文档库 最新最全的文档下载
当前位置:文档库 › 电子束的电偏转、磁偏转研究

电子束的电偏转、磁偏转研究

电子束的电偏转、磁偏转研究
电子束的电偏转、磁偏转研究

湖南城市学院教师备课纸第次

课题:电子束的电偏转、磁偏转研究

目的要求:

1.研究带电粒子在电场和磁场中偏转的规律。

2.了解电子束线管的结构和原理。

教学重点:

1、示波管

2、电子的加速和电偏转

3、电子的磁偏转原理

教学难点:

电子束线管、电子束的聚焦和偏转、电聚焦和电偏转、磁聚焦和磁偏转

教学课时:3-4课时

教学方法:实验教学

教学内容和步骤:

示波器中用来显示电信号波形的示波管和电视机里显示图像的显象管及雷达指示管、电子显微镜等电子器件的外形和功用虽各不相同,但有其共同点:都有产生电子束的系统和对电子加速的系统;为了使电子束在荧光屏上清晰地成象,还有聚焦、偏转和强度控制等系统。因此统称它们为电子束线管。电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。本实验研究电子束的电偏转和磁偏转。通过实验,将使我们加深对电子在电场及磁场中运动规律的理解,有助于了解示波器和显象管的工作原理。

一、实验目的

1.研究带电粒子在电场和磁场中偏转的规律。

2.了解电子束线管的结构和原理。

二、实验原理

1、示波管图(一)

图(一)

1、示波管包括有:

(1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束;(2)一个由两对金属板组成的偏转系统;(3)一个在管子末端的荧光屏,用来显示电子束的轰击点。所有部件全都密封在一个抽空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。接通电源后,灯丝发热,阴极发射电子。栅极加上相对于阴极的负电压,它有两个作用:一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一交叉点。第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上的荧光物质高速电子轰击下发出荧光,荧光屏上的发光亮度取决于到达荧光屏的电子数目和速度,改变栅压及加速电压的大小都可控制光点的亮度。水平、垂直偏转板是互相垂直的平行板,偏转板上加以不同的电压,用来控制荧光屏上亮点的位置。 2、电子的加速和电偏转

为了描述电子的运动,我们选用一个直角坐标系,其z 轴沿示波管管轴,x 轴是示波管正面所在平面上的水平线,y 轴是示波管正面所在平面上的竖直线。

从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极A 2射出时在z 方向上具有速V z 度;V z 的值取决于K 和A 2之间的电位差V 2=V B +V C (图二)

电子从K 移动到A 2;位能降低了eV 2;因此,如果电子逸出阴极时的初始动能可以略不计,那么它从2A 射出时的动能

2

2

1z mv 就由下式确定: 22

2

1eV mv z (1)

图(二)

此后,电子再通过偏转板之间的空间。如果偏转板之间没有电位差,那么电子将笔直地通过。最后打在荧光屏的中心(假定电子枪描准了中心)形成一个小亮点。但是,如果两个垂直偏转板(水平放置的一对)之间加有电位差V d ,使偏转板之间形成一个横向电场E y ,那么作用在电子上的电场力便使电子获得一个横向速度V y ,但却不改变它的轴向速度分量V Z ,这样,电子在离开偏转板时运动的方向将与Z 轴成一个夹角θ,而这个θ角由下式决定: x

y V V tg =θ (2)

如图(三)所示。

图(三)

如果知道了偏转电位差和偏转板的尺寸,那么以上各个量都能计算出来。

设距离为d 的两个偏转板之间的电位差V d 在其中产生一个横向电场E y =V d /d ,从而对电子作用一个大小为F y =eE y =eV d /d 的横向力。在电子从偏转板之间通过的时间△t 内,这个力使电子得到一个横向动量mV y ,而它等于力的冲量,即

d t

eV t F mv d

y y ?=?= (3)

于是

t d V m e V d

y ?=

(4)

然而,这个时间间隔

t ?,

也就是电子以轴向速度z v 通过距离l (l 等于偏转板的长度)所需要的时间,因此t v l z ?=。由这个关系式解出t ?,代入冲量一动量关系式

结果得 z

d y v l

d V m

e v = (5)

这样,偏转角θ就由下式给出: 2

z

z

y dmv Evdl

v v tg =

=

θ (6) 再把能量关系式(1)代入上式,最后得到 d

l

V V tg d 22=

θ (7)

这个公式表明,偏转角随偏转电位差d V 的增加而增大,而且,偏转角也随偏转板长度

l 的增大而增大,偏转角与d 成反比,对于给定的总电位差来说,两偏转板之间距离越近,

偏转电场就越强。最后,降低加速电位差C B V V V +=2B 也能增大偏转,这是因为这样就减小了电子的轴向速度,延长了偏转电场对电子的作用时间。此外,对于相同的横向速度,轴向速度越小,得到的偏转角就越大。

电子束离开偏转区域以后便又沿一条直线行进,这条直线是电子离开偏转区域那一点的电子轨迹的切线。这样,荧光屏上的亮点会偏移一个垂直距离D ,而这个距离由关系式

θLtg D =确定;这里L 是偏转板到荧光屏的距离,如果更详细地分析电子在两个偏转板之

间的运动,我们会看到:这里的L 应从偏转板的中心量到荧光屏。于是我们有

d

V V L D d 21

2= (8)

