文档库 最新最全的文档下载
当前位置:文档库 › 排序算法应用一(1)

排序算法应用一(1)

排序算法应用一(1)
排序算法应用一(1)

河北工业大学计算机软件技术基础(VC)课程设计报告

学院电气工程及其自动化班级 c082 姓名杨赞__

学号 086073 ____ 成绩 __ ____

一、题目:

排序算法应用一(快速、选择、冒泡法排序)

二、设计思路

1、总体设计

1)分析程序的功能

(1)输入10个数

(2)对10个数用三种方法进行排序

2)系统总体结构:设计程序的组成模块,简述各模块功能。

(1)主函数输入数据,输出结果

(2)五个其它函数,三种不同方法(快速法选择法冒泡法)对数据进行排序

2、各功能模块的设计:说明各功能模块的实现方法

3、设计中的主要困难及解决方案

在这部分论述设计中遇到的主要困难及解决方案。

(1)使用“选择法”进行排序,用函数实现并统计排序次数。

(2)使用“quicksort”法进行排序,用函数实现并统计排序次数。

(3)使用“冒泡法”进行排序,用函数实现并统计排序次数

4、你所设计的程序最终完成的功能

1)说明你编制的程序能完成的功能

使数据按照一定次序(升序或降序)排列

2)准备的测试数据及运行结果

准备测试的数据:

19 88 70 20 23 14 13 27 54 41

运行结果:

输入10个无序的数

19 88 70 20 23 14 13 27 54 41

冒泡法排序结果为:

排序次数为11次

13 14 19 20 23 27 41 54 70 88

选择法排序结果为:

排序次数为10次

13 14 19 20 23 27 41 54 70 88

快速法排序结果为:

排序次数为13次

13 14 19 20 23 27 41 54 70 88

Press any key to continue

三、程序清单

#include

const int N=10;

int j1=0;

void sort1(int *a,int N) //冒泡法排序

{

int i,j,t;

for(i=0;i

for(j=0;j

if(a[j]>a[j+1])

{

t=a[j];

a[j]=a[j+1];

a[j+1]=t;

}

cout<<"排序次数为"<

for(i=0;i

cout<

cout<

}

void sort2(int *b,int N) //选择法排序{

int i,j,k,t;

for(i=0;i

{

k=i;

for(j=i+1;j

if(b[j]

k=j;

t=b[k];

b[k]=b[i];

b[i]=t;

}

cout<<"排序次数为"<

for(i=0;i

cout<

cout<

}

void swap(int &a,int &b) //交换两个数{

int c;

c=a;

a=b;

b=c;

}

int Partition(int array[],int low,int high) //将数组分成两部分,前一部分的值均比后一部分值小

{ //返回分界点int key;

key=array[low];

while(low

{

while(low=key)

high--;

swap(array[low],array[high]);

while(low

low++;

swap(array[low],array[high]);

}

return low;

}

int Sort3(int array[], int low, int high) //快速法排序

{

if(low

{

int key=Partition(array,low,high);

Sort3(array,low,key-1);

Sort3(array,key+1,high);

}

j1++;

return j1;

}

void mpjg(int array[]) //快速法结果输出{

for(int i=0;i

cout<

cout<

}

void main()

{

int a[N],b[N],c[N];

cout<<"输入"<

for(int i=0;i

cin>>a[i];

for(i=0;i

{

b[i]=a[i];

c[i]=a[i];

}

cout<<"冒泡法排序结果为:"<

sort1(a,N);

cout<<"选择法排序结果为:"<

sort2(b,N);

cout<<"快速法排序结果为:"<

cout<<"排序次数为"<

mpjg(c);

}

(说明:程序清单中一定要有注释。将程序中自己编写的代码列在此处,系统自动生成的代码就不要列出了。程序清单部分的行间距设为1行即可。)

