文档库 最新最全的文档下载
当前位置:文档库 › 两种动压机械密封性能的对比研究

两种动压机械密封性能的对比研究

两种动压机械密封性能的对比研究
两种动压机械密封性能的对比研究

常见包装袋密封性检测标准方法

常见包装袋密封性检测标准方法 包装袋广泛应用于食品包装以及药品包装的各个领域,以其包装成本经济、易于加工、易于控制、易于生产等优势而成为目前市场上极为普遍的一种包装形式,包装袋的密封性能、封口强度是包装袋质量的重要指标,其关乎着包装内容物的产品质量、保质期,同时也是产品流通环节的必要保障。 而在包装袋生产过程中由于众多因素的影响,可能会产生封合时的漏封、压穿或材料本身的裂缝、微孔,而形成内外连通的小孔。这些都会对包装内容物产生很不利的影响,特别是食品、医药包装、日化等行业,密封性将直接影响产品的质量。密封性不好是造成日后渗漏腐败的主要原因。其中风琴袋的包装特别是四层处最容易出现泄漏。广州标际对密封性测试的相关标准可见详表1:表1 密封性测试的有关标准 密封性测试具体方法各不相同,国内生产实践中常用GB/T 15171-1994标准。 1.着色液浸透法 这种方法通常用来检验空气含量极少的复合袋的密封性。方法如下:将试验液体(与滤纸有明显色差的着色水溶液)倒入擦净的试验样袋内,密封后将袋子平放在滤纸上,5min后观察滤纸上是否有试验液体渗漏出来,然后将袋子翻转,对其另一面进行测试。 2.水中减压法(真空法) 这种方法又包括真空泵法和真空发生器法,通常用来检验空气含量较多的复合袋。

(1)真空泵法 测试装置主要由透明耐压容器、样品架以及真空系统(真空泵、真空表等)组成。这种方法有如下缺点:形成真空的时间长,且不稳定;密封性能不好;压力为指针式显示,精度偏低。因此现在已逐步被淘汰。 (2)真空发生器法 这种方法目前在软包装行业内应用广泛,它利用射流原理,正压变负压形成稳定的空气源,高精度电子压力传感器实时显示测试容器内的真空度,微电脑自动控制,试验参数(真空度和保持时间)可随意设定,达到真空所需时间短,真空保持平稳,密封性能好。 3.测试步骤 根据GB/T 15171-1994软包装件的密封性能试验方法:在水的作用下,外层材料的性能在试验期间是否会发生变化,如外层采用塑料薄膜的包装外,可以通过对真空室抽真空,使浸在水中的试样产生内外压差,以观测试样内气体外逸或水向内渗入情况,以此判定试样的密封性能。 参照GB/T 15171-1994标准,在真空室内放入适量的蒸馏水,将包装袋浸入水中,袋子的顶端与水面的距离不得小于25mm.盖上真空室的密封盖,设置真空度,并保持30s。在此期间如有连续的气泡产生,则为漏气,孤立的气泡不视为泄漏。 需要说明的是,该设备的真空度数值0~-100Kpa可以设定,此外该设备还具有自动保压、补压功能,达到设定的压力后自动计时开始保压,保压时间到后如不漏气则为合格产品,若未达到设定的压力与时间即出现冒泡现象,则包装袋视为不合格,可手动泄压,打开密封盖,更换试样袋,重新设置真空度和保持时间。所设置的真空度值根据试样的特性(如所用包装材料、密封情况等)或按有关产品标准的规定确定,但不得因试样的内外压差过大使试样发生破裂或封口处开裂。 4. 泄漏常见原因及解决方法(见表2) 表2包装袋泄漏常见原因及解决方法

机械密封主要参数

机械密封主要参数

端面液膜压力 为了保证端面间有一层稳定的液膜(半液体润滑或边界润滑膜),就必须控制端面承受的载荷W,而W值究竟多大合适,是与液膜承载能力密切相关的。与平面轴承类似,机械密封端面间隙液膜的承载能力,称为端面液膜的压力,它包括了液膜的压力和液膜动压力两部分。 液膜静压力 当密封间隙有微量泄漏时,由于密封环内、外径处的压差促使流体流动,而流体通过缝隙受到密封面的节流作用,压力将逐步降低。假设密封端面间隙内流体流动的单位阻力沿半径方向是不变的,则流体沿半径r的压力降呈线性分布(图7-11)。例如中等粘度的流体(如水),其沿径向的压力就近似于三角形分布,低粘度液体(如液态丙烷等)则呈凹形,高粘度液体(如重油)压力缝补呈凸形。

端面间的液膜静压力是力图使端面开启的力,设沿半径方向r处,宽度为dr的环面积上液膜静压力为pr,设密封流体压力为p,则作用于密封面上的开启力R为

液膜动压力 机械密封环端面即使经过精细的研磨加工,在微观上仍然存在一定的波度,当两个端彼此相对滑动时,由于液膜作用会产生动压效应。有纳威斯托克斯(Novier-Stokes)方程:

如图7-13,设二平面间存在一定的斜楔,随着间隙减小,液压增大,而斜楔的进出口处压差为零,故有—液压最大值,对应该处的液膜厚度为h0,则流量 关于机械密封液体动压效应的形成和分析,有许多不同的观点和力学模型。由于密封面微观状态的影响因素很多,以及实验技术的困难,目前还不能提出能直接用于设计计算的公式。但对于机械密封设计的正确分析,具有一定的理论指导意义。 载荷系数 机械密封的载荷系数是在摩擦副轴向力平衡下,各项轴向力与密封上最大介质压力的比值,它反应了各种轴向力的作用和大小。载荷系数也可以用面积比来表示:介质压力作用在补偿环上使之与非补偿环趋于闭合的有效作用面积A e与密封端面面积A之比为载荷系数K.