(3)电子的磁偏转原理

在磁场中运动的一个电子会受到一个力加速,这个力的大小F 与垂直于磁场方向的速度分量成正比,而方向总是垂直于磁场B 又垂直于瞬时速度0v 从F 与v 方向之间的这个关系可以直接导出一个重要的结果:由于粒子总是沿着与作用在它上面的力相垂直的向运动,磁场力决不对粒子作功,由于这个原因,在磁场中运动的粒子保持动能不变,因而速率也不

变。当然,速度的方向可以改变。在本实验中,我们将观测在垂直于束流方向的磁场作用下电子束的偏转;图(四)电子从电子枪发射出来时,其速度V 由下面能量关系式决定:

图(四)

)(2

122

C B V V e eV mv +== 电子束进入长度为l 的区域,这里有一个垂直于纸面向外的均匀磁场B ,由此引起的磁场力的大小为evB F =,而且它始终垂直于速度,此外,由于这个力所产生的加速度在每一瞬间都垂直于v ,此力的作用只是改变v 的方向而不改变它的大小。也就是说:粒子以恒定的速率运动。电子在磁场力的影响下作圆弧运动。因为圆周运动的向心加速为R v 2

,而

产生这个加速度的力(有时称为向心力)必定为evB R mv

=2

即mv R =。电子离开磁

场区域之后,重新沿一条直线运动,最后,电子打在荧光屏上某一点,这一点相对于没有偏转的电子束的位置移动了一段距离。

三、实验仪器

DZS -D 型电子束测试仪

四、实验步骤

1、电偏转

(1)接线图见图(五)

(2)开启电源开关,将“电子束?荷质比”选择开关打向电子束位置,辉度适当调节,并调节聚焦,使屏上光点聚成一细点,应当注意:光点不能太亮,以免烧坏荧光屏。

(3)光点调零,将X 偏转输出的两接线柱和电偏转电压表的两输入接线柱相连接,调节“X 调节”旋钮,使电压表的指示为零,再调节调零的X 旋钮,使光点们于示波管垂直中线上。同X 调零一样,将Y 调节后,光点位于示波管的中心原点。

(4)测量D 随d V (Y 轴)变化:调节阳极电压旋钮,给定阳极电压2V (600V )。 将电偏转电压表并在电偏转输出的两接线柱上测d V (垂直电压),改变d V (每隔3伏)测一组D 值。改变2V (700V )后再测D ?d V 变化。

图(五)

(5)同Y 轴一样,测量X 轴D ?d V 的变化 2、磁偏转

(1)接线图见图(六)

图(六)

(2)开启电源开关,将“电子束?荷质比”选择开关打向电子束位置,辉度适当调节,并调节聚焦,使屏上光点聚成一细点,应当注意:光点不能太亮,以免烧坏荧光屏。

(3)光点调零,在磁偏转输出电流为零时,通过调节“X 偏转”和“Y 偏转” 旋钮,

使光点位于Y 轴的中心原点。

(4)测量偏转D 随磁偏电流I 的变化,给定2V (600V ),按图(六)所示接线,调节磁偏电流调节旋钮(改变磁偏电流的大小),第10mA 测量一组D 值,改变2V (700V ),再测一组D ?I 数据。

五、数据记录和处理

(1)2V 为600V 时,Y 轴D ?d V 数据

(2)作D ?d V 图,求出曲线灵敏度 (3)X 轴不同2V 下的灵敏度。 3、磁偏转

(1)2V 电压为600V ,D ?I 数据

(2)作D ?I 图,求曲线斜率得偏转灵敏度 (3)2V 电压为700V ,D ?I 数据

(4)作D ?I 图,求曲线斜率得偏转灵敏度 六、思考题

1、示波管一般采用电偏转,而电视机显象管采用磁偏转,为什么?

2、在示波管中的垂直偏转板上加一正弦信号电压,在水平偏转板上加一锯齿波电压,会观察到什么现象?联系示波器显示原理说明之。

电磁场中电子电偏转和磁偏转 预习报告

电磁场中电子电偏转和磁偏转 【实验目的】 1、 研究电子在电场和磁场中的运动规律; 2、 掌握用外加电场或者磁场的方法来约束电子束运动的方法。 【实验原理】 一、电子在电场中的加速和偏转: 为了描述电子的运动,我们选用了一个直角坐标系,其z 轴沿示波管管轴,x 轴是示波 管正面所在平面上的水平线,y 轴是示波管正面所在平面上的竖直线。 从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极2A 射出时在z 方向上具有速度Z v ;Z v 的值取决于K 和2A 之间的电位差C B 2V V V +=(图 2)。 电子从K 移动到2A ,位能降低了2eV ;因此,如果电子逸出阴极时的初始动 能可以忽略不计,那么它从2A 射出时的动能221z mv 就由下式确定: 222 1eV mv z = (1) 此后,电子再通过偏转板之间的空间。如果偏转板之间没有电位差,那么电子将笔直地通过。最后打在荧光屏的中心(假定电子枪描准了中心)形成一个小亮点。但是,如果两个垂直偏转板(水平放置的一对)之间加有电位差d V ,使偏转板之间形成一个横向电场y E ,那么作用在电子上的电场力便使电子获得一 个横向速度y v ,但却不改变它的轴向速度分量z v ,这样,电子在离开偏转板时运动的方向将与z 轴成一个夹角θ,而这个θ角由下式决定:

z y v v tg =θ (2) 如图3所示。如果知道了偏转电位差和偏转板的尺寸,那么以上各个量都能计算出来。 设距离为d 的两个偏转板之间的电位差d V 在其中产生一个横向电场d /V E d y =, 从而对电子作用一个大小为d /eV eE F d y y == 的横向力。在电子从偏转板之间通过的时间t ?内,这个力使电子得到一个横向动量y mv ,而它等于力 的冲量,即 d t eV t F mv d y y ??=?= (3) 于是: t d V m e v d y ???= (4) 然而,这个时间间隔t ?,也就是电子以轴向速度z v 通过距离l (l 等于偏转板的长度)所需要的时间,因此t v l z ?=。 由这个关系式解出t ?,代入冲量一动量关系式 结果得: z d y v l d V m e v ??= (5) 这样,偏转角θ 就由下式给出: 2z d z y dmv l eV v v tg ==θ (6) 再把能量关系式(1)代入上式,最后得到: d l V V tg d 22?=θ (7) 这个公式表明,偏转角随偏转电位差d V 的增加而增大,而且,偏转角也随偏转板长度l 的增大而增大,偏转角与d 成反比,对于给定的总电位差来说,两偏转板之间距离越近,偏转电场就越强。最后,降低加速电位差C B 2V V V +=也能增大偏转,这是因为这样就减小了电子的轴向速度,延长了偏转电场对电子的作用时间。此外,对于相同的横向速度,轴向速度越小,得到的偏转角就越大。 电子束离开偏转区域以后便又沿一条直线行进,这条直线是电子离开偏转区域那 一点的电子轨迹的切线。这样,荧光屏上的亮点会偏移一个垂直距离D ,而这个距离由 关系式θ=Ltg D 确定;这里L 是偏转板到荧光屏的距离(忽略荧光屏的微小的曲

电子束的偏转与聚焦实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:电子束的偏转与聚焦 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间: 一、实验目的: 1、了解示波管的构造和工作原理。 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。 3、学会规范使用数字多用表。 4、学会磁聚焦法测量电子比荷的方法。

二、实验仪器: EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。 三、实验原理: 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。电场力做的功eU应等于电子获得的动能

微波段电子自旋共振实验报告

微波段电子自旋共振实验 电子自旋共振(ESR )谱仪是根据电子自旋磁矩在磁场中的运动与外部高频电磁场相互作用,对电磁波共振吸收的原理而设计的。因为电子本身运动受物质微观结构的影响,所以电子自旋共振成为观察物质结构及其运动状态的一种手段。又因为电子自旋共振谱仪具有极高的灵敏度,并且观测时对样品没有破坏作用,所以电子自旋共振谱仪被广泛应用于物理、化学、生物和医学生命领域。 一. 实验目的 1. 本实验的目的是在了解电子自旋共振原理的基础上,学习用微波频段检测电子自旋共振信号的方法。 2. 通过有机自由基DPPH 的g 值和EPR 谱线共振线宽并测出DPPH 的共振频率,算出共振磁场,与特斯拉计测量的磁场对比。 3. 了解、掌握微波仪器和器件的应用。 4. 学习利用锁相放大器进行小信号测量的方法。 二. 实验原理 具有未成对电子的物质置于静磁场B 中,由于电子的自旋磁矩与外部磁场相互作用,导致电子的基态发生塞曼能级分裂,当在垂直于静磁场方向上所加横向电磁波的量子能量等于塞曼分裂所需要的能量,即满足共振条件B ?=γω,此时未成对电子发生能级跃迁。 Bloch 根据经典理论力学和部分量子力学的概念推导出Bloch 方程。Feynman 、Vernon 、Hellwarth 在推导二能级原子系统与电磁场作用时,从基本的薛定谔方程出发得到与Bloch 方程完全相同的结果,从而得出Bloch 方程适用于一切能级跃迁的理论,这种理论被称之为FVH 表象。 原子核具有磁矩: L ?=γμ; (1) γ称为回旋比,是一个参数;L 表示自旋的角动量; 原子核在磁场中受到力矩: B M ?=μ; (2)