四、对该设计题目有何更完善的方案

1、对自己完成程序进行自我评价。

在课程设计过程中我尽自己最大努力使程序完善,尽管如此,由于自己所学有限不免有缀余和不足,但相信随着知识的丰富和对任务认识的加深,一定会找到更好的解决方案。

2、对课题提出更完善的方案

五、收获及心得体会

1.自学能力有了很大的提高

2.在老师悉心教导下提高了自己建立程序文档、归纳总结的能力

3.与同学老师的交流能力有所提高

日期:2009年 6 月20 日

8大排序算法

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。 我们这里说说八大排序就是内部排序。 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序序。 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 1.插入排序—直接插入排序(Straight Insertion Sort) 基本思想:

将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。 要点:设立哨兵,作为临时存储和判断数组边界之用。 直接插入排序示例: 如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。 算法的实现: 1.void print(int a[], int n ,int i){ 2. cout<

13.if(a[i] < a[i-1]){ //若第i个元素大于i-1元素,直接插入。 小于的话,移动有序表后插入 14.int j= i-1; 15.int x = a[i]; //复制为哨兵,即存储待排序元素 16. a[i] = a[i-1]; //先后移一个元素 17.while(x < a[j]){ //查找在有序表的插入位置 18. a[j+1] = a[j]; 19. j--; //元素后移 20. } 21. a[j+1] = x; //插入到正确位置 22. } 23. print(a,n,i); //打印每趟排序的结果 24. } 25. 26.} 27. 28.int main(){ 29.int a[8] = {3,1,5,7,2,4,9,6}; 30. InsertSort(a,8); 31. print(a,8,8); 32.} 效率: 时间复杂度:O(n^2). 其他的插入排序有二分插入排序,2-路插入排序。 2. 插入排序—希尔排序(Shell`s Sort) 希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进。希尔排序又叫缩小增量排序 基本思想: 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序” 时,再对全体记录进行依次直接插入排序。

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

实验8查找与排序算法的实现和应用

陕西科技大学实验报告 班级学号姓名实验组别 实验日期室温报告日期成绩 报告内容:(目的和要求、原理、步骤、数据、计算、小结等) 实验名称:查找与排序算法的实现和应用 实验目的: 1. 掌握顺序表中查找的实现及监视哨的作用。 2. 掌握折半查找所需的条件、折半查找的过程和实现方法。 3. 掌握二叉排序树的创建过程,掌握二叉排序树查找过程的实现。 4. 掌握哈希表的基本概念,熟悉哈希函数的选择方法,掌握使用线性探测法和链地址法进行冲突解决的方 法。 5. 掌握直接插入排序、希尔排序、快速排序算法的实现。 实验环境(硬/软件要求):Windows 2000,Visual C++ 6.0 实验内容: 通过具体算法程序,进一步加深对各种查找算法的掌握,以及对实际应用中问题解决方 法的掌握。各查找算法的输入序列为:26 5 37 1 61 11 59 15 48 19输出 要求:查找关键字37,给出查找结果。对于给定的某无序序列,分别用直接插入排序、希尔排序、快速排序等方法进行排序,并输出每种排序下的各趟排序结果。 各排序算法输入的无序序列为:26 5 37 1 61 11 59 15 48 19。 实验要求: 一、查找法 1. 顺序查找 首先从键盘输入一个数据序列生成一个顺序表,然后从键盘上任意输入一个值,在顺序 表中进行查找。 2. 折半查找

任意输入一组数据作为个数据元素的键值,首先将此序列进行排序,然后再改有序表上 使用折半查找算法进对给定值key 的查找。 3. 二叉树查找 任意输入一组数据作为二叉排序树中节点的键值,首先创建一颗二叉排序树,然后再次二叉排序树上实现对一 定k的查找过程。 4. 哈希表查找 任意输入一组数值作为个元素的键值,哈希函数为Hash (key )=key%11, 用线性探测再散列法解决冲突问题。 二、排序算法 编程实现直接插入排序、希尔排序、快速排序各算法函数;并编写主函数对各排序函数进行测试。 实验原理: 1. 顺序查找: 在一个已知无(或有序)序队列中找出与给定关键字相同的数的具体位置。原理是让关键字与队列中的数从最后一个开始逐个比较,直到找出与给定关键字相同的数为止,它的缺点是效率低下。 二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以

