 7.根据GPS观测点数据配准影像并矢量化的步骤 (11) 四.实验结果 (14) 1.分析数字化过程中误差的来源及减小误差的相关方法 (14) 2.为什么要对配准后的数据进行重采样 (14)

一.实验名称 影像配准及矢量化 二.实验目的及实验要求 1.实验目的 学习地图数字化及其编辑的方法。 2、实验要求 (1)利用影像配准(Georeferencing) 工具进行影像数据的地理配准 (2)编辑器的使用(点要素、线要素、多边形要素的数字化)。 三.实验过程 1. 地形图的配准-加载数据和影像配准工具 所有图件扫描后都必须经过扫描配准,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。 打开ArcMap,添加“影像配准”工具栏。把需要进行配准的影像—70011-1.TIF增加到ArcMap中,会发现“影像配准”工具栏中的工具被激活。

2.输入控制点 使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实 际的坐标位置,如下图所示:

用相同的方法,在影像上增加多个控制点(大于7个),输入它们的实际坐标。点击“影像配准”工具栏上的“查看链接表”按钮。 注意:在连接表对话框中点击“保存”按钮,可以将当前的控制点保存为磁盘上的文件,以备使用 3.设定数据框的属性 增加所有控制点,并检查均方差(RMS)后,在”影像配准”菜单下,点击“更新显示”。 执行菜单命令“视图”-“数据框属性”,设定数据框属性

ARCGIS中进行地形图的配准

ARCGIS中进行地形图的配准 1.1.1 flying-roc 博客网 方法简介 1.1.1.1 方法0 所有图件扫描后都必须经过扫描纠正,对扫描后的栅格图进行检查,以确保矢量化工作顺利进行。 对影像的配准有很多方法,下面介绍一种常用方法。 (1)打开ArcMap,增加Georeferncing 工具条。 (2)把需要进行纠正的影像增加到ArcMap 中,会发现Georeferncing 工具条中的工具被激活。 (3)在配准中我们需要知道一些特殊点的坐标,即控制点。可以是经纬线网格的交点、公里网格的交点或者一些典型地物的坐标,我们可以从图中均匀的取几个点。如果我们知道这些点在我们矢量坐标系内坐标,则用以下方法输入点的坐标值,如果不知道它们的坐标,则可以采用间接方法获取。 (4)首先将Georeferncing 工具条的Georeferncing 菜单下Auto Adjust 不选择。 (5)在Georeferncing 工具条上,点击Add Control Point 按钮。 (6)使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置: (7)用相同的方法,在影像上增加多个控制点,输入它们的实际坐标。 (8)增加所有控制点后,在Georeferencing 菜单下,点击Update Display。 (9)更新后,就变成真实的坐标。 (10)在Georeferencing 菜单下,点击Rectify,将校准后的影像另存。 后面我们的数字化工作是对这个校准后的影像进行操作的。 1.1.1.2 说法1 在配准前,先在arctoolbox下的date management tool下的projections and transformations进行投影系统的定义;然后在arcmap中,利用georeferening工具,进行控制点的输入。增加所有控制点后在georeferening工具下点击updatedisplay,最后rectify 保存影像。重新打开配准后的影像在界面的下方即可看到配准后显示的坐标。 1.1.1.3 说法