电子自旋共振实验报告

微波电子自旋共振 【摘要】本文通过电子自旋共振实验,解释恒定磁场中的电子自旋磁矩在射频电磁场 的作用下会发生磁能级间的共振跃迁现象。 一、引言 电子自旋的概念首先由Pauli于1924年提出。而电子自旋共振实验则是从1945年开始才发展起来的一项新技术。 电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子、内电子壳层未被充满的离子、受辐射作用产生的自由基及半导体、金属等。通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛用途。 “自旋”概念的明确提出:1925年,两位年轻的荷兰学生乌伦贝克和哥德斯密特,“为了解释反常塞曼效应”,受泡利不相容原理的启发,明确提出了电子具有自旋的概念,并证明了“自旋”就是泡利提出的“新自由度”。1926年,海森伯和约旦引进自旋S,用量子力学理论对反常塞曼效应作出了正确的计算。1927年,泡利引入了泡利矩阵作为自旋操作符号的基础,引发了保罗-狄拉克发现描述相对论电子的狄拉克方程式。 电子自旋共振(ESR,Electron Spin Resonance)是一种奇妙的实验现象,也被称为电子顺磁共振(EPR,Electron Paramagnetic Resonance)。它利用具有未偶电子的物质在外加恒定磁场作用下对电磁波的共振吸收特性,来探测物质中的未偶电子,研究其与周围环境的相互作用,从而获得有关物质微观结构的信息。电子自旋共振现象直到1944年才由苏联喀山大学的扎沃伊斯基(E.K.Зabouchuǔ)在实验中观察到。 二、实验原理 1、量子力学解释 μ的关系为: 电子具有自旋,其自旋角动量Pe和自旋磁矩e 图1 自旋能级在磁场中的取向 g为朗德因子,Bμ为玻耳磁子,其值为5.7883785×1O-11MevT-1。若电子处于外磁场 μ在空间的取向是量子化的,Pe在Z方向的B(沿Z方向)中,据量子力学可知Pe和e

实验十三 电子束线的电偏转与磁偏转

实验十三 电子束线的电偏转与磁偏转 实验目的 1.研究带电粒子在电场和磁场中偏转的规律。 2.了解电子束线管的结构和原理。 实验仪器 SJ —SS —2型电子束实验仪。 实验原理 在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现, 显像管等器件就是在这个基础上运用相同的原理制成的。 1.电偏转原理 电偏转原理如图4-17-1所示。通常在示波管(又称电子束线管)的偏转板上 加上偏转电压V ,当加速后的电子以速度v 沿Z 方向进入偏转板后,受到偏转电场E (Y 轴方向)的作用,使电子的运动轨道发生偏移。假定偏转电场在偏转板l 范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。在偏转板之内 22)(212 1v Z m eE at Y == (4-17-1) 式中v 为电子初速度,Y 为电子束在Y 方向的偏转。电子在加速电压V A 的作用下,加速电压对电子所做的功全部转为电子动能,则A eV mv =22 1 。 将E =V /d 和v 2代入(4-17-1)式,得 d V VZ Y A 42 = 电子离开偏转系统时,电子运动的轨道与Z 轴所成的偏转角?的正切为 d V Vl dZ dY tg A l x 2===? (4-17-2) 设偏转板的中心至荧光屏的距离为L ,电子在荧光屏上的偏离为S ,则 L S tg =? 代入(4-17-2)式,得 d V VlL S A 2= (4-17-3) 由上式可知,荧光屏上电子束的偏转距离S 与偏转电压V 成正比,与加速电压V A 成反比,由于上式中的其它量是与示波管结构有关的常数故可写成 A e V V k S = (4-17-4) k e 为电偏常数。可见,当加速电压V A 一定时,偏转距离与偏转电压呈线性关系。为了反映电偏转的灵敏程度,定义

电子束的偏转与聚焦实验报告Word版

南昌大学物理实验报告课程名称:普通物理实验(2) 实验名称:电子束的偏转与聚焦 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、实验目的: 1、了解示波管的构造和工作原理。 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用 下的偏转情况。 3、学会规范使用数字多用表。 4、学会磁聚焦法测量电子比荷的方法。 二、实验仪器: EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。 三、实验原理: 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。

加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。电场力做的功eU 应等于电子获得的动能 2m 21v eU = (1) 显然,电子沿Z 轴运动的速度vz 与第二阳极A2的电压U2的平方根成正比,即 22v U m e z = (2) 若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏转,如图2所示。 若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压(即第二阳极A2电压)为U2,横向偏转电压为Ud ,则荧光屏上光点的横向偏转量D 由下式给出: d l U U L D d 2) 2l (2+= (3) 由式(3)可知,当U2不变时,偏转量D 随Ud 的增加而线性增加。所以,根据屏上光点位移与偏转电压的线性关系,可以将示波管做成测量电压的工具。若改变加速电压U2,适当调节U1到最佳聚焦,可以测定D-Ud 直线随U2改变而使斜率改变的情况。 4、磁偏转原理 电子通过A2后,若在垂直Z 轴的X 方向外加一个均匀磁场,那么以速度v 飞越子电子在Y 方向上也会发生偏转,如图所示。 由于电子受洛伦兹力F=eBv 作用,F 的大小不变,方向与速度方向垂直,因此电子在F 的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv2/R ,所以 eB R z mv = (4)

顺磁共振实验报告

近代物理实验报告 顺磁共振实验 学院 班级 姓名 学号 时间 2014年5月10日

顺磁共振实验 实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋g 因子,检波 【引言】 顺磁共振(EPR )又称为电子自旋共振(ESR ),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH 的g 因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。 【正文】 一、实验原理 (1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为: 2l l e e P m μ=- ,负号表示方向同l P 相反。在量子力学中(1)l P l l =+,因而 (1)(1)2l B e e l l l l m μμ=+=+,其中2B e e m μ=称为玻尔磁子。电子除了轨道运动外