药用输液袋密封性能测试方案20160616

药用输液袋密封性能测试方案 发布时间:2015/6/16 摘要:药用输液袋大多采用聚烯烃、聚酰胺树脂原料共挤形成的复合膜作为包装材料,其具有极高的卫生安全性、无析出颗粒、高阻隔性、不易破裂等优点,但其密封性好坏是最影响药液质量、破坏无菌环境的性能指标。本文采用Labthink兰光自主研发的MFY-01密封试验仪检测输液袋的密封性能,并详述了该仪器的测试原理及试验详细过程,从而为制药企业等行业在对输液袋等包装密封性能的监控提供参考。 关键词:输液袋、药用、软塑包装、密封性能、密封试验仪、泄漏、漏气、气泡 1、意义 药用输液袋包括聚氯乙烯(PVC)材质及非PVC复合膜材质,目前大多使用非PVC复合膜材质的三层或五层共挤复合膜,其主要材质为聚丙烯(PP)、聚乙烯(PE)、聚酰胺(PA)及多种弹性材料(SEBS),是目前最安全的输液包装材料之一,不含任何增塑剂,自身与药液之间无任何反应及吸附现象,摒除了玻璃瓶的析碱问题,抗低温性好,是一种优质的材质。 质量良好的药用输液袋应不易破裂,其阻气性与阻水性高,内部药液不易变质或泄露,可满足高要求的无菌环境。但药用输液袋是依靠热封将其四周各封边密封,而热封过程中易出现热封参数设置不合适导致热封不严密或热封过度,例如热封温度过高则引起封边根部易断裂或漏气,抑或热封刀表面不平整导致封边褶皱含有未密封贴合的泄漏点。倘若输液袋的密封性不好,则外界环境中水蒸气、氧气等气体则易渗入输液袋内部,引起细菌侵入,导致药液变质及氧化,甚至在运输或使用过程中出现泄漏。本文采用专业的密封性能测试仪向相关制药生产企业介绍有关输液袋密封性能的测试方案。 图1 药用输液袋包装 2、标准 目前,软塑包装的密封性能试验主要参考GB/T 15171-1994《软包装件密封性能试验方法》,该标准适用于各种材料制成的密封软包装件的密封性能试验。 3、试验样品 某品牌输液袋成品包装。

机械密封原理

典型结构如图所示,,一般由动环、静环、动环密封圈、静环密封圈、弹簧、弹簧座、紧定螺钉、防转销等组成。机械密封一般有四个密封点,如图中1、2、3、4所示,其中3为静环与压盖端面之间的密封点,2为动环与轴或轴套之间的密封点,4 为压盖与泵壳或其它设备之间的密封点,1 为端面相对旋转的密封点,2、3、4是静密封,一般采用O形、V形密封圈等垫圈密封。 2.原理 机械密封工作时,由密封流体的压力和弹性元件的弹力等引起的轴向力使动环和静环互相贴合并相对运动,由于两个密封端面的紧密配合,使密封端面之间的交界(密封界面)形成一微小间隙,当有压介质通过此间隙时,形成极薄的液膜,产生阻力,阻止介质泄漏,同时液膜又使得端面得以润滑,获得长期密封效果。 3.分类 (1)按密封的主机:泵用机械密封、釜用机械密封、压缩机用机械密封等; (2)按不同工作参数,分为高温、中温、低温、高压、中压、低压、高速、重型等等; (3)按结构形式分为:平衡型和非平衡型、单端面和双端面机械密封等。

(1)准备工作 ①检查轴与轴套的径向跳动、表面粗糙度、外径公差、轴的窜动等是否满足精度要求; ②检查机械密封的型号、规格是否与要求相符。各零件是否完好,密封圈尺寸是否合适,动环和静环的表面是否光滑平整。若有缺陷必须更换或修复。 ③用干净的汽油对机械密封的零件进行清洗,然后擦干,注意保护密封面; ④安装机械密封时,先从说明书上查到弹簧的工作长度,然后用卡尺量得弹簧的自由长度即可得弹簧的压缩量,安装中应保证弹簧的压缩量的偏差不大于1mm。 (2)检查与测量 ①动环的浮动性,要求动环与轴有一定的间隙,保证间隙为 0.3-0.7mm。 ②固定环是否偏心泵用机械密封中,固定环(弹簧座)与轴采用滑动配合,间隙量很小。若间隙较大,固定环就会偏心,作用在密封面上的弹簧力不均匀时密封出现时泄时封现象 ③动环与静环贴合面的检查:检查时可用90°角尺测量贴合面对轴中心线的偏差。 (3)安装

阀门密封及性能等各种试验方法

1.阀门在总装完成后必须进行性能试验,以检查产品是否符合设计要求和是否达到国家所规定的质量标准。阀门的材料、毛坯、热处理、机加工和装配的缺陷一般都能在试验过程中暴露出来。 常规试验有壳体强度试验、密封试验、低压密封试验、动作试验等,并且根据需要,依次序逐项试验合格后进行下一项试验。 2.强度试验: 阀门可看成是受压容器,故需满足承受介质压力而不渗漏的要求,故阀体、阀盖等零件的毛坯不应存在影响强度的裂纹、疏松气孔、夹渣等缺陷。阀门制造厂除对毛坯进行外表及内在质量的严格检验外,还应逐台进行强度试验,以保证阀门的使用性能。 强度试验一般是在总装后进行。毛坯质量不稳定或补焊后必须热处理的零件,为避免和减少因试验不合格而造成的各种浪费,可在零件粗加工后进行中间强度试验(常称为毛泵)。经中间强度试验的零件总装后,如用户未提出要求,阀门可不再进行强度试验。苏阀为了保证质量,在中间强度试验后,阀门都全部最后再进行强度试验。 试验通常在常温下进行,为确保使用安全,试验压力P一般为公称压力PN 的~倍。试验时阀门处于开启状态,一端封闭,从另一端注入介质并施加压力。检查壳体(体、盖)外露表面,要求在规定的试验持续时间(一般不小于10分钟)内无渗漏,才可认为该阀门强度试验合格。为保证试验的可靠性,强度试验应在阀门涂漆前进行,以水为介质时应将内腔的空气排净。 渗漏的阀门,如技术条件允许补焊的可按技术规范进行补焊,但补焊后必须重新进行强度试验,并适当延长试验持续时间。 3.密封试验: 除节流阀外,无论是切断用阀还是调节用阀,均应具有一定的关闭密封性,故阀门出厂前需逐台进行密封试验,带上密封的阀门还要进行上密封试验。