ArcGIS矢量图配准

ArcGIS矢量图配准 1、首先在Arc catalog下面对需要配准的矢量图设置投影方式(右键点击该图,在shapefile属性表的shape字段属性中,定义相应的投影方式; 2、通过excel或记事本建立一个文本文件,输入几个控制点的坐标值,x表示经向,y为纬向,可以是公里网格坐标,和上面的定义的投影方式对应,保存; 3、在ArcMap里面打开矢量图,在“编辑器”(Editor)里设为“开始编辑”; 4、在“空间配准”(Spatial Adjustment)里把“设置配准数据”(set adjust data)定为“选择这些层中的所有要素”(All features in these),然后在“链接”(link)里打开上面建立的控制点文件; 5、先双击控制点文件中的坐标值,再在矢量图中找到对应的点双击,即建立了第一个链接,依照此法,建立数个链接; 6、点击“空间配准”下面的“配准”(已由灰变黑可用),则配准完成。 ArcGIS矢量图的配准 平时用到的多为栅格数据的配准。而矢量数据很少有进行配准的,尤其是已经数字化,只缺坐标系统的矢量地图。 步骤如下: 1、在ArcCatalog下对需要配准的矢量图设置投影方式(右键点击该图,在属性表的XY Coordinate System中,定义相应的投影方式),若只有经纬度坐标,选择地理坐标的beijing1954。 2、通过excel或记事本建立一个文本文件,输入至少3个控制点的坐标值,ID即为图中相应点的ID号,x表示经向,y表示纬向(如,124 120.1454 31.2865)。也可是是公里网格坐标,与步骤1定义的投影方式要一致,然后保存。 3、 ArcMap中打开已经定义了投影方式的地图,将Editor设为Start Editing。 4、加载Spatial Adjustment工具条,将Spatial Adjustment中的s et adjust data选择All features in these file,然后在links中选择Open control point file,打开步骤2建立的控制点文件。 5、这时控制点文件出现在ArcMap中,先双击控制键文件中的坐标值,再在矢量图中找到相应的点双击(这就是控制点文件中加入ID号的作用),即建立了第一个链接,依照此法,建立数个链接。 6、点击Spatial Adjustment中的Adjust(即为配准,这时已由灰色变为黑色可用),则配准完成。

ArcGIS 配准坐标转换

2, 在ArcCatalog中找到需要配准的图,给他定义一个投影系统(注意和投影变换的区别)。这里我们用的 是1:50000的地形图,它是基于北京 1954坐标系,6度分带的高斯克吕格投影。在地形图方里网上可以看出本图幅位于哪个分度带,这里假设是19。因此我们要选择的是Beijing 1954 GK Zone 19.prj。同时目录里面还有一个Beijing 1954 GK Zone 19N.prj,这个是用于没有分度带号的。而我们的图幅是包括分度带号。这个可以在网上搜索 "arcgis 坐标文件" 来进一步了解。 3, 给配准的图定义了一个投影系统后,把图加载到ArcMap里面,打开GeoReferencing工具,直接利用方里网交点进行配准。这里要注意的问题是,地形图上的方里网坐标为公里,而需要输入的应该是米。所以要在方里网对应坐标后面加000。如地形图上读出一个交点为(19387, 3420),19387的19为分带号,也要一并输入,那么这个点应该输入(19387000, 3420000)。其余配准过程和网上教程一致。 4,配准后可以在Lay Properity里面把显示单位改成度分秒,于是地图就以经纬度格式显示了。此时的经纬度是基于北京1954基准面的,可以把光标指向四角的经纬度标记,以核对配准的精确度。 到此为止,地形图已经精确配准了。接下来往里面加载GPS数据。 1, 用你能想到的方式把GPS接收机上的数据导出来,除了一个一个手工输入,呵呵。 2, 尽量建立起数据库吧,这样方便些 3, ArcGIS中加载所得到的数据库,用Defined Query来选择自己所需要显示的数据 4, 如果需要精确地在地形图上显示GPS数据,那么还需要一个WGS-84到北京1954坐标的转换。有转换参数最好,如果没有,但的确需要,就去网上查一下手持GPS接收机转换参数估算这篇文章。我们这里是假设不需要精确显示,直接把WGS-84数据当成北京1954来用。前面也说了,有一定误差,但是不大。因此直接跳 到5。 5, Display X,Y Datas, 定义为WGS-84坐标系统。 (其实此处我有疑问,因为现在的地形图是投影后的图,按我的理解,也应该把是球面坐标的WGS-84数据进行投影变换后才能用。但是查了很多资料,都是在这里直接定义数据来源是WGS-84就可以了,也许 是ArcGIS在投点的时候,可以自动进行变换。) 6, OK,现在点也投上去了,ArcGIS工作中最基础的工作也就完成了。 再转到Layout view 界面,插入一个比例尺,发现和地形图上的比例尺非常吻合:-),把显示单位改 成kilometer,用measure tool 就可以量地形图上任意点的距离了,试了一下公里网格,非常精准。 地理坐标,大地坐标 地理坐标:为球面坐标。参考平面地是椭球面。坐标单位:经纬度 大地坐标:为平面坐标。参考平面地是水平面坐标单位:米、千米等。 地理坐标转换到大地坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面) 在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system), 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为 地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作 呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求 我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 Spheroid: Krasovsky_1940

相关文档
相关文档 最新文档