实验电子束的电偏转

实验电子束的电偏转 篇一:实验十三电子束线的电偏转与磁偏转 实验十三电子束线的电偏转与磁偏转 实验目的 1.研究带电粒子在电场和磁场中偏转的规律。2.了解电子束线管的结构和原理。实验仪器 SJ—SS—2型电子束实验仪。实验原理 在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现, 显像管等器件就是在这个基础上运用相同的原理制成的。 1.电偏转原理 电偏转原理如图4-17-1所示。通常在示波管(又称电子束线管)的偏转板上 加上偏转电压V,当加速后的电子以速度v沿Z方向进入偏转板后,受到偏转电场E (Y轴方向)的作用,使电子的运动轨道发生偏移。假定偏转电场在偏转板l范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。在偏转板之内 Y?1at2?1eE(Z)2 (4-17-1) 2 2mv 式中v为电子初速度,Y为电子束在Y方向的偏转。电子在加速电压VA的作用下,加速电压对电子所做的1 功全部转为电子动能,则mv2?eVA。 2 将E=V/d和v2代入(4-17-1)式,得 2 Y?VZ 4VAd 电子离开偏转系统时,电子运动的轨道与Z轴所成的偏转角?的正切为 tg??dY?Vl(4-17-2) dZx?l2VAd设偏转板的中心至荧光屏的距离为L,电子在荧光屏上的偏离为S,则 S tg?? L代入(4-17-2)式,得 S?VlL (4-17-3) 2VAd 由上式可知,荧光屏上电子束的偏转距离S与偏转电压V成正比,与加速电压VA成反比,由于上式中的其它量是与示波管结构有关的常数故可写成 S?keV(4-17-4)

磁共振实验报告

近代物理实验题目磁共振技术 学院数理与信息工程学院 班级物理082班 学号08220204 姓名 同组实验者 指导教师

光磁共振实验报告 【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。 【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构 【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、基本知识 1、铷原子基态和最低激发态能级结构及塞曼分裂 本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级. 设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为 E=-μF·B0=g F m FμF B0(1) 这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ? 2F(F+1)(2) 图1 其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ? 2J(J+1)(3) 上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差 ΔE=g FμB B0(4) 式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

电子束的偏转与聚焦现象

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:电子束的偏转与聚焦现象实验 学院:机电工程学院 专业班级:机制154班

学生:郝为权学号:5901115110 实验地点:基础实验大楼213座位号:31 实验时间:第 1周星期一 一、实验目的 1、了解示波管的构造和工作原理,分析电子束在匀强电场和匀强磁场作用下的偏转情况; 2、学会使用数字万能表和聚焦法测量电子荷质比的方法。 二、实验原理 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。

2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。令Z轴沿示波管的管轴方向从灯丝位置指向荧光屏;同时,从荧光屏上看,令X轴为水平方向向右,Y轴为垂直方向

铁磁共振实验报告

一、实验背景 早在1935年,著名苏联物理学家兰道(Lev Davydovich Landau 1908—1968)等就提出铁磁性物质具有铁磁共振特性.经过十几年,在超高频技术发展起来后,才观察到铁磁共振吸收现象,后来波耳得(Polder )和侯根(Hogan )在深入研究铁磁体的共振吸收和旋磁性的基础上,发明了铁氧体的微波线性器件,使得铁磁共振技术进入了一个新的阶段.自20世纪40年代发展起来后,铁磁共振和核磁共振、电子自旋共振等一样,成为研究物质宏观性能和用以分析其微观结构的有效手段. 微波铁磁共振现象是指铁磁介质处在频率为?0的微波电磁场中,当改变外加恒定磁场H 的大小时,发生的共振吸收现象.通过铁磁共振实验,我们可以测量微波铁氧体的共振线宽、张量磁化率、饱和磁化强度、居里点等重要参数.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值. 二、实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术. 2.掌握铁磁共振的基本原理,观察铁磁共振现象. 3.测量微波铁氧体的共振磁场B ,计算g 因子. 三、实验原理 1.磁共振 自旋不为零的粒子,如电子和质子,具有自旋磁矩.如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为: 02B h E πγ=? (1) (其中,γ为旋磁比,h 为普朗克常数,0B 为稳恒外磁场). 又有e m e g 2=γ,故0022B g B h m e g E B e μπ =?=?.(其中,g 即为要求的朗德g 因子,其值约为2.πμe B m eh 4=为玻尔磁子, 其值为1241074.29--??T J ) 若此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