润滑理论

润滑理论一、润滑的作用和类型 1.润滑的作用 润滑的目的是在机械设备摩擦副相对运动的表面间加入润滑剂以降低摩擦阻力和能源消耗,减少表面磨损,延长使用寿命,保证设备正常运转。润滑的作用如下: 1)降低摩擦 2)减少磨损 3)冷却,防止胶合 4)防止腐蚀 此外,润滑剂在某些场合可以起阻尼、减振或缓冲作用。润滑剂的流动,可将摩擦表面上污染物、磨屑等冲洗带走,起清洁作用。 有些场合,润滑剂还可起到密封作用,减少冷凝水、灰尘及其他杂质的侵入。 2.润滑的类型 1)液体润滑(摩擦),两表面完全为润滑剂隔开,摩擦为流体内的粘性阻力形成。 2)混合润滑(摩擦),两表面之间又有液体润滑状态,又有边界润滑状态的混合情况。 3)边界润滑(摩擦),两表面之间由边界膜(吸附膜或化学膜等)形成的润滑。

4)无润滑(干摩擦),无或很少润滑剂的情况。 流体润滑自然是最佳的润滑状态。形成液体润滑的方式主要有:流体动压润滑、弹性流体动压润滑、流体静压润滑等。 二、流体动压润滑 运动副工作时,两工作表面之间的相对运动可将润滑剂带入工作区,并建立一定的油压(动压)支撑外载荷,形成油膜,保护工作表面,形成所谓"流体动压润滑"。流体动压润滑的形成需要三个条件: 1)两表面之间有相对的运动(滚动或滑动); 2)两表面之间有楔形间隙,润滑油从大口进入; 3)两表面之间有润滑剂(有粘度)。 这就是所谓的流体动压润滑三要素。 动压润滑理论就是探讨间隙中流体的流动、压力等关系。1886年雷诺导出了经典的Reynolds 方程。 1.雷诺方程 雷诺方程是流体润滑理论的基本方程: 4) 变密度效应。

机械密封的优缺点

机械密封的优缺点 机械密封是由经过精密加工的零件组成,它是一种性能较好的密封形式。其优点如下: 1、密封性能好 机械密封中有动环密封圈、静环密封圈及密封端面三处密封部位,其中动环密封圈及静环密封圈二处属于静密封,一般密封性较好。密封端面的表面光洁度和平面度都很高,一般处于边界润滑、半流体润滑状态,泄漏很小。机械密封泄露量一般在3.5ml/h以下,根据使用工况要求,也可把泄露漏量限制限侧在0.0lml/h以下. 2、.使用寿命长 机械密封密封端面由自润滑性及耐磨性较好的材料组成,还具有磨扭补偿机构。因此可连续使用半年以上,使用较好的可达一年甚至里长时间。 3、不需要经常调整 机械密封在密封流体压力和弹性力的作用下,即使摩擦副磨损后,密封端面也始终自动地保持贴紧。因此,一旦安装好以后,就不需要经常调整,使用方便,适合连续化、自动化生产。 4、摩擦功率消耗小 机械密封由于摩擦副接触面积小,又处于半流体润滑或边界润滑状况,摩擦功率一般仅为填料密封的0.2-0.3左右。 5、轴或轴套不产生磨损、 轴或轴套与机械密封动环之间几乎无相对运动,可重复使用,降

低部件的消耗。 6、.耐振性强 机械密封由于具有缓冲功能,因此当设备或转轴在一定范围内振动时,仍能保持良好的密封性能。 7、密封参数高,使用范圈广 当合理选择摩擦副材料及结构,加之适当的冲洗、冷却等辅助系统的情况下,机械密封可广泛适用于各种工况,尤其在解决高温、低温、强腐蚀、高速等恶劣工况下的密封时,更显示其优越性。 机械密封也存在一定的缺点,主要是: 1,结构复杂,装配精度要求高 一般机械密封有一对摩擦副组成密封端面。当密封参数较高时,将由两对或几对摩擦副组成,加上辅助系统,在结构上较普通的填料密封复杂。同时由于装配精度要求高,安装时有一定技术要求,故对于初次使用机械密封的人来讲显得稍微难些。 2、更换不方便 机械密封零件都是环形零件,而且这些琴件一般不能做成剖分式。能需在更换密封零件时,就需要部分或全部地拆开机器设备的传动部分,才能从传动轴端取出密封零件。 3、排除故障不方便 当机械密封运转不正常时,采取应急措施困难,这时只好将设各停止运行进行处理。

常压装置吹扫、试压、气密方案

常压装置吹扫、试压、气密方案

芳烃项目常压装置吹扫、试压、气密方案 2011年10月 东辰控股集团有限公司芳烃项目部

目录 第一章贯通.吹扫.试压.气密 (3) 一、蒸汽吹扫、试压目的 (3) 二、准备工作 (3) 三、吹扫介质 (3) 四、吹扫试压原则和要求 (3) 五、注意事项 (4) 六、电脱盐变压器空载及短路试验、罐体耐水压试验 (5) 七、吹扫试压流程 (7) 八、气密、试压流程 (14) 第二章试水压、水冲洗及水联运 (17) 一、压力试验 (17) 二、系统气密试验 (17) 二、水冲洗 (17) 三、水联运 (18)