几种排序算法分析

《几种排序算法的分析》 摘要: 排序算法是在C++中经常要用到的一种重要的算法。如何进行排序,特别是高效率的排序是是计算机应用中的一个重要课题。同一个问题可以构造不同的算法,最终选择哪一个好呢?这涉及如何评价一个算法好坏的问题,算法分析就是评估算法所消耗资源的方法。可以对同一问题的不同算法的代价加以比较,也可以由算法设计者根据算法分析判断一种算法在实现时是否会遇到资源限制的问题。排序的目的之一就是方便数据的查找。在实际生活中,应根据具体情况悬着适当的算法。一般的,对于反复使用的程序,应选取时间短的算法;对于涉及数据量较大,存储空间较小的情况则应选取节约存储空间的算法。本论文重点讨论时间复杂度。时间复杂度就是一个算法所消耗的时间。算法的效率指的是最坏情况下的算法效率。 排序分为内部排序和外部排序。本课程结业论文就内部排序算法(插入排序,选择排序,交换排序,归并排序和基数排序)的基本思想,排序步骤和实现算法等进行介绍。 本论文以较为详细的文字说明,表格对比,例子阐述等方面加以比较和总结,通过在参加数据的规模,记录说带的信息量大小,对排序稳定的要求,关键字的分布情况以及算法的时间复杂度和空间复杂度等方面进行比较,得出它们的优缺点和不足,从而加深了对它们的认识和了解,进而使自己在以后的学习和应用中能够更好的运用。

1.五种排序算法的实例: 1.1.插入排序 1.1.1.直接插入排序 思路:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。 要点:设立哨兵,作为临时存储和判断数组边界之用。 实现: Void InsertSort(Node L[],int length) { Int i,j;//分别为有序区和无序区指针 for(i=1;i=1)//直到增量缩小为1 { Shell(L,d); d=d/2;//缩小增量 } } Void Shell(Node L[],int d) {

C语言几种常见的排序方法

C语言几种常见的排序方法 2009-04-2219:55 插入排序是这样实现的: 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。 重复2号步骤,直至原数列为空。 插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。 冒泡排序 冒泡排序是这样实现的: 首先将所有待排序的数字放入工作列表中。 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。 重复2号步骤,直至再也不能交换。 冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。 选择排序 选择排序是这样实现的: 设数组内存放了n个待排数字,数组下标从1开始,到n结束。 i=1 从数组的第i个元素开始到第n个元素,寻找最小的元素。 将上一步找到的最小元素和第i位元素交换。 如果i=n-1算法结束,否则回到第3步 选择排序的平均时间复杂度也是O(n²)的。 快速排序 现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。 堆排序 堆排序与前面的算法都不同,它是这样的: 首先新建一个空列表,作用与插入排序中的"有序列表"相同。 找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。 重复2号步骤,直至原数列为空。 堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。

分布式系统中排序算法及应用案例

《软件工程》社会实践 分布式系统中排序算法以及应用案例设计报告 学号: 2014107326 姓名:侯明兰 一.算法需求分析 1. 分布式排序算法的排序过程为:在p台已经赋予序号的计算机C1,C2,……,Cp上,对一组给定的数据分布X={X1,X2,……,Xp}进行全局排序,得到一个新的数据分布Y={Y1,Y2,……,Yp},使得每个Yi(1≤i≤p)有序,并且Yi的每个元素不大于Yj的任何元素,i ≤j。分布式排序必须完成的最小工作是: 1.1 数据传输:把一些效据从它们所在的机器送到它们应放的机器; 1.2 局部排序; 1.3 预处理,以便能正确地把数据重新分布。 因此,根据预处理分类,一个分布式系统中的排序算法有四类操作: 1.3.1 局部排序; 1..3.2 合并; 1.3.3 预处理; 1.3.4 数据交换。 2.算法的分类:根据算法的分析可以分为:单节点排序(序(Single Node Sort,SNS)、多节点归并排序((Multiple Node Merge Sort,MNMS)和多节点分区排序((Multiple Partition Sort,MPS)。 2.1 单节点排序(SNS):假设数据存储在多个节点中,但是负责计算的节点之间没有并行计算的能力,只有当前被连接的节点能够提供计算并对对客户端提供服务.在这样的场景下对进行数据排序,流程的主要是,各节点将数据读入内存,并通过网络传输至排序的节点,在该节点上进行排序。 2.2 多节点归并排序:当存储数据的节点同时也拥有计算能力的时候,可以采用算法是:各节点先对存储在本地的数据进行排序,待所有的存储节点都对本地的数据排好序之后,再传送至某一个处理节点进行归并排序。