试验二十四电子射线的电偏转与磁偏转

实验二十四 电子射线的电偏转与磁偏转 一、实验目的 1. 掌握电子束在外加电场和磁场作用下偏转的原理和方式; 2. 了解阴极射线管的构造与作用。 三、实验仪器 1. TH-EB 电子束实验仪; 2. 0~30V 可调直流电源; 3. 数字式万用表。 三、实验原理 1 电偏转原理 电子束电偏转原理如图1所示。通常在示波管的偏转板上加 偏转电压V ,当加速后的电子以速度v 沿x 方向进入偏转板后, 受到偏转电场E (y 轴方向)的作用,使电子的运动轨迹发生偏 转。假定偏转电场在偏转板l 范围内是均匀的,电子将作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。荧光屏上电子束的偏转距离D 可以表示为 式中V 为偏转电压,V A 为加速电压,k e 是一个与示波管结构有关的常数,称为电偏常数。为了反映电偏转的灵敏程度,定义 δ电称为电偏转灵敏度,用mm/V 为单位。δ电越大,电偏转的灵敏度越高。 2 磁偏转原理 电子束磁偏转原理如图2所示。通常在示波管的瓶颈的两侧加上一均匀横向磁场,假定在l 范围内是均匀的,在其他范围都为 零。当加速后的电子以速度v 沿x 方向垂直 射入磁场时,将受到洛仑 兹力作用,在均匀磁场B 内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上,磁偏转的距离可以表示为: 式中I 是偏转线圈的励磁电流,单位A ;k m 是一个与示波管结构有关的 常数称为磁偏常数。为了反映磁偏转的灵敏程度,定义 )3( A m V I k D =(2)  电A e V k V D ==δ(1) / A e V V k D = l e 图1 电子束电偏转原理 e v 图2 电子束磁偏转原理

顺磁共振实验报告

近代物理实验报告顺磁共振实验 学院 班级 姓名 学号 时间2014 年 5 月10 H

顺磁共振实验实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的周有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和周体中的磁矩主要是自旋磁矩的贡獻所以又被称为电子自旋共振。简称“EPR”或“ESR”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋兰闵子,检波 【引言】 顺磁共振(EPR)又称为电子肖旋共振(ESR),这是冈为物质的顺磁性主要来自电子的自旋。电子自'旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子肖旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演巫,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH的g闵子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。

【正文】 一、实验原理 (1)电子的肖旋轨道磁矩与肖旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为:刀儿,负 号表示方向同E相反。在量子力学中E=』(/+1)方,因而均=屮Q+1)-^― = Jo + “B = 4r~ -九,其中2叫称为玻尔磁子。电子除了轨道运动外 “、= y]s(S+\) —还具有自旋运动,因此还具有肖旋磁矩,其数值表示为:m 叫。 由于原子核的磁矩可以忽略不计,原子中电子的轨道磁矩和自旋磁矩合成原子 少 _ & 丄号&=] + 旳+Ta+i)+s(w) 的总磁矩:2他,其中弐是朗德闵子:2山+ 1) 。 在外磁场中原子磁矩要受到力的作用,其效果是磁矩绕磁场的方向作旋进,也e 就是巧绕着磁场方向作旋进,引入回磁比2叫,总磁矩可表示成H严泻。同 时原子角动量巧和原子总磁矩"丿取向是量子化的。勺在外磁场方向上的投影为: Pj =斤谄,m = jJ-\J-2,...-j o其中m称为磁量子数,相应磁矩在外磁场方向 上的投影为:“丿=ymh=-mg“B ; m = j,j-Xj-2、??.一j。 (2)电子顺磁共振

实验二十四电子束的偏转

实验二十四 电子束的偏转 示波器中用来显示电信号波形的示波管和电视机、摄像机里显示图像的显像管、摄像管都属于电子束线管,虽然它们的型号和结构不完全相同,但都有产生电子束的系统和电子加速系统,为了使电子束在荧光屏上清晰的成像,还要设聚焦、偏转和强度控制系统。对电子束的聚焦和偏转,可以利用电极形成的静电场实现,也可以用电流形成的恒磁场实现。前者称为电聚焦或电偏转。随着科技的发展,利用静电场或恒磁场使电子束偏转、聚焦的原理和方法还被广泛地用于扫描电子显微镜、回旋加速器、质谱仪等许多仪器设备的研制之中。本实验在了解电子束线管的结构基础上,先讨论电子束的偏转特性及其测量方法。 【目的】 1.了解示波管结构和原理。 2.研究带电粒子在电场和磁场中偏转的规律。 3.测试示波管的电偏灵敏度和磁偏灵敏度与加速电压的关系。 【原理】 示波管的基本结构主要由以下4个部分组成 (1)示波管 示波管的构造如图4-43所示。当加热电流通过灯丝时,阴极K 被加热并发射电子,栅极G 加上相对于阴极为负的电压,调节栅极电压的大小,可以控制阴极发射电子的多少,即控制光点的亮度。第一阳 极A 1相对于阴极K 有很高的电压(约 1 500V )用以加速电子;第二阳极 A 2与第一阳极A 1之间构成聚焦电 场,使发散的电子束在聚焦电的作用下汇聚起来,打在荧光屏上发出荧光。X 、Y 偏转板是2对分别平行且相互垂直的属极,在平行板上加不同的电压控制荧光屏上的光点的位置。光点移动距离的大小与加在偏转板上的电压成正比。 (2)扫描电压发生器 扫描电压发生器是产生扫描电压的装置。 示波器通常是要观察轴输入的周期性信号电压的波形。如果只把被测信号(如正弦电压)加在Y 偏转板上,而亮线。要在荧光屏上显示出正弦电压的波形,就必须使亮点在Y 轴上的运动沿X 方向展开。为此必须在X 偏转板上加一周期性随时间线性变化的电压,这种电压称为扫描电压。这样荧光屏上光点在作竖直运动的同时还要作自左向右的匀速运动。如果扫描电压的周期T x与正弦电压的周期T y相同,荧光屏上将显示一个完整的正弦波形。如果T x是T y的整数倍,则荧光屏上将显示出n 个完整的正弦波形。若用频率表示,则为: f X=nf Y 为了能用示波器观察各种频率的信号电压波形,扫描电压的频率必须在很大的范围内连续可调,调节扫描电压的频率,使其与Y 轴输入信号电压的频率成整数比方可。这一调整过程称为“同步”。人工“同步”可以很容易达到f X=nf Y,使其出现暂时稳定的图形。由于 图4-52 电子束的电偏转 图4-43 电子射线示波管 A 1-第一阳极 A 2-第二阳极 f-灯丝 G-栅极 K-阴极 X 、Y-偏转转板