第一章贯通、吹扫、试压、气密 目的是清除管线及设备内的杂物,检查管道焊缝、法兰、阀门、压力表等静密封点的密封情况。检验并掌握各特殊阀门性能和使用情况。 一、蒸汽吹扫、试压目的 清除管道、设备内铁锈、焊渣等杂物;贯通流程;检查法兰、焊缝有无泄漏;检查设备、管道热态下热膨胀情况。 二、准备工作 装置设备、管道安装完毕并清扫干净。熟悉流程、明确吹扫给汽点及排汽点。加好有关盲板并做好记录。关闭泵出入口阀门、装好泵入口过滤网。拆除调节阀、流量计、限流孔板并关闭其切断阀。拆除量程低于200℃的温度计并装好丝堵。吹扫时蒸汽压力不低于0.8 MPa(表)、压缩空气压力不低于0.5Mpa(表)。 三、吹扫介质 蒸汽.压缩风,水。 四、吹扫试压原则和要求

新装置在开工前先利用蒸汽贯通吹扫,以便清除施工中遗留在管线内的铁渣、焊渣、泥土等杂物,防止发生设备管线堵塞。在贯通吹扫、试压过程中对每条管线、设备在有专人负责,分工明确,记录齐全,每条管线试压完毕,要有试压人和验收人签名。 (1)改好吹扫试压流程,明确起点、终点、给汽点、排空点、看压点、并在指定点安装合适压力表; (2)吹扫前将管线上的孔板、流量计、过滤器疏水器、调节阀、止回阀、液面计拆卸下来,将压力表隔断阀关死,取下超程温度计,一次仪表手阀,引压线根阀关死; (3)吹扫时,阀门全开防止杂物堵塞阀门; (4)吹前要检查管线支架的牢固程度,不能满足要求的要进行加固,尤其用蒸汽吹扫时还要考虑管道的膨胀要求,吹扫时要先进行排水,再升温暖管,防止水击; (5)吹扫时管线与设备相连处必须隔开,以防脏物吹入设备内部,不可向塔内填料、塔板和冷换设备、泵内吹扫。当扫这些设备时,断开入口法兰向外吹扫干净后,再吹扫这些设备,有付线的设备先走付线再走设备; (6)吹扫时,管线中间的阀门全开,各低点排凝打开,先缓慢给汽预热,然后逐渐加大蒸汽量,吹扫至管内无脏物为止; (7)吹扫时,每个系统的阀门开关一次,检查是否灵活好用; (8)冷换设备吹扫时,先走跨线,后进设备,一程通汽吹扫时另一程必须放空,以防憋压。 (9)吹扫试压过程中,不许向塔内吹扫,冷回流和中段回流吹扫试压时,严禁向塔内私自放汽,必须做到统一指挥,防止吹坏塔内构件; (10)吹扫试压过程中,严禁将汽串入炉膛; (11)吹扫过程中可用0.25磅小锤敲击管线,使管线内杂物吹洗干净,但不可损伤管线; (12)吹扫经过排凝阀,放空阀时,打开排凝阀、放空阀排除管线,设备内杂物,继续吹扫; (13)对吹扫要求高的管线,可在吹洗达到要求后,再逆流吹洗至干净为止; (14)吹扫过程中发现问题,应停止进行,泄压处理后继续吹洗,吹扫时在管线的最后一道阀门处检查吹洗质量,水洗时,排出端水色,透明度与入口处目测一致,氮气吹扫时,在排出口用白布或有白漆靶板检查5分钟内其上无铁锈、尘土、水份或其他脏物为合格,蒸汽吹扫时用表面光洁铝板检查,每次

第四章 流体润滑原理

第四章流体润滑原理 概述 用具有润滑性的一层膜把相对运动的两个表面分开,以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是润滑。 根据分隔固体表面的材料不同,润滑可分为以下三类: ①流体润滑:摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。 ②边界润滑:摩擦界面上存在着一层具有良好润滑性的边界膜,但不是介质的膜。相对于干摩擦来说,边界润滑具有比较低的摩擦系数,能有效地减轻接触表面的磨损。 ③固体润滑:广义来说,固体润滑也是一种边界润滑。就是用摩擦系数比较低的材料(固体润滑剂或固体润滑材料),在摩擦界面上形成边界膜,以降低接触表面的磨损和摩擦系数。 对于流体润滑的系统研究约在19世纪末逐渐展开。 1883年塔瓦(Tower)发现了轴承中的流体动压现象。彼得洛夫(Петров)研究了同心圆柱体的摩擦及润滑。随即雷诺(Reynold)应用了数学和流体力学的原理对流体动压现象进行了分析,发表了著名的雷诺方程。为流体动力润滑奠定了基础。后来一些科学家,在求解雷诺方程,以及将雷诺方程应用于工程实际中作出了贡献,并解决了很多雷诺方程假设以外的问题,。 对于线接触及点接触的滚动件,在重载条件下的润滑问题,考虑了接触零件表面间的弹性变形及润滑剂的粘-压效应。于20世纪中叶,格鲁宾(Грубин)提出了著名的弹性流体动力润滑的计算公式。以后的道松(Dowson)郑绪云(Cheng)温诗铸等的进一步发展,使弹性流体动力润滑理论日趋成熟。 随着科学技术的发展,流体润滑中的紊流、惯性、热效应等以及非牛顿流体润滑等问题也展开了研究。 流体润滑定义:在适当条件下,摩擦副的摩擦表面由一层具有一定厚度的粘性流体完全分开,由流体的压力来平衡外载荷。流体层中的分子大部分不受金属表面离子、电子场的作用而可以自由地移动。这种状态称为流体润滑。流体润滑