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

第8章怎样研究算法排序算法示例练习题答案解析

第8章怎样研究算法:排序算法示例 1、排序算法是最基本的算法,很多复杂算法都是以排序为基础进行构造的。关于排序算法,下列说法不正确的是_____。 (A)大规模数据集合中查找有无某些元素的问题,有序数据集合比无序数据集合的查找要快得多; (B)大规模数据集合中按元素分组进行计算的问题,有序数据集合比无序数据集合的计算要快得多; (C)对无序数据集合,两个算法X和Y:X采用无序数据处理,Y采用先将无序数据排序成有序数据,然后进行处理;则对前述(A)、(B)两类问题,Y算法一定比X算法慢; (D)上述说法有不正确的; 答案:C 解释: 本题考核排序算法的研究 在大规模数据集合中查找,有序数据集合有利算法进行和判断,要比无序数据集合查找的快,对于(C)选项,Y算法尽管需要排序后再处理,但排序处理后的数据查找更加快捷,因此可能Y算法比X算法更快。 具体内容请参考排序算法以及第八章课件。 2、下列三个算法是关于“大规模数据集合中查找有无某些元素”问题的算法:针对一个“学生”数据表,如下示意,找出“成绩”为某一分数的所有学生。 【算法A1】 Start of algorithm A1 Step 1. 从数据表的第1条记录开始,直到其最后一条记录为止,读取每一条记录,做Step 2。Step 2. 对每一条记录,判断成绩是否等于给定的分数:如果是,则输出;如果不是,则不输出。

End of algorithm A1 【算法A2】 Start of algorithm A2 Step 1. 从数据表的第1条记录开始,直到其最后一条记录为止,读取每一条记录,做Step 2和Step 3。 Step 2. 对每一条记录,判断成绩是否等于给定的分数:如果等于,则输出;如果不等于,则不输出。 Step 3. 判断该条记录的成绩是否小于给定的分数:如果不是,则继续;否则,退出循环,算法结束。 End of algorithm A2 【算法A3】 Start of algorithm A3 Step 1. 假设数据表的最大记录数是n,待查询区间的起始记录位置Start为1,终止记录位置Finish为n; Step 2. 计算中间记录位置I = (Start+Finish)/2,读取第I条记录。 Step 3. 判断第I条记录的成绩与给定查找分数: (3.1)如果是小于关系,则调整Finish = I-1;如果Start >Finish则结束,否则继续做Step 2; (3.2)如果是大于关系,则调整Start = I+1;如果Start>Finish则结束,否则继续做Step 2; (3.3)如果是等于关系,则输出,继续读取I周围所有的成绩与给定查找条件相等的记录并输出,直到所有相等记录查询输出完毕则算法结束。 End of algorithm A3 针对上述三个算法,回答下列问题: (1)关于算法A1, A2, A3的快慢问题,下列说法正确的是_____。 (A)算法A1快于算法A2,算法A2快于算法A3; (B)算法A2快于算法A1,算法A2快于算法A3; (C)算法A3快于算法A2,算法A2快于算法A1; (D)算法A1快于算法A3,算法A3快于算法A2; (E)上述都不正确。 答案:C 解释: 本题考核排序算法的研究 首先,数据是有序排列的,从大到小。 算法A1依次搜索,穷举。 算法A2与A1一样,穷举,不同的是它利用数据是从大到小排序的特点,因此,如果当前数据比如果小于目标数,那么说明只有的也一定小于,则目标不在序列中。因此,A2比A1快。 算法A3利用数据有序特点,采用二分查找,每次将目标数与中间值比较,缩小搜索范围,因此A3比A2快。 综上,答案选(C)。 具体内容请参考排序算法以及第八章课件。