磁偏转与电偏转的区别

磁偏转与电偏转的区别集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

磁偏转与电偏转的区别 【知识要点】 洛仑兹力与电场力的比较 1、与带电粒子运动状态的关系 带电粒子在电场中所受到的电场力的大小和方向,与其运动状态无关。但洛伦兹力的大小和方向,则与带电粒子本身运动的速度紧密相关。 2、决定大小的有关因素 电荷在电场中所受到的电场力 F = qE ,与两个因素有关:本身电量的多少和电场的强弱。 运动电荷在磁场中所受到的磁场力,与四个因素有关:本身电量的多少、运动速度 v 的大小、速度 v 的方向与磁感应强度 B 方向间的关系 、磁场的磁感应强度B . 3、方向的区别 电荷所受电场力的方向,一定与电场方向在同一条直线上( 正电荷同向,负电荷反向 ),但洛伦兹力的方向则与磁感应强度的方向垂直。 一.热身训练 例题1.如图所示,在虚线范围内,用场强为E 的匀强电场可使 初 速度为v 0的某种正离子偏转θ角.在同样宽度范围内,若改用匀强磁场(方向垂直纸面向外),使该离子通过该区域并使 偏 转角度也为θ,则磁感应强度为多少离子穿过电场和磁场的时间之比为多少 1.B=0V E cos θ,θθ sin 二、讲练平台

例题2.某空间存在着一个变化的电场和一个变化的磁场,电场方向向右(如图(a ) 中由B 到 C 的方向),电场变化如图(b)中E-t 图象,磁感应强度变化如图(c )中B-t 图象.在A 点,从t=1 s (即1 s )开始,每隔2 s ,有一个相同的带电粒子(重力不计)沿AB 方向(垂直于BC )以速度v 射出,恰能击中C 点,若 BC AC 2=且粒子在AC 间运动的时间小于1 s ,求 (1)图线上E 0和B 0的比值,磁感应强度B 的方向. (2)若第1个粒子击中C 点的时刻已知为(1+Δt )s,那么第2个粒子击中C 点的时刻是多少 解析:(1) 3 400=B E v ,磁场方向垂直纸面向外;(2)第2个粒子击中C 点的时刻为 (2+3π·v d 2) 例题3.(04全国理综)空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示。该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示。已知P 、Q 间的距离为l 。若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点。不计重力。求: (1)电场强度的大小。 O t /s B 2468B 0 O t /s E 246E 0 A C B v (a) (b) (c)

电子顺磁共振 实验报告范本(完整版)

报告编号:YT-FS-7477-82 电子顺磁共振实验报告 范本(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

电子顺磁共振实验报告范本(完整 版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、实验目的 1. 学习电子顺磁共振的基本原理和实验方法;; 2. 了解、掌握电子顺磁共振谱仪的调节与使用; 3. 测定DMPO-OH 的EPR 信号。 二、实验原理 1.电子顺磁共振(电子自旋共振) 电子自旋共振(Electron Spin Resonance, ESR)或电子顺磁共振(Electron Paramagnanetic Resonance,EPR),是指在稳恒磁场作用下,含有未成对电子的原子、离子或分子的顺磁性物质,对微波发生的共振吸收。1944年,苏联物理学家扎沃伊斯基(Zavoisky)首次从CuCl2 、MnCl2等顺磁性盐类发现。

电子自旋共振(顺磁共振)研究主要对象是化学自由基、过渡金属离子和稀土离子及其化合物、固体中的杂质缺陷等,通过对这类顺磁物质电子自旋共振波谱的观测(测量因子、线宽、弛豫时间、超精细结构参数等),可了解这些物质中未成对电子状态及所处环境的信息,因而它是探索物质微观结构和运动状态的重要工具。由于这种方法不改变或破坏被研究对象本身的性质,因而对寿命短、化学活性高又很不稳定的自由基或三重态分子显得特别有用。近年来,一种新的高时间分辨ESR技术,被用来研究激光光解所产生的瞬态顺磁物质(光解自由基)的电子自旋极化机制,以获得分子激发态和自由基反应动力学信息,成为光物理与光化学研究中了解光与分子相互作的一种重要手段。电子自旋共振技术的这种独特作用,已经在物理学、化学、生物学、医学、考古等领域得到了广泛的应用。 2.EPR基本原理 EPR 是把电子的自旋磁矩作为探针,从电子自旋