流体动压润滑理论

流体动压润滑理论

流体动压润滑理论 (简介)在摩擦副两表面间被具有一定粘度的流体 完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。它的发展与人们对滑轮和摩擦的研究密切相关 发展简史 时间人物经典理论及现象 1883年塔瓦(Tower)流体动压现象 1886年雷诺(Reynold)流体动压润滑理论及雷诺方程 1.流体动压现象) 当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。 (实例) 流体动压润滑 ——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。 特点) a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律 b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时

产生收敛型流体楔,形成足够的承载压力,以承受外载荷。 形成动压润滑的条件: a.润滑剂有足够的粘度 b.足够的切向运动速度(或者轴颈在轴承中有足够的转速) c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙) 2.流体动压润滑理论) 在摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。它的发展与人们对滑轮和摩擦的研究密切相关。 流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。 流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。 液体动压轴承 靠液体润滑剂动压力形成的液膜隔开两摩擦表面并承受载荷的滑动轴承。液体润滑剂是被两摩擦面的相对运动带入两摩擦面之间的。产生液体动压力的条件是:①两摩擦 面有足够的相对运动速度; ②润滑剂有适当的粘度;③

DG型泵机械密封装拆流程

DG型泵机械密封装拆流程(以联轴器端为例) 一:拆卸机械密封: 1、拆掉两端机械密封的冷却水管。 2、将泵联轴器从泵轴上取出,松开轴承体上的螺母,依次取下轴承体,轴承,轴承压盖,挡油圈等零部件。 3、松开机封压盖上的螺母,依次取下压盖,静环,轴套,动环。 二、装配机械密封: 1、检查机械密封装配处轴套的光洁度和外径。当出现轴套磨损严重或外表面磨损严重而达不到密封要求,应及时更换轴套。 2、检查机械密封型号规格是否无误,清理密封腔端面的污渍。 3、打磨轴套。使其光洁度达到密封的要求。 4、对轴套和机械密封进行润滑(包括动静环O型圈),可用硅脂、黄油、凡士林等润滑脂。 4、1)将静环压入机封压盖里面,2)采用深度尺测量腔室尺寸,确定机封压缩量,3)根据所测绘尺寸,将动环固定在轴套上。注意套入过程中动作要轻缓,避免碰坏动静环接触面。拧紧动环弹簧座上的紧定螺钉,使动环端固定在轴套上。(紧定螺钉的固定位置影响弹簧压缩量,不允许有过大或过小现象,要求误差2.00毫米。过大会增加端面比压,另速端面磨损。过小会造成比压不足而不能起到密封作用。)

5、依次安装压盖、挡油圈、轴承、轴承压盖、轴承体等零部件,拧紧固定螺栓。 6、安装泵联轴器。 三、机械密封装配过程中注意事项: 1、检查机械密封的型号、规格、数量是否符合设计图纸的要求,所有零件(特别是密封面、辅助密封圈)有无损伤、变形、裂纹等现象,若有缺陷,必须更换或修复。 2、检查机械密封各零件的配合尺寸、粗糙度、平行度是否符合设计要求。 3、检查轴套或压盖的倒角是否恰当,如不符合要求则必须进行修整。 4、使用小弹簧机械密封时,应检查小弹簧的长短和刚性是否相同。 5、检查主机的窜动量、摆动量和挠度是否符合技术要求,密封腔是否符合安装尺寸,密封端盖与轴是否垂直,一般要求:轴窜动量不大于±0.5mm;轴摆动量(旋转环密封圈处)不大于0.06mm;轴最大挠度不大于0.05mm;密封端盖与垫片接触平面对中心线的不垂直度允许差0.03~0.05mm。 6、机械密封各元件及其有关的装配接触面,在安装前必须用丙酮或无水酒精清洗干净,不允许用不清洁的布擦拭密封面。安装过程中应保持清洁,特别是动、静环及辅助密封元件应无杂质、灰尘。动、静环表面涂上一层清洁的机油或透平油。 7、上紧压盖应在联轴器找正后进行。螺栓应均匀上紧,防止压盖断面偏斜,用塞尺或专用工具检查各点,

线接触流体动压润滑的定解条件

·20· 机械 2005年 第32卷 增刊 线接触流体动压润滑的定解条件 刘鸪然1,焦彬1,王武东1,C.Y .Chan 2 (1.上海电机学院,上海 200240;2.香港理工大学) 摘要:对线接触流体动压润滑进行一些研究,提出线接触流体动压润滑的定解条件。 关键词:线接触;流体;动压; 马丁理论在流体动压润滑发展历史上有重要意义,但马丁公式与实测相差1~2个数量级。其一原因是假定油膜起始和终止点 h 0

泡罩包装密封性能监控方案

泡罩包装密封性能监控方案 摘要:泡罩包装是由塑料硬片与药用铝箔通过热封工艺形成的包装形式,泡罩包装的密封性能是一项极为重要的性能指标,对所包装药品的质量具有重要影响。本文利用MFY-01密封试验仪检测泡罩包装的密封性能,并介绍了设备的测试原理,叙述了试验的基本过程,从而为企业对泡罩包装密封性能的监控提供参考。 关键词:泡罩包装、水泡包装、PTP包装、医药、密封性能、密封试验仪、漏气、气泡 1、意义 随着药品包装形式的优胜劣汰,泡罩包装以其保护性好、使用方便、质量轻便等优点已成为目前药品包装市场的重要组成部分。泡罩包装,又称水泡包装、PTP包装,主要由两部分组成,分别为带有水泡眼的塑料硬片、药用铝箔。包装时,将药品放入硬片的水泡眼中,然后与药用铝箔进行热封,从而形成了各水泡眼相互独立的泡罩包装。由于泡罩包装其中一个水泡眼的破坏并不会对其他水泡眼的完整性产生影响或产生较小影响,故每个水泡眼自身的密封完整性就显的尤为重要。若泡罩包装的密封性较差,则外界环境中水蒸气、氧气等气体就会沿着密封较差处,渗透进包装内部,引起药品出现潮解、变色等现象。 图1 泡罩包装 2、标准 目前,密封性能试验主要是参考GB/T 15171-1994《软包装件密封性能试验方法》,该标准适用于各种材料制成的密封软包装件的密封性能试验。 3、试验样品 某品牌颗粒状药品包装用泡罩包装。