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

C语言9种常用排序法

C语言9种常用排序法 1.冒泡排序 2.选择排序 3.插入排序 4.快速排序 5.希尔排序 6.归并排序 7.堆排序 8.带哨兵的直接插入排序 9.基数排序 例子:乱序输入n个数,输出从小到大排序后的结果1.冒泡排序 #include int main() { int i, j, n, a[100], temp; while(scanf("%d",&n)!=EOF) { for(i=0;i

for(i=0;ia[j+1]) //比较a[j]与a[j+1],使a[j+1]大于a[j] { temp = a[j+1]; a[j+1] = a[j]; a[j] = temp; } } } for(i=0;i int main() {

int i, j, n, a[100], t, temp; while(scanf("%d",&n)!=EOF) { for(i=0;ia[j]) t = j; } temp = a[i]; a[i] = a[t]; a[t] = temp; } for(i=0;i

第8章怎样研究算法排序算法示例练习题答案解析

第8章怎样研究算法排序算法示例练习题答案解析. 第8章怎样研究算法:排序算法示例

1、排序算法是最基本的算法,很多复杂算法都是以排序为基础进行构造的。关于排序算法,下列说法不正确的是_____。(A)大规模数据集合中查找有无某些元素的问题,有序数据集合比无序数据集合的查找要快得多; (B)大规模数据集合中按元素分组进行计算的问题,有序数据集合比无序数据集合的计算要快得多;

(C)对无序数据集合,两个算法 X和Y:X 采用无序数据处理,Y采用先将无序数据排序成有序数据,然后进行处理;则对前述(A)、(B)两类问题,Y算法一定比X算法慢;(D)上述说法有不正确的; 答案:C 解释: 本题考核排序算法的研究有序数据集合有 利在大规模数据集合中查找,算法进行和判断,要比无序数据集合查找的快,

算法尽管需要排序后再处理,选项,Y对于(C)Y但排序处理后的数据查找更加快捷,因此可能 X算法更快。算法比具体内容请参考排序算法以及第八章课件。、下列三个算法是关于“大规模数据集合中查2“学生”针对一个找有无某些元素”问题的算法:数据表,如下示意,找出“成绩”为某一分数的所有学生。学生 学 12030095

07 1203001李94 03 宁 1203001李88 01 鹏 85 徐120300106 月. 1203001王79 02 刚 1203001江77

09 12030073 10 12030069 0412030066 0544 12030008 A1】【算法Start of algorithm A1 条记录开始,直到其最Step 从数据表的第

c语言程序设计(排序算法)

《高级语言程序设计》 课程设计报告 题目: 排序算法 专业: 班级: 姓名: 指导教师: 成绩: 计算机与信息工程系 2015年3月26日 2014-2015学年 第2学期

目录 引言 (1) 需求分析 (1) 第一章程序内容及要求 (1) 1.1 冒泡排序 (1) 1.2 选择排序 (2) 1.3 插入排序 (3) 第二章概要设计 (4) 2.1冒泡排序 (4) 2.2选择排序 (5) 2.3插入排序 (6) 第三章程序的比较及其应用 (7) 3.1时间复杂度 (7) 3.2空间复杂度 (7) 3.3稳定程度 (7) 3.4应用及其改进 (8) 第四章程序设计结果 (8) 附录 (9) 参考文献 (12)

引言 伴随着社会的发展,数据也变得越来越庞大。如何将庞大的数据进行很好的排序,使用户更加方便的查找资料,成了一件越来越重要的问题。对于程序员来说,这将是一个挑战。 经常查找资料的朋友都会知道,面对海量的资料,如果其查找资料没有进行排序,那么其查找资料将会是一家非常痛苦的事情。针对这一问题,我们自此通过一个课程设计来解决它。 理论上排序算法有很多种,不过本课程设计只涉及到三种算法。这三种算法包括:冒泡排序,选择排序,直接插入排序。 本课程设计通过对这三种算法的运行情况进行对比,选择最优秀的算法出来。希望通过我的努力能解决一些问题,带来一些方便。 需求分析 本课程题目是排序算法的实现,由于各方面的原因,本科程设计一共需要设计三种排序算法。这三种算法包括:冒泡排序,选择排序,直接插入排序。三种排序算法各有独到之处,因此我们要通过各种调试分析来比较其优劣长短。 由于使用的调试软件及操作系统不一样。因此个别程序在不同的软件上可能会报错。 本课程软件运行的的操作系统为Windows7 64位操作系统。所使用的软件为Microsoft Visual C++6.0以及Turbo C2.0 第一章程序内容及要求 1.1 冒泡排序 冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