实验 电子束的电偏转

电子束的电偏转、磁偏转研究 示波器中用来显示电信号波形的示波管和电视机里显示图像的显象管及雷达指示管、电子显微镜等电子器件的外形和功用虽各不相同,但有其共同点:都有产生电子束的系统和对电子加速的系统;为了使电子束在荧光屏上清晰地成象,还有聚焦、偏转和强度控制等系统。因此统称它们为电子束线管。电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。本实验研究电子束的电偏转和磁偏转。通过实验,将使我们加深对电子在电场及磁场中运动规律的理解,有助于了解示波器和显象管的工作原理。 [实验目的] 1.研究带电粒子在电场和磁场中偏转的规律。 2.了解电子束线管的结构和原理。 [实验原理] 1.电子束的电偏转 电子在两偏转板之间穿过时,如果两板间电位差为零,电子则笔直地穿过偏转板打在荧屏中央(假定电子枪瞄准了中心)形成一个小亮斑。如果在两块Y (或X )偏转板上加有电压,电子就会受电场力的作用而发生偏转。 在图5-1中,设两板相距为d ,电位差为V d ,可看做平行板电容器,则两板间的电场强度是 d V E d y = 电子受电场力 d eV eE f d y y == 的作用,产生加速度 md eV m f a d y y = = 电子在Z 方向上没有加速度,故从Y 板左端运动到右端的时间是z v l t /1=再从右端运动到屏的时间是z v L t /2'=电子离开板右端时的垂直位移是 2 2 11) ( 22 z d y v l md eV t a y ?= = 在同一点的垂直速度 )( )( 1z d y y v l md eV t a v ?== 电子离开板右端时不再受电场力的作用,作匀速直线运动,到达屏上的垂直位移是 ) ( )( )(22z z d y v L v l md eV t v y '??== 电子在屏上总位移 ) 2()( 221L l m d v l eV y y D z d '+?=+= 令 L l L ' += 2,又因为电子在加速电压的作用下,加速场对电子所做的功全部转化为电子 的动能,则 2 221eV mv z = (1) 代入上式,并由式(1)消去v z 最后得,板中心至屏的距离, d V dV lL D 2 2= (2)

电偏转和磁偏转的原理及应用

磁偏转和电偏转的原理及应用 步入高二,我们学习了电和磁的相关知识,在这些知识中,包括了电偏转和磁偏转,而这两大块内容又包括了很多应用,为了对电偏转和磁偏转有更深入的了解,我课题组对这两大部分进行了详细的研究,结果如下: 一、电偏转 相关理论 受力特征:质量为m,电荷量为q的粒子以速度v0垂直射入电场强度为E的匀强电场中,所受电场力,与粒子的速度无关,是恒力。 运动规律:受力是恒定的,会使粒子做匀变速曲线运动——类平抛运动,其运动规律分别从垂直于电场方向和平行于电场方向给出。 偏转情况:粒子的运动方向所能偏转的角度,且在相等的时间内偏转的角度是不相等的。 动能变化:由于电场力与粒子运动方向之间的夹角越来越小,粒子的动能将不断增大,且随时间的变化越来越快。 应用:示波管 Ⅰ定义:示波管是电子示波器的心脏。示波管的主要部件有:电子枪,偏转板,加速级,荧光屏,刻度格子。 Ⅱ工作原理:电子枪产生了一个聚集很细 的电子束,并把它加速到很高的速度。这个电 子束以足够的能量撞击荧光屏上的一个小点, 并使该点发光。电子束离开电子枪,就在两副 静电偏转板间通过。偏转板上的电压使电子束 偏转,一副偏转板的电压使电子束上下运动; 另一副偏转板的电压使电子左右运动。而这些运动都是彼此无关的。因此,在水平输入端和垂直输入端加上适当的电压,就可以把电子束定位到荧光屏的任何地方。 Ⅲ示波管的电源 为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。 Ⅳ相关计算式 设加速电场电压为U,偏转电场电压为U2,偏转电场两板间的距离为d,偏转电场电场强度为E,电子质量为m,偏转电场长度为l,电子所带电荷量为e,则 解之得 竖直方向加速度: 电场中竖直方向位移

电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实

南昌大学物理实验报告 课程名称: 普通物理实验(2) 实验名称:____________ 电子束的偏转与聚焦 学院:________ 专业班级: 学生姓名:_________ 学号: 实验地点:______ 座位号: 实验时间:

一、实验目的: 1、了解示波管的构造和工作原理。 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。 3、学会规范使用数字多用表。 4、学会磁聚焦法测量电子比荷的方法。 二、实验仪器: EB-IH电子束实验仪、直流稳压电源30V, 2A、数字多用表。 三、实验原理: 1、示波管的结构 示波管乂称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时乂受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K的电压低20"100V,曲阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高儿白伏至上千伏。前加速阳极,聚焦阳极和笫二阳

相关文档
相关文档 最新文档