4、试验设备 本文采用密封试验仪测试泡罩包装样品的密封性能。 图2 MFY-01密封试验仪 4.1试验原理 本设备是采用压差法测试原理研发。试验时,样品置于密封罐的水中,通过对密封罐内部抽真空,使浸在水中样品的内外产生压差,若样品的密封性较差,在压差的作用下,样品内部的气体会沿样品表面的密封薄弱处向外部溢出,在水中表现为样品表面有连续的气泡产生,或者通过观察样品膨胀及释放真空后形状的恢复情况,判断样品的密封性能。 4.2 适用范围 ●本设备适用于食品、制药、医疗器械、日化、汽车、电子元器件、文具等行业的包装袋、 瓶、管、罐、盒等的密封性能测试,包括玻璃类、塑料类、金属材料类等。适用于跌落、耐压等试验后,试样密封性能的测试。 ●本设备符合多项国家和国际标准,如GB/T 15171、ASTM D3078等。 4.3设备参数 ●真空度为0 ~ -90 KPa。 ●真空室的有效尺寸有3种可供选择,分别为270 mm (直径) × 210 mm (高度)、360 mm (直径) × 585 mm (高度) 、460 mm (直径) × 330 mm (高度)。 ●系统采用数字预置试验真空度及真空保持时间,确保测试数据的准确性。 ●自动恒压补气技术进一步确保测试能够在预设的真空条件下进行。

机械密封安装要求

简介:机械密封部件无论从制造精度上还是安装精度上要求都很严格,如果安装不当,就会影响密封的寿命和密封性能,严重时将会使密封迅速失效。机械密封广泛用于各种类型的泵。机械密封是一种精度较高的 机械密封部件无论从制造精度上还是安装精度上要求都很严格,如果安装不当,就会影响密封的寿命和密封性能,严重时将会使密封迅速失效。机械密封广泛用于各种类型的泵。机械密封是一种精度较高的密封装置,对安装和使用条件均有一定的要求。 一、机械密封的安装 为了使机械密封具有良好的密封性能,安装密封的设备应满足以下要求: 1、安装安装机械密封部位的轴(或轴套)的外径尺寸公差为h7,表面粗糙度Ra值不大于。安装机械密封部位的轴(或轴套)的外径≤50mm时,径向跳动公差≤;外径>50mm时,径向跳动公差≤,安装机械密封的设备转子轴向窜动量≤。安装时必须将轴、密封腔体(泵盖)、机械密封本身清洗干净,防止杂质进入密封安装部位。 2、密封机械密封的安装是在泵的装配过程中进行的。待泵轴装上轴承箱,轴承箱的密封元件装好后,按以下步骤安装机械密封: 首先,安装前应确认产品型号及规格与设备要求是否一致,在安装密封的轴,腔体及压盖等与辅助密封圈接触处均匀涂油(注:对乙丙橡胶、或介质不允许注入润滑油的情况下,可涂抹植物油或肥皂水。再把机械密封套上轴,按设计的工作高度安装到位。过压盖通孔,采用对角线交叉拧紧方式,用螺栓将整个密封与密封腔体(泵盖)联接拧紧。机械密封配有辅助系统时,按标示正确连接管路,最后试车。 3、观察以上步骤完成后,手动盘车,注意观察转矩的变化,以及有无擦碰声音异常等,以确定是否要重新安装和调整。打开阀门,密封腔内通入密封介质,全部排出密封腔的空气,使密封腔中全部充满介质,并观察密封有无泄漏情况,确认上述两项正确无误后进行试运转。 二、机械密封安装使用的一般原则 1、弄清设备的情况,要了解设备转轴的转速、轴径;设备制造精度及密封腔尺寸,设备本身的使用寿命以及设备在生产工艺中的地位等要做全面均衡的考虑。 2、估算介质压力。泵的密封腔压力一般不是泵的出口压力,而是低于泵的出口压力。 3、弄清密封介质情况。要了解密封介质的状态,是气态还是液态,介质是否含颗粒及颗粒状况;了解介质的性质、温度,以便合理选型及采取必要的冷却、冲洗、润滑措施。 三、机械密封的安装时注意事项