排序算法总结及习题

排序算法总结及习题 一、概述 排序是最基础和常用的算法之一,一般情况下,排序不开比较、数据交换,怎样降低算法的时间及空间复杂性是算法设计的目标,尽管经典算法已有不少,但研究一直不断,2001年还有综合性能很好的新算法出现。 为了对n个元素的线性表进行排序,至少必须扫描一遍以获取n各元素,因此排序问题的计算复杂性下界为: Ω(n) 如果对输入的数据不做任何要求,则仅能通过比较来确定输入序列各元素间的顺序。 无论算法采用怎样的比较策略/顺序,总能对应一个两两比较序列,考察所有可能则可对应一棵决策树。例如: a1:a2 (<=) / \(>) (a1a2) (a2a1) 树的非叶子结点表示一次比较,叶子结点对应一个可能的结果队列。 显然树高度为比较次数。 可以为任意的输入,叶子结点数目为n! 高度最小情况为满二叉树,则2h =n! 一般情况下:2h>=n!, 则h>=log2n!>log2(n/e)n=nlogn-nloge

则任意分布数据,算法复杂性下界:Ω(nlogn) 二、常用基本算法及思想 名次排序、冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。 1.名次排序 (1)计算名次 void Rank(T a[], int n, int r[]) { //计算a [0:n-1]中n个元素的排名 for (int i = 0; i < n; i++) r[i] = 0; //初始化 //逐对比较所有的元素 for (int i = 1; i < n; i++) for ( int j = 0; j < i; j++) if (a [j] <= a[ i]) r[i]++; else r[j ]++; } (2)按名次排序 void Rearrange (T a[], int n, int r[]) { //按序重排数组a中的元素,使用附加数组u T *u = new T[n+1]; //在u中移动到正确的位置 for (int i = 0; i < n; i++)

十大经典排序算法

.1 算法分类 十种常见排序算法可以分为两大类: ?比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。 ?非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。 0.2 算法复杂度

0.3 相关概念 ?稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。 ?不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。 ?时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。 ?空间复杂度:是指算法在计算机 内执行时所需存储空间的度量,它也是数据规模n的函数。 1、冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述 ?比较相邻的元素。如果第一个比第二个大,就交换它们两个; ?对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数; ?针对所有的元素重复以上的步骤,除了最后一个; ?重复步骤1~3,直到排序完成。 1.2 动图演示 1.3 代码实现 ?

2、选择排序(Selection Sort) 选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 2.1 算法描述 n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下: ?初始状态:无序区为R[1..n],有序区为空; ?第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区; ?n-1趟结束,数组有序化了。 2.2 动图演示 2.3 代码实现 ?

常见经典排序算法(C语言)1希尔排序 二分插入法 直接插入法 带哨兵的直接排序法 冒泡排序 选择排序 快速排

常见经典排序算法(C语言) 1.希尔排序 2.二分插入法 3.直接插入法 4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序 一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法*/ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换*/ { temp=v[j]; v[j]=v[j+gap]; v[j+gap]=temp; } }

} } 二.二分插入法 /* 二分插入法*/ void HalfInsertSort(int a[], int len) { int i, j,temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧*/ { high = mid-1; } else /* 如果中间元素比当前元素小,但前元素要插入到中间元素的右侧*/ { low = mid+1; } } /* 找到当前元素的位置,在low和high之间*/ for (j=i-1; j>high; j--)/* 元素后移*/ { a[j+1] = a[j]; } a[high+1] = temp; /* 插入*/ } }

相关文档