机械密封拆卸装配注意事项

机械密封拆卸、装配应注意的事项 机械密封是转动机械本体密封最有效的方式之一,其本身加工的精度比较高,尤其是动、静环,如果拆装方法不合适或使用不当,装配后的机械密封不但达不到密封的目的,而且会损坏集结的密封元件。 1、拆卸时注意事项 1)在拆卸机械密封时,严禁动用手锤和扁铲,以免损害密封元件。 2)如果在泵两端都有机械密封时,则在拆卸过程中必须小心谨慎,防止顾此失彼。 3)对工作过的机械密封,如果压盖松动时密封面发生移动的情况,则应更换动静环零件,不应重新上紧继续使用。因为在松动后,摩擦副原来运转轨迹会发生改变,接触面的密封性就很容易遭到破坏。 4)如密封元件被污垢或凝聚物粘结,应清除凝结物后再进行机械密封的拆卸。 2、安装时注意事项 1)安装前要认真检查集结密封零件数量是否足够,各元件是否有损坏,特别是动、静环有无碰伤、裂纹和变形等缺陷。如果有问题,需进行修复或更换新备件。 2)检查轴套或压盖的倒角是否恰当,如不符合要求则必须进行修整。 3)机械密封各元件及其有关的装配接触面,在安装前必须用丙酮或无水酒精清洗干净。安装过程中应保持清洁,特别是动、静环及辅助密封元件应无杂质、灰尘。动、静环表面涂上一层清洁的机油或透平油。 4)上紧压盖应在联轴器找正后进行。螺栓应均匀上紧,防止压盖断面偏斜,用塞尺或专用工具检查各点,其误差不大于0.05毫米。 5)检查压盖与轴或轴套外径的配合间隙(及同心度),必须保证四周均匀,用塞尺检查各点允差不大于0.10毫米。 6)弹簧压缩量要按规定进行,不允许有过大或过小的现象,要求误差±2.00毫米,过大会增加断面比压,加速断面磨损。过小会造成比压不足而不能起到密封作用,弹簧装上后在弹簧座内要移动灵活。用单弹簧时要注意弹簧的旋向,弹簧的旋向应与轴的转动方向相反。 7)动环安装后须保持灵活移动,将动环压向弹簧后应能自动弹回来。 8)先将静环密封圈套在静环背部后,再装入密封端盖内。注意保护静环断面,保证静环断面与端盖中心线的垂直度,且将静环背部的防转槽对准防转销,但勿使其中互相接触。 9)安装过程中决不允许用工具直接敲打密封元件,需要敲打时,必须使用专用工具进行敲打,以防密封元件的损坏。

T软包装件密封性能测试方法

中华人民共和国国家标准 软包装件密封性能试验方法 GB/T 15171-94 Test method for leaks in sealed flexible packages 1主题内容与适用范围 本标准规定了软包装件密封性能的试验方法。 本标准适用于各种材料制成的密封软包装件试验。 2试验目的 本标准可用作以下目的之一的试验: a.比较和评价软包装件的密封工艺及密封性能; b.为确定软包装件密封性能的技术要求提供有关依据; c.试验经跌落、耐压等试验后软包装件的密封性能等。

3术语 3.1软包装件 需具有密封性能的软包装件,其所用包装材料不得有各种针孔、裂口及封口处未封和开封等影响密 封性能的缺陷。 3.2密封性能 软包装件防止其他物质进入或内装物逸出的特性。 4试验原理 4.1方法一 此方法用于在水的作用下,外层材料的性能在试验期间不会显着降低的包装件,如外层采用塑料薄 膜的包装件。 通过对真空室抽真空,使浸在水中的试样产生内外压差,观测试样内气体外逸

或水向内渗入情况, 以此判定试样的密封性能。 4.2方法二 此方法用于在水的作用下,外层材料的性能在试验期间会显着降低的包装件,如外层采用纸质材料 的包装件。 方法二分A、B两种方法,仲裁检验用方法A。 4.2.1方法A 将试样内充入试验液体,封口后将试样置于滤纸上,观察试验液体从试样内向外的泄漏情况。 4.2.2方法B 通过对真空室抽真空,使试样产生内外压差,观测试样膨胀及释放真空后试样形状的恢复情况,以

此判定试样的密封性能。 国家技术监督局1994-08-16批准1995-03-01实施 GB/T 15171-94 5试验装置 试验装置应包括以下部分: 5.1真空室:由透明材料制成的能承受100 kPa压力的真空容器和密封盖组成。 真空容器用于盛放试验液体和试验样品;密封盖用于密封真空室。抽真空时,密封盖应能保证真空 室的密闭性。 试验时,真空室内所能达到的最大真空度应不低于95 kPa,并能在30~60 s 由正常大气压力达到 该真空度。

软包装件密封性能测试方法

GBT 15171-94[2]软包装件密封性能测试方法 1主题内容与适用范围 本标准规定了软包装件密封性能的试验方法。 本标准适用于各种材料制成的密封软包装件试验。 2试验目的 本标准可用作以下目的之一的试验: a.比较和评价软包装件的密封工艺及密封性能; b.为确定软包装件密封性能的技术要求提供有关依据; c.试验经跌落、耐压等试验后软包装件的密封性能等。 3术语 3.1.软包装件 需具有密封性能的软包装件,其所用包装材料不得有各种针孔、裂口及封口处未封和开封等影响密封性能的缺陷。 3.2.密封性能 软包装件防止其他物质进入或内装物逸出的特性。 4试验原理 4.1.方法一 此方法用于在水的作用下,外层材料的性能在试验期间不会显著降低的包装件,如外层采用塑料薄膜的包装件。

通过对真空室抽真空,使浸在水中的试样产生内外压差,观测试样内气体外逸或水向内渗入情况,以此判定试样的密封性能。 4.2.方法二 此方法用于在水的作用下,外层材料的性能在试验期间会显著降低的包装件,如外层采用纸质材料的包装件。 方法二分A、B两种方法,仲裁检验用方法A。 4.2.1.方法A 将试样内充入试验液体,封口后将试样置于滤纸上,观察试验液体从试样内向外的泄漏情况。 4.2.2.方法B 通过对真空室抽真空,使试样产生内外压差,观测试样膨胀及释放真空后试样形状的恢复情况,以此判定试样的密封性能。 5试验装置 试验装置应包括以下部分: 5.1.真空室:由透明材料制成的能承受100 kPa压力的真空容器和密封盖组成。 真空容器用于盛放试验液体和试验样品;密封盖用于密封真空室。抽真空时,密封盖应能保证真空室的密闭性。 试验时,真空室内所能达到的最大真空度应不低于95 kPa,并能在30~60 s由正常大气压力达到该真空度。 5.2.试样夹具:用于将试样固定在真空室内的试验液体中,其材质和形状不得 对试样性能和试验观测造成影响。

流体静压润滑

流体润滑的基本原理 之 流体静压润滑 流体静压润滑 定义,什么是流体静压润滑 流体静压润滑是利用专用外界的流体装置,是流体产生压力,并将具有压力的流体输入到摩擦表面,将两摩擦表面用一层静压流体膜分开以支持外载荷的润滑。 流体静压润滑的特点 主要优点是: (1)适用速度范围广由于流体静压润滑本身不需要相对运动的功能,因而在任何速度下包括很高速或很低速,启动或停车以及正反转都能建立—层完整的流体膜,并获得良好的工作性能。 (2)摩擦系数很小其一般摩擦系数μ只有0.0001~0.0008,例如采用32号机械油的静压导轨,其起动摩擦系数一般在0.0005,因而功耗小,效率高,并在低速条件下不会产生粘滑现象。 (3)使用寿命长因为两个相对运动的表面不直接接触、磨损很小、能长期保持精度,同时对摩擦副的材料没有特殊要求等,因而大大地延长了其使用寿命。 (4)运动精度高液体静压膜具有某种“平均误差”的作用,可以补偿制造误差的影响。因而对轴颈或轴承的加工精度和表面粗糙度要求一般比液体动压润滑轴承为低。这点同滚动元件支承相比尤为明显。

(5)适应性和抗振性能好静压润滑的适应性很广,能满足轻裁到重载,小型到大型,低速到高速的各种机床和机械设备的要求、同时,静压流体膜有良好的吸振性能,运动均匀平稳,振动、噪音都很小。 主要缺点: 其缺点主要是工作时要一套可靠的高压供油装置,投资费和维护费较高,也增加了机器所占空间,而总效率较低,从这个角度分析.不如动压润滑机构简单,费用低。因此.究竞选用何种润滑方式,应根据具体要求综合考虑,必要时也可设计成动静压联合润滑方式。 3.2:流体静压润滑支承原理 流体静压支承的共同特点是各摩擦面都开有几个流体腔,每个流体腔的四周均有封流体的面,一般将一个流体腔及其封流体的面称为一个文承单元(或流体垫),若干个支承适当配置,便构成流体静压支承,整个摩擦副的承栽能力,是各支承单元承载能力的合成结果。所以理解单个支承单元的工作原理,是全面了解整个支承的基础。

密封胶试验方法

精心整理实验 建筑密封胶下垂度测试试验方法 一、实验目的 检测密封胶下垂度,以判定胶体的流动性 二、实验原理 在规定条件下,将密封胶注入规定尺寸的模具中,在一定温度下以垂直和水平的位置保持规定时间,测出试样流出模具端部的长度,从而依据一定标准判断出其流动性。 三、实验依据 GB16776-2005《建筑用硅酮密封胶》 GB/T13477.6-2002《建筑密封材料试验方法流动性的测定》 四、实验设备配置 下垂度模具,鼓风干燥箱,钢板尺,聚乙烯条 五、试件的制备 将下垂度模具用丙酮等溶剂清洗干净并干燥。把聚乙烯条衬在模具底部,使其盖住模具上部边缘,并固定在外侧,然后把已在(23±2)℃下放置24h 的密封材料用刮刀填入模具内。 六、实验方法与步骤 1垂直方向: a 将制备好的试件立即垂直放置在已调节至(50± 2)℃的干燥箱内,磨具的延伸端向下,见图1,放置24h。 b 从干燥箱中取出试件,用钢板尺在垂直方向上测量每一试件中试样从底面往延伸端向下移动的距离(mm)。 2水平方向 a 将制备好的试件立即水平放置在已调节至(50± 2)℃的干燥箱内,磨具的延伸端向下,见图2,放置24h。 b 从干燥箱中取出试件,用钢板尺在水平方向上测量每一试件中试样超出槽形模具前端的最大距离(mm)。 七、实验结果判定 下垂度在垂直方向上≤ 3mm,水平方向上无变形为合格 八、试验过程注意事项

1制备试件时,避免形成气泡,在模具内表面将密封材料压实,修整密封材料的表面,使其与模具的表面和末端齐平,放松模具背面的聚乙烯条。 2下垂度试验每一试件的下垂值,精确至1mm 3如果试验失败,允许重复一次实验,但只能重复一次。当试样从槽形模具中滑脱时,模具内表面可按生产方的建议进行处理,然后重复进行试验。. 实验二 建筑单组份密封胶挤出性试验方法 一、实验目的 测定单组份密封胶挤出性 二、实验原理 在规定条件下采用压缩空气将密封材料从聚乙烯挤胶筒中挤出至水中,测定一次将全部样品挤出所需时间的长短,判定出胶体的挤出性。 三、实验依据 GB16776-2005《建筑用硅酮密封胶》 GB/T13477.4-2002《建筑密封材料试验方法原包装单组分密封材料挤出性的测定》 四、实验设备配置 聚乙烯挤胶筒、稳压气源、秒表、气动挤抢、恒温箱 五、试件的制备试验前,将待测胶挤入聚乙烯挤胶筒中,放置在(23±2)℃恒温箱中至少 24h。 六、实验方法与步骤 1试验在(18~23)℃下进行 2将试件从恒温箱中取出,插入气动挤抢,升压至(250± 10)kPa。 3一次性将全部样品从筒中挤出,用秒表记录出时间,试验次数为一次。 七、实验结果判定 挤出时间≤ 10s 为合格 实验三 建筑双组份密封胶适用期测定试验方法 一、实验目的检测双组份密封胶适用期,以判定胶体的适用性 、实验原理 在规定条件下,将双组份密封胶混合5min 后,注入挤胶筒中,一定时间后采用压缩空

相关文档
相关文档 最